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ABSTRACT

Generative adversarial networks (GANs) have made significant progress on realistic
image generation but often suffer from instability during the training process. Most
previous analyses mainly focus on the equilibrium that GANs achieve, whereas a
gap exists between such theoretical analyses and practical implementations, where
it is the training dynamics that plays a vital role in the convergence and stability
of GANs. In this paper, we directly model the dynamics of GANs and adopt the
control theory to understand and stabilize it. Specifically, we interpret the training
process of various GANs as certain types of dynamics in a unified perspective
of control theory which enables us to model the stability and convergence easily.
Borrowed from control theory, we adopt the widely-used negative feedback control
to stabilize the training dynamics, which can be considered as an L2 regularization
on the output of the discriminator. We empirically verify our method on both
synthetic data and natural image datasets. The results demonstrate that our method
can stabilize the training dynamics as well as converge better than baselines.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have shown promise in generating
realistic natural images (Brock et al., 2018) and facilitating unsupervised and semi-supervised
learning (Chen et al., 2016; Li et al., 2017; Donahue & Simonyan, 2019). In GANs, an implicit
generator (G) is defined by mapping a noise distribution to the data space. Since no density function
is defined for the implicit generator, a discriminator (D) is introduced to estimate the density ratio
between the data distribution pD and the generating distribution pG by telling the real samples
from fake ones. G aims to recover the data distribution by maximizing this ratio. This framework
is formulated as a minimax optimization problem, which can be solved by optimizing G and D
alternately. In practice, however, GANs can be extremely sensitive to hyperparameters (Lucic et al.,
2018; Radford et al., 2015) and oscillations are often observed (Liang et al., 2018; Chavdarova &
Fleuret, 2018), thereby suffering from the instability of training (Goodfellow, 2016).

There are some theoretical analyses aiming to understand and stabilize the training process of GANs,
such as designing different objective functions using other statistical divergences (Nowozin et al.,
2016; Nguyen et al., 2017; Du et al., 2018; Mao et al., 2017), and introducing auxiliary regularization
terms (Gulrajani et al., 2017; Arjovsky et al., 2017). However, there is a gap between the theoretical
analyses and practical implementations: most of previous work assumes that (1) D achieves optimal
when trainingG (Goodfellow et al., 2014; Arjovsky et al., 2017; Gulrajani et al., 2017; Nowozin et al.,
2016); and (2) the optimal D is a smooth function of G (Metz et al., 2016). These two assumptions
are violated in most practical cases. First, GANs are optimized by alternating between k steps of
optimizing D and one step of optimizing G, where k generally takes 1 or 5. It results in a sub-optimal
D, especially in the early stage of the training process. Second, D is constant w.r.t. G when G is
optimized, which results in missing gradients and an unstable training process (Metz et al., 2016).

Instead, to ensure practical convergence, it is the training dynamics of both G and D, i.e., how G (or
D) changes given current G and D during the training process, that should be considered, where the
previous two assumptions are no more required. There are some methods that focus on the dynamics
of the parameters. Mescheder et al. (2017) propose to model the dynamics of the parameters using
the vector field defined by its gradients. In such cases, the local convergence and stability are fully
determined by the eigenvalues of the Jacobian matrix. Mescheder et al. (2018) further propose a
regularization term to stabilize GANs by adjusting the eigenvalues of the Jacobian matrix. Gidel et al.
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(2018) analyze the effect of momentum and propose to stabilize GANs using negative momentum.
In these methods, the Jacobian matrix is the key to understand and stabilize the dynamics, whose
calculation is, however, computationally expensive. It largely impedes us to generalize this analysis
to complex models such as neural networks (LeCun et al., 2015).

In this paper, we argue that modeling the dynamics in the function space is more convenient for
convergence analysis. Specifically, we directly model G and D as two dynamics whose output is
considered as a signal of time t, i.e., representing the output of G and D as G(t, z) and D(t, x)
respectively. The control theory (Kailath, 1980) provides a powerful tool to understand them and
analyze their stability. Specifically, differential equations can be used to denote the dynamics, e.g.,
the dynamics of G can be denoted as dG(t,z)

dt = f(G,D), which represents how G changes given
current G and D. Then the stability and convergence can be easily modeled according the roots of
the characteristic equation of the differential equation (Kailath, 1980) as introduced in Sec. 2.

Under the above perspective of control theory, we unify the dynamics ofG and D as certain dynamics
which are well-studied in control theory for various GANs, including Standard GAN (SGAN),
WGAN and LSGAN (Mao et al., 2017), as illustrated in Sec. 3 and Appendix A. Specifically, the
training process of GANs can be considered as a dynamic whose output is determined by its intrinsic
properties (i.e., the objective function of G and D) and its input (i.e., the data distribution). In this
perspective, the stability of GANs can be easily understood, and some previous methods (Mao et al.,
2017; Mescheder et al., 2018; Gidel et al., 2018) can be interpreted as certain controlling methods
which are commonly used in the control theory. Further, we propose to use the widely adopted
controlling method, the negative feedback control (Åström & Hägglund, 1995), to stabilize GANs.
This method acts as a regularization term which penalizes the L2 norm of the output of D as we
described in Sec. 4. Our method is verified on the toy data such as Dirac GAN and Mixture of
Gaussian, as well as the natural images such as CIFAR10 (Krizhevsky et al., 2009). The results
demonstrate that our method can successfully stabilize the dynamics of GANs and provide better
convergence results compared to baselines.

2 PRELIMINARY

In this section, we provide the background and preliminary about Laplacian transformation (LT) and
control theory. LT is a powerful tool to present an ordinary differential equation (ODE) as a rational
fraction. Since most dynamics can be represented as an ODE, LT can largely simplify the analysis
about stability by merely analyzing the properties of the rational fraction.

2.1 LAPLACIAN TRANSFORMATION

Laplacian transformation (LT) (Widder, 2015) can be considered as an extension of Fourier transfor-
mation (FT), which transforms a signal, i.e., a function of time, to a function of complex variables.
Formally, the transformation and its inversion are given by:

F(f)(s) =
∫ ∞
0

f(t)e−stdt, F−1(F )(t) = 1

2πi

∫ c+∞i

c−∞i
estF (s)ds, (1)

where f is a signal that is represented as a function over time t, c is a constant that ensures F (s) ≤ ∞.
s ∈ C is a complex number, i.e., s = σ + ωi with real numbers σ and ω and for each s ∈ C, F (s)
denotes the components of certain frequency in the original signal f similar to FT.

With LT, the integration and derivation can be presented as a single operator, which is given by:

F(df(t)
dt

) = sF(f), F(
∫ t

0

f(u)du) =
1

s
F(f). (2)

With this property, an ODE can be converted to an algebraic equation by substituting derivation as an
operator s. A simple example is illustrated as follows:

d2x

dt2
= −x+ u→ s2X = −X + U, (3)

where u and x are the input and output signal correspondingly and U and X are their Laplacian
transformation. This ODE can represent a spring dynamic, whose acceleration d2x

dt2 depends on the
input u and the current position x according to Hooke’s law. In this case, the ODE can be solved
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Figure 1: The diagram representations of the inputs and dynamics after LT. Left: the original diagram of the spring dynamic in Eqn. (3). Right:
the diagram of a classical controlled dynamic with feedbackHb and controllerHc.

by simply applying the inverse Laplacian transformation to X = 1
s2+1U = Hf (s)U(s). Here

Hf (s) =
1

s2+1 is the transfer function of this dynamic which can also be represented as a diagram
illustrated in Fig. 1. Since the input signal can be considered as summation of infinity Dirac signal at
different positions, i.e., f(t) =

∫
f(u)δ(t− u)du where δ denotes the Dirac delta function (Dirac,

1981), we only need to analyze the output of the dynamics for Dirac signal whose LT is constant, i.e.,
F(δ) = 1. Therefore, the transfer function represents the intrinsic properties of the dynamics.

2.2 CONTROL THEORY AND NEGATIVE FEEDBACK

Given a dynamic, or equivalently a transfer function, the stability can be analyzed according to the
roots of the denominator of the transfer function, e.g., s2 + 1 = 0 for Eqn. (3). The roots are called
the poles of the dynamics. Specifically, if all poles’ real parts are negative, the dynamic is stable; if
there are poles which are pure imaginary numbers, the dynamic will oscillate; if there is at least one
pole with positive real parts, the dynamic will diverge (Kailath, 1980). In the above example, the
poles of the dynamic are 0± i, which indicates that the object will oscillate around the original.

For those unstable dynamics, we need to stabilize it by adjusting the poles of the dynamics. One
of the most commonly adopted methods here is introducing a negative feed back with an auxiliary
controller (Kailath, 1980). The diagram is illustrated in Fig. 1 (right). The Hb(s) denotes the transfer
function of feedback and Hc(s) denotes the transfer function of controller.

In this setting, the dynamic takes the error (i.e., E(s) = U(s) −Hb(s)X(s)) rather than U(s) as
input, resulting the fact that the transfer function of the whole controlled dynamic is given by:

E(s) = U(s)−Hb(s)X(s), X(s) = Hc(s)Hf (s)E(s)→ X =
Hc(s)Hf (s)

1 +Hc(s)Hf (s)Hb(s)
U, (4)

which provides us an approach to adjust the poles of an unstable dynamic. For most cases, simply
adopting the negative feedback, i.e., let Hb = Hc = 1, is enough to stabilize a dynamic. In the
following, we provide the dynamics of GANs in the perspective of control theory, and introduce the
negative feedback control to stabilize the training process of GANs.

3 UNIFYING THE DYNAMICS OF GANS IN CONTROL THEORY

In this section, we provide a novel perspective on the dynamic of GANs. Unlike previous methods
that mainly focus on the dynamics of the parameters, we directly model the output of two dynamics
G and D in the function space. In this part, we mainly focus on the Dirac GAN and unregularized
WGAN. This method can be extended to other GANs easily as we illustrated in Appendix A.

To model the dynamics of GANs, we first denote the output of G and D as a function with respect
to time t, which is also known as a signal, i.e., D = D(t, x) and G = G(t, z). Then the training
process can be represented as a dynamic using an ODE, and the equilibrium is equivalent to the final
value of the dynamics (Oppenheim et al., 1998), i.e., the output of the dynamics with t→∞.

3.1 THE DYNAMICS OF DIRAC GAN
In Dirac GAN, the data distribution is defined as pD(x) = δc(x) = δ(x− c) which is the density of
an idealized point mass at point c. The generator distribution is defined as pG(x) = δθ(x), where θ is
the learnable parameter of G. In this case, we use G(t) = G(t, z) for simplicity as its output does
not depend on z. The discriminator is a simple linear function D(t, x) = φ(t)× x. Therefore, the
minimax optimization problem of Dirac GAN is formulated as:

min
G

max
D

EpD [φx]− EpG [φx] = cφ− θφ. (5)
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Figure 2: The diagram block of Dirac GAN and unregularized WGAN. Left: Dirac GAN, Right: unregularized WGAN.

For the discriminator, the objective function is given by: maxφ U(D) = cφ− θφ, which indicates
that the dynamics of D can be formulated as:

∂U(D)

∂φ
= c− θ → dφ(t)

dt
= c− θ → ∂D(t, x)

∂t
= x× (c− θ),∀x. (6)

By considering c − θ as the error signal, i.e., e = c − θ, the dynamics of the discriminator can be
modeled as an integral part D(t, x) = x

∫ t
0
c−G(t)dt. By applying LT to the dynamic, we have:

F(D(t, x)) =
xF(e)
s

=
x

s
E(s),∀x. (7)

For the generator, the objective function is given by maxG U(G) = θφ. Therefore the dynamics of G
can be formulated as:

∂U(G)

∂θ
= φ→ dθ(t)

dt
= φ→ ∂G(t)

∂t
=
∂D(t, x)

∂x
. (8)

Since D(t, x) = x
∫ t
0
c − G(t)dt, we have ∂D(t,x)

∂x =
∫ t
0
c − G(t)dt. We therefore combine the x

part in D’s dynamic and the the partial derivation in G into an identity mapping. Then D can be
considered as an integral dynamic and its transfer function is given by HD(s) = 1

s . Further, the
generator also integrate the output of D, which is also 1

s .

Hence, the block diagram of the Dirac GAN is illustrated in the left panel of Fig. 2. As we can see,
D takes the difference between the real sample and fake sample, i.e., c− θ as input, and output the
integration of the input signal. The generator takes D’s output as input and output the generator
distribution which is the integration of D’s output.

It is worth noting that when treating G and D as dynamics, the inputs to the dynamics are not z and
x. Instead, for D, the input is pD − pG, and the input of G is D’s output signal ∂D(t,x)

∂x .

3.2 THE DYNAMICS OF WGAN
In this subsection, we further model the dynamics of WGAN (Arjovsky et al., 2017) without
regularization (i.e., no Lipschitz continuity constraints on the discriminator) in the function space.
In this case, we consider the nonparametric setting, where D is a piece-wise linear function, G is
a mapping from the noise space to the data space, and both of them are of infinity capacity. This
analysis can be extended to other variants of GANs easily.

In the general case, the objective function of D is given by:

max
D

U(D) = EpD [D(x)]− EpG [D(x)] =

∫
(pD(x)− pG(x))D(x)dx. (9)

According to the calculus of variations (Gelfand et al., 2000), the gradient of U(D) with respect to
the function D, and the dynamic of D are given by:

∂U(D)

∂D
= pD − pG →

dD(t, x)

dt
= pD(x)− pG(x). (10)

Since the input signal is pD−pG, the dynamics of WGAN is similar to that of the Dirac GAN, whose
transfer function can be denoted as HD(s) =

1
s .
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For the generator, the objective function and its dynamics are given by:

max
G

U(G) = Epz(z)[D(G(z))] =

∫
pz(z)D(G(z))dz → ∂U(G)

∂G
= pz(z)

∂D(G(z))

∂G(z)
,∀z. (11)

It is worth noting that compared to Dirac GAN, this integral is taken in the function space, i.e., G(t+
δt, z) = G(t, z)+ δtpz(z)

∂D(G(z))
∂G(z) . Besides, the generator distribution pG is not a Dirac distribution,

resulting in that another operation, which converts the generated samples to the distribution, should
be added after G to make the model consistent. The diagram blocks of WGAN is illustrated in
Fig. 2 (right). Compared to Dirac-GAN, another two operations are introduced to the framework. We
further provide the dynamics of other GANs, including standard GAN proposed by Goodfellow et al.
(2014) and Least-Square GAN proposed by Mao et al. (2017) in Appendix A.

4 UNDERSTANDING AND STABILIZING GANS WITH NEGATIVE FEEDBACK

In this section, we first provide the stability analysis of GANs from the perspective of control theory.
Besides, many previous methods can be interpreted in this perspective, and we use the momentum
as an example. Other further examples are given in Appendix C. We further propose to stabilize
the dynamics of GANs using the nagetive feedback controlling methods, and an example of another
controller is given in Appendix B.

4.1 STABILITY

In the dynamics of GANs, we argue that it is dominated by the two integral dynamics of G and D.
We therefore ignore the two non-linear operations in GANs in the following analysis. Since both
G and D can be considered as integral parts, we can formulate the transfer function of G and D as
HG = HD = 1

s . According to Eqn. (4), the transfer function of WGAN is given by:

H(s) =
HD

1 +HDHG
=

1/s

1 + 1/s2
=

s

1 + s2
. (12)

It is worth noting that the poles of the transfer function of the whole dynamic are 0 ± i, which
indicates that the output will oscillate around the equilibrium rather than converge to 0. This result
is also consistent with the analysis in (Mescheder et al., 2018). This perspective can also partially
explains why larger learning rate or adopting multiple update steps for D, where the transfer function
of D can be approximated by k

s with k > 1, cannot provide a principle solution for stabilizing GANs.
In this case, the poles of the dynamics are adjusted to 0±

√
ki which is still an oscillation dynamics.

4.1.1 THE AFFECT OF MOMENTUM

Our method can also provide the stability analysis for other practical techniques used in training
GANs. In this part we use the momentum as an examples. Gidel et al. (2018) provide some theoretical
analysis of momentum in training GANs, which is formulated in the parameter space. In the following,
we re-analyze the momentum in the function space under the perspective of control theory .

The momentum method (Qian, 1999) achieves great success in training deep neural networks.
Previous methods such as SGD with momentum can help neural networks to escape from local
optima. Its theoretical formulation is given by:

θ̃t+1 = βθ̃t + (1− β)∇θt, θt+1 = θt + ηθ̃t+1. (13)
The β is the coefficient for the exponential decay of the gradients, which generally takes 0.9. However,
things changed when it comes to training GANs. DCGAN (Radford et al., 2015) recommends a
smaller momentum with β = 0.5. Furthermore, recent state-of-the-art models (Mescheder et al.,
2018; Brock et al., 2018; Gulrajani et al., 2017) just remove the momentum.

In control theory, the momentum is equivalent to adding an exponential decay to the input of the
dynamics (An et al., 2018), and the LT of an exponential decay dynamic is 1

s+τ . τ > 0 denotes the
decay coefficient which depends on β. Therefore, the transfer function of the D with momentum is
HmD(s) =

1
s(s+τ) , and the transfer function of the WGAN with momentum is given by:

H(s) =
HmD

1 +HmDHG
=

1/(s(s+ τ))

1 + 1/(s2(s+ τ))
=

s

s3 + τs2 + 1
. (14)

By letting (s+a)(s+b)(s+c) = s3+τs2+1, we have that a+b+c = 0 and ab+ac+bc = τ > 0,
which indicates that there are at least one pole of this dynamic whose real part is larger than 0,
indicating the instability of the dynamics for GANs with momentum.

5



Under review as a conference paper at ICLR 2020

Algorithm 1 Negative Feedback GAN

1: Input: Buffer size Nb, feedback coefficient λ, batch size N , initialized θ and φ, learning rate η.
2: repeat
3: Initialize Br and Bf for real samples and fake samples respectively.
4: Sample a batch of {xr} ∼ pD, {xf} ∼ pG of N samples.
5: Update Br with {xr}. Update Bf with {xf}.
6: Sample a batch of x′r ∼ Br, x′f ∼ Bf of N samples respectively.
7: Estimate the objective of D:

U(D) = 1
N [

∑
x∈{xr}D(x)−∑

x∈{xf}D(x)]− λ
2N [

∑
x∈{x′

r}
D2(x) +

∑
x∈{x′

f}
D2(x)].

8: Update φ to maximize U(D) with learning rate η.
9: Estimate the objective of G: U(G) = 1

N

∑
x∈{xf}D(x).

10: Update θ to maximize U(G) with learning rate η.
11: until Convergence
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(a) The diagram of GANs with negative feedback.

0 2000 4000 6000 8000 10000

Time

0.0

0.5

1.0

1.5

2.0

θ

λ = 0.

λ = 0.02

λ = 0.05

λ = 0.1

λ = 0.2

0 2000 4000 6000 8000 10000

Time

−1.0

−0.5

0.0

0.5

1.0

φ

λ = 0.

λ = 0.02

λ = 0.05

λ = 0.1

λ = 0.2

(b) The dynamics of GANs with negative feedback.

Figure 3: The diagram and its corresponding dynamics of GANs using negative feedback.

4.2 STABILIZE GANS

According to the above analysis, for both the unregularized WGAN and the GAN with momentum,
the equilibrium point (i.e., pG = pD) is not a stable point. In the following, we propose to stabilize
GANs using negative feedback control, which is the most widely-used method in control theory.

In this setting, we set HNF = λ which is the transfer function of the negative feedback for D. After
applying the negative feedback to D, The diagram of the controlled dynamics is given in Fig. 3 (a).
According to Eqn. (4), the transfer function of D and the whole dynamic can be represented as:

H ′D(s) =
1/s

1 + λ/s
=

1

s+ λ
→ H(s) =

H ′D(s)

1 +H ′D(s)HG(s)
=

s

s2 + λs+ 1
. (15)

Therefore, for a positive and small λ, the real part of the two poles are −λ2 < 0, which indicates that
the dynamic is stable. The dynamics of the Dirac GAN using different λ is illustrated in Fig. 3 (b).
As we can see, when no feedback is applied (i.e., λ = 0), the dynamic will oscillate around the
equilibrium. Applying negative feedback can significant improve the stability of the dynamics.

4.2.1 PRACTICAL IMPLEMENTATION

The most direct way to add negative feed is to introduce a regularization term RD = λ
2

∫
D2(x)dx

to the objective function of D. However, directly integrating over the input space is computationally
infeasible. Instead, we give an approximation to RD. We assume that the area where |D(x)| is large
mainly concentrates on its training samples, i.e., previous samples used to train D. Therefore, we
keep two buffers Br and Bf of size Nb to store the old real samples and fake samples respectively.
Then RD is evaluated on these two buffers to regularize D, the two buffers are updated the with
replacement at each step. The training procedure is illustrated in Alg. 1. In the following, we use
NF-GAN (·) to denote our proposed method with the hyperparameters λ/2 denoted in the parentheses.

5 RELATED WORK

GANs are known for its unstable training process. Radford et al. (2015) provide several practical
techniques to stabilize the training, such as designing suitable architecture of neural networks and the
hyperparameters selection. The Unrolled GAN (Metz et al., 2016) proposes to make D as a function
of G by unrolling the training process of the discriminator where the gap between the theoretical
analysis and implementation can be reduced. Arjovsky et al. (2017) provide a theoretical analysis of
the gradient vanishing problem and further propose to optimize GANs using Wasserstein distance.
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WGAN SGAN Reg-WGAN NF-GAN(0.1) NF-GAN(0.01)

Figure 4: The generated samples for mixture of gaussian distribution. The red points demonstrate the location of data distribution and the blue
points are generated samples. Each distribution is plotted using kernel density estimation with 50,000 samples.
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Figure 5: The learning curve of baselines and our proposed methods. Left: The Inception Score of CIFAR10. Right: The FID score for CelebA.
We plot the curve with respect to time for better representation of the computational cost and convergence speed.

Gulrajani et al. (2017) use the gradient penalty to ensure the Lipschitz continuity in discriminator,
which is required by WGAN. However, GANs still suffer from instability in the training process.

Besides, there is some work that directly focuses on the stability of the training process. Except for
the works mentioned in Sec. 1, Peng et al. (2019) also directly model the dynamics of the parameters
and adjust the update rules to stabilize GANs. Gidel et al. (2016) propose to find the saddle point of
the optimization problem using Frank-wolfe algorithms. However, both of them only consider the
bilinear games, and fail to generalize their methods to complex datasets such as natural images.

6 EXPERIMENTS

In this section, we empirically verify our proposed method on both synthetic data and the widely-
adopted CIFAR10 (Krizhevsky et al., 2009) and CelebA (Liu et al., 2015) datasets. Our model is
implemented in Pytorch library (Paszke et al., 2017). For synthetic data, we adopt two-layer MLPs
for both the generator and the discriminator whose hidden units are 128 and 512 respectively. For
natural images, we use the resnet (He et al., 2016) for both the generator and the discriminator
following Mescheder et al. (2018) and adopt the ReLU activation (Glorot et al., 2011). The batch
size is 512 for synthetic data and 64 for natural images, and the buffer size is set to 100 times of
the batch size for all settings. We use rmsprop (Hinton et al., 2012) optimizer with learning rate as
0.0001 and α = 0.99 for all models. We refer the regularization proposed in Mescheder et al. (2018)
as Reg-GAN, which is the direct baseline of our method. Our code is provided here.

6.1 SYNTHETIC DATA

In this section, we evaluate our proposed method on a mixture of Gaussian on the two dimensions.
The data distribution consists of 8 2D isotropic Gaussian distributions arranged in a ring, where the
radius of the ring is 1, and the deviation of each component Gaussian distribution is 0.05. For the
coefficient λ/2, we follow the theoretical analysis and set it among λ/2 ∈ {0.01, 0.05, 0.1}.
The generated results are illustrated in Fig. 4 and we further provide the dynamics of the generator
distribution in Fig. 11 in Appendix D. As we can see, the unregularized WGAN and SGAN suffer
from severe model collapse problem and cannot cover the whole data distribution. Besides, the
oscillation can be observed during the training process of WGAN: the generator distribution oscillates
among the modes of data distribution. Our method can successfully cover all modes compared to the
WGAN and SGAN and is comparable to Reg-GAN.

6.2 CIFAR10 & CELEBA

Besides synthetic data, we also evaluate our method on two natural image datasets CIFAR10 and
CelebA. Since for large dataset, the non-linearity cannot be ignored, which results in the gap between
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Figure 6: The generated results of CIFAR10 dataset. From left to right: WGAN-GP, Reg-WGAN, NF-WGAN(5), NF-SGAN(5).

Figure 7: The generated results of CelebA dataset. From left to right: WGAN-GP, Reg-WGAN, NF-WGAN(15), NF-SGAN(15).

the simulation of Dirac GAN and our methods. A small λ/2 such as 0.01, which is suitable for Dirac
GAN is not enough for stabilize the large models. We therefore select the coefficient λ/2 among
{1, 2, 5, 10, 15, 20}. In this part, we only report representative results. Though our analysis mainly
focuses on the WGAN framework, NF can also easily generalize to SGAN whose stability can also
be improved. In this part, we also evaluate NF-SGAN with different coefficient λ/2.

Table 1: The FID Score on CIFAR10. The results reported
here are the best results over the training process.

Regularization WGAN SGAN
No regularization 105.21 28.51

Reg-GAN 30.43 28.39
Gradient Penalty 28.20 −

NF-GAN(2) (ours) 21.90 22.35
NF-GAN(5) (ours) 22.31 21.61
NF-GAN(10) (ours) 21.19 23.34

We use the Inception Score (IS) (Salimans et al., 2016)
to evaluate the image quality on CIFAR10 and FID
score (Gulrajani et al., 2017) on both CIFAR10 and
CelebA. The quantitative results are given in Table 1
and the learning curve is reported in Fig. 5. Our
method gives an improvement to the FID and IS for
both WGAN and SGAN. Specifically, for unregularized
methods, the models demonstrate the unstable training
process and finally diverge away from the data distribu-
tion. Compared with Reg-GAN, our method maintains
the stability and provides better convergence results as also shown in Table 1. Besides, our method is
more computational efficient, since regularizing the output of D need less computation compared to
regularizing ||∂D(x)

∂x || and this gap is significant for large dataset. Specifically, on Geforce 1080Ti,
our method can conduct approximate 12/8 iterations per second of training for CIFAR10/CelebA,
whereas Reg-GAN can only conduct 10/4 iterations per second. What’s more, our method is robust
to the choice of the hyperparameter λ. We present the generated images in Fig. 6 and Fig. 7.

7 CONCLUSION

In this paper, we propose a novel method to analyze the dynamics of GANs. Instead of focusing
on the equilibrium, our method directly models the dynamic of the discriminator and the generator
during the training process. Using Laplacian transformation and control theory, the stability can be
easily understood according to the poles of the dynamics. Besides, the negative feedback control is
proposed to stabilize the dynamics of GANs, and the empirical results demonstrate that our method
can successfully stabilize GANs and provide better convergence results.

Though negative feedback shows promise results, understanding and stabilizing GANs are far from
solved. For one thing, our analysis mainly focuses on the continuous cases, where the practical
implementation optimizes both G and D in discrete time steps, where the Z-transformation provides
a better tools for discrete time dynamics. For another, we simply ignore the non-linear operations for
WGAN. These operations can be further analyzed using modern control theory and nonlinear control
methods (Khalil, 2002) to provide better results. Indeed, our method does not provide a perfect
solution to GANs’ dynamic. It does provide a new perspective to understand and stabilize GANs.
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A GANS AND THEIR CORRESPONDING DYNAMICS

In this section, we provide an illustration for different kind of GANs and their corresponding
dynamics.

A.1 VANILLA GAN AND NON-SATURATION GAN

The GANs proposed by (Goodfellow et al., 2014) are formulated as follows:
min
G

max
D

EpD [log σ(D(x))] + EpG [log(1− σ(D(x)))].

Therefore, the objective function and the corresponding dynamics of D is given by:

• The objective function:
max
D

U(D) =EpD [log σ(D(x))] + EpG [log(1− σ(D(x)))]

=

∫
pD(x) log

1

1 + exp(−D(x)) + pG(x) log
exp(−D(x))

1+exp(−D(x))

dx

=−
∫
pD(x) log(1 + exp(−D(x))) + pG(x) log(1 + exp(D(x)))dx.

• Therefore, given current G, the gradient of U(D) with respect to D at certain x is given by:
∂U(D)

dD(x)
= pD

exp(−D(x))

1 + exp(−D(x))
− pG

exp(D(x))

1 + exp(D(x))

= pD(1− σ(D(x)))− pGσ(D(x))

→ dDt(x)

dt
=
∂U(D(x))

dD(x)
= pD(1− σ(D(x)))− pGσ(D(x)).

The objective function and the corresponding dynamics of G are given by:

• The objective function:
min
G

U(G) =EpG [log(1− σ(D(x)))] = Epz [log(1− σ(D(G(z))))]

=

∫
pz(z) log

exp(−D(G(z)))

1 + exp(−D(G(z)))
dz

= −1×
∫
pz(z) log(1 + exp(D(G(z))))dz.

• Since G is optimized using reparameterization, we rewrite G(z) as xz for simplicity. Given
current D, the gradient of U(G) w.r.t. G at a certain z is given by:

∂U(G)

∂xz
= −1× p(z) exp(D(xz))

1 + exp(D(xz))

∂D(xz)

∂xz
= −1× p(z)σ(D(xz))

∂D(xz)

∂xz

→dGt(z)

dt
= p(z)σ(D(xz))

∂D(xz)

∂xz

For a well-trained D, which can successfully tell real samples from generated samples with high
confidence, i.e., D(xz) ≈ 0 for all z, the gradient for G will tend to zero almost everywhere, which
will result in gradient vanishing. This analysis is consistent with previous literature (Johnson &
Zhang, 2018; Arjovsky et al., 2017).

For non-saturation GAN, the objective function and dynamics of G are given by:

• The objective is given by:
max
G

U(G) =EpG [log σ(D(x))] = Epz [log σ(D(G(z)))]

=

∫
pz(z) log

exp(D(G(z)))

1 + exp(D(G(z)))
dz

=

∫
pz(z)(D(G(z))− log(1 + exp(D(G(z)))))

11
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• We rewrite G(z) as xz and provide the gradient of U(G) w.r.t. xz as follows:

∂U(G)

∂xz
= pz(z)(1−

exp(D(xz))

1 + exp(D(xz))
)
∂D(xz)

∂xz

= pz(z)(1− σ(D(xz)))
∂D(xz)

∂xz

→ dGt(z)

dt
= p(z)(1− σ(D(xz)))

∂D(xz)

∂xz

A.2 LEAST-SQUARE GAN

(Mao et al., 2017) propose to use the least square loss to train both the discriminator and the generator.
The objective for theD andG are selected differently according to its theoretical analysis. Specifically,
the objective function of D and G are given by:

min
D

U(D) =
1

2
EpD [(D(x)− 1)2] +

1

2
EpG [(D(x))2];

min
G

U(G) =
1

2
Epz [(D(G(z))− 1)2].

Therefore, the dynamics of the D and G are given by:

• The dynamic of D:

∂U(D)

∂D(x)
=

1

2

∂

∂D(x)
(pD(D(x)− 1)2 + pGD(x)2)

= pD(D(x)− 1) + pGD(x).

→ dDt(x)

dt
= pD − (pD + pG)Dt(x) (16)

• The dynamic of G:

∂U(G)

∂xz
= pz(D(xz)− 1)

∂D(xz)

∂xz

→ dGt(z)

dt
= pz(z)(1−D(xz))

∂D(xz)

∂xz

It is worth noting that if the G is fixed, the dynamics of D can be considered as an exponential decay
which is the same as the D with negative feedback control. However, since G is changing during the
training process, the dynamics of D is actually coupling with the dynamics of G, which generally
results in the unstable dynamics Kailath (1980). The experimental results on CIFAR10 also verify this
argument. It also explains why we use two buffers of old samples to approximate the regularization
term instead of directly regularizing the output of D using current samples.

B FURTHER DISCUSSION: PD CONTROLLER

Besides negative feedback, the most commonly used controller is the PID controller, which consists
of three parts: the partial (P), integration (I) and derivation (D). Specifically, the PID controller takes
the error signal as input, and output the summation of the above three parts, whose formal definition
is defined as follows:

c(t) = Kpe(t) +Ki

∫ t

u=0

e(u)du+Kd
de(t)

dt
→ Hc(s) =

Kps+Ki +Kds
2

s
. (17)

Kp, Ki, Kd denotes the corresponding coefficients for PID controller. e(t) denotes the error signal
and c is the output of the controller, which is also the actual input of the dynamic. Generally, the
I part can reduce the static error, and the D part can make the dynamic stable and accelerate the
convergence.
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(a) The diagram of GANs with PD Controller.
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(b) The dynamics of GANs with with PD Controller.

Figure 8: The diagram and its corresponding dynamics of GANs using PD controller.
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Figure 9: The generated results of PD controller with d = 5.

The PID controller is introduced to adjust the poles of the dynamic. Since the static error, i.e., the
difference between the stable point and targeted point, is zero, the integral part is not necessary, and
we only employ the PD controller in the following. By letting Hc(s) = p+ ds, where p and d is the
corresponding coefficient for the P and D part, the transfer function of the whole dynamic is given by:

H(s) =
Hc(s)HD(s)

1 +Hc(s)HG(s)HD(s)
=

s(p+ ds)

s2 + ds+ p
. (18)

As we can see, given positive p and d, the PD controller can successfully adjust the real parts poles of
the dynamic to negative. In the following analysis and implementation, we fix p = 1 for simplicity.

The dynamics of Dirac GANs using PD controller is given in Fig. 8 (b). With a PD controller, the
dynamic can be successfully stabilized. For general GAN, the objective of D at time t is given by:

U(D, t) = EpD(t,x)[D(x)]− EpG(t,x)[D(x)]+

λ{EpD(t,x)[D(x)]− EpG(t,x)[D(x)]− EpD(t−δt,x)[D(x)] + EpG(t−δt,x)[D(x)]}. (19)

The regularization is actually minimizing the loss of D in the current step as well as maximizing the
loss of D for previous step.

B.1 EXPERIMENTAL RESULTS

The results of the synthetic data are illustrated in Fig. 9. WGAN with PD controller can successfully
cover the whole data distribution and be stable at the equilibrium.

However, we fail to generalize PD controller to the natural image dataset such as CIFAR10. We argue
that the main reason is the overshooting for the dynamics of D, as illustrated in Fig. 8 (b), where the
D gives a large derivation from the equilibrium at the beginning. Because of the highly-nonlinearity
in neural networks, this overshooting will result in unexpected behavior of neural networks. In
contrast, for the negative feedback, the overshooting is much smaller, which enables it to generalize
to the non-linear neural networks.

C UNIFYING PREVIOUS METHODS IN CONTROL THEORY

In this section, we also provide some analysis that interprets previous methods in the perspective of
control theory.

13



Under review as a conference paper at ICLR 2020

𝐻𝐷:
1

𝑠

𝐻𝐺:
1

𝑠

𝑃𝐺(𝑥)

+

-

𝑃𝐷(𝑥)
+

-

𝜕𝐷 𝑡, 𝑥

𝜕𝑥

𝑑𝑊𝑡

𝑑𝑡
= ∇𝑊

+

-

0 𝑝 + 𝑑𝑠
𝑊

Figure 10: The diagram of previous methods. Left: the diagram of Reg-GAN which takes the || ∂D
∂x || as regularization. Right: the diagram of

negative momentum together with weight decay.

C.1 REG-GAN

Mescheder et al. (2018) propose a regularization which is added on D’s gradient of x, i.e., Rd(x) =
||∂D(x)

∂x ||22. Therefore, it can be considered as an other form of negative feedback, which is illustrated
in Fig. 10.

Compare to our analysis, Reg-GAN provides more accurate modeling of the dynamics and directly
regularizes on the input of the dynamic of G. Therefore, Reg-GAN can also successfully stabilize the
dynamic of GANs, which is consistent with our experimental results. Compared to Reg-GAN, our
method is more computationally efficient.

C.2 WEIGHT DECAY AND NEGATIVE MOMENTUM

Gidel et al. (2018) analyze the effect of momentum in the training of GANs, and we already interpret
this analysis in the context of control theory. Besides, the authors also propose to use the negative
momentum to stabilize GANs, which is illustrated as follows:

Wt+1 =Wt + η∇W + λ(Wt −Wt−1). (20)

Together with weight decay, the controlled dynamics of W is given:

Wt+1 =Wt + η∇W + λ1(Wt −Wt−1)− λ2Wt. (21)

In this setting, Eqn. (21) is equivalent to the PD controller with negative feedback in the parameter
space whose diagram can be illustrated in Fig. 10. The λ1(Wt−Wt−1) denotes the D part and λ2Wt

denotes the P part.

D DYNAMICS OF SYNTHETIC DATA

In this section, we provide the training dynamics of several baselines and NF-GAN on the synthetic
data. The result is illustrated in Fig. 11.
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Figure 11: The training dynamics of various GANs on synthetic data.
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