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ABSTRACT

Non-autoregressive models are promising on various text generation tasks. Previ-
ous work hardly considers to explicitly model the positions of generated words.
However, the position modeling is an essential problem in non-autoregressive text
generation. In this study, we propose PNAT, which incorporates positions as a
latent variable into the text generative process. Experimental results show that
PNAT achieves top results on machine translation and paraphrase generation tasks,
outperforming several strong baselines.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has been widely used in many text generation tasks, which is
first proposed in neural machine translation, achieving great success for its promising performance.
Nevertheless, the auto-regressive property of Transformer has been a bottleneck. Specifically, the
decoder of Transformer generates words sequentially, and the latter words are conditioned on
previous ones in a sentence. Such bottleneck prevents the decoder from higher efficiency in parallel
computation, and imposes strong constrains in text generation, with which the generation order has
to be left to right (or right to left) (Shaw et al., 2018; Vaswani et al., 2017).

Recently, many researches (Gu et al., 2018; Lee et al., 2018; Wang et al., 2019; Wei et al., 2019) are
devoted to break the auto-regressive bottleneck by introducing non-autoregressive Transformer (NAT)
for neural machine translation, where the decoder generates all words simultaneously instead of
sequentially. Intuitively, NAT abandons feeding previous predicted words into decoder state at the
next time step, but directly copy encoded representation at source side to the decoder inputs (Gu et al.,
2018). However, without the auto-regressive constrain, the search space of the output sentence be-
comes larger, which brings the performance gap between NAT and auto-regressive Transformer (AT).
Related works propose to include some inductive priors or learning techniques to boost the perfor-
mance of NAT. But most of previous work hardly consider explicitly modeling the position of output
words during text generation.

We argue that position prediction is an essential problem of NAT. Current NAT approaches do not
explicitly model the position of output words, and may ignore the reordering issue in generating
output sentences. Compared to machine translation, the reorder problem is much more severe in tasks
such as table-to-text and dialog generations. Additionally, it is straightforward to explicitly model
word positions in output sentences, as position embeddings are used in Transformer, which is natively
non-autoregressive, to include the order information. Intuitively, if output positions are explicitly
modeled, the predicted position combined with Transformer to realize non-autoregressive generation
would become more natural.

In this paper, we propose non-autoregressive transformer by position learning (PNAT). PNAT is
simple yet effective, which explicitly models positions of output words as latent variables in the text
generation. Specifically, we introduce a heuristic search process to guide the position learning, and
max sampling is adopted to inference the latent model. The proposed PNAT is motivated by learning
syntax position (also called syntax distance) (Shen et al., 2018). Shen et al. (2018) show that syntax
position of words in a sentence could be predicted by neural networks in a non-autoregressive fashion,
which even obtains top parsing accuracy among strong parser baselines. Given the observations above,
we try to directly predict the positions of output words to build a NAT model for text generation.

Our proposed PNAT takes following advantages:
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• We propose PNAT, which first includes positions of output words as latent variables for text
generation. Experiments show that PNAT achieves very top results in non-autoregressive
NMT, outperforming many strong baselines. PNAT also obtains better results than AT in
paraphrase generation task.
• Further analysis shows that PNAT has great potentials. With the increase of position

prediction accuracy, performances of PNAT could increase significantly. The observations
may shed light on the future direction of NAT.
• Thanks to the explicitly modeling of position, we could control the generation by facilitating

the position latent variable, which may enable interesting applications such as controlling
one special word left to another one. We leave this as future work.

2 BACKGROUND

2.1 AUTOREGRESSIVE DECODING

A target sequence Y =y1:M is decomposed into a series of conditional probabilities autoregressively,
each of which is parameterized using neural networks. This approach has become a de facto standard
in language modeling(Sundermeyer et al., 2012), and has been also applied to conditional sequence
modeling p(Y |X) by introducing an additional conditional variable X=x1:N :

p(Y |X) =

M∏
t=1

p(yt|y<t, X; θ) (1)

With different choices of neural network architectures such as recurrent neural networks (RNNs) (Bah-
danau et al., 2014; Cho et al., 2014), convolutional neural networks (CNNs) (Krizhevsky et al., 2012;
Gehring et al., 2017), as well as self-attention based transformer (Vaswani et al., 2017), the autore-
gressive decoding has achieved great success in tasks such as machine translation (Bahdanau et al.,
2014), paraphrase generation (Gupta et al., 2018), speech recognition (Graves et al., 2013), etc.

2.2 NON-AUTOREGRESSIVE DECODING

Autoregressive model suffers from the issue of slow decoding in inference, because tokens are
generated sequentially and each of them depends on previous ones. As a solution to this issue, Gu et al.
(2018) proposed Non-Autoregressive Transformer (denoted as NAT) for machine translation, breaking
the dependency among the target tokens through time by decoding all the tokens simultaneously. Put
simply, NAT (Gu et al., 2018) factorizes the conditional distribution over a target sequence into a
series of conditionally independent distributions with respect to time:

p(Y |X) = pL(M |X : θ) ·
M∏
t=1

p(yt|X) (2)

which allows trivially finding the most likely target sequence by arg maxY p(Y |X) for each timestep
t, effectively bypassing computational overhead and sub-optimality in decoding from an autoregres-
sive model.

Although non-autoregressive models achieves 15× speedup in machine translation compared with
autoregressive models, it comes at the expense of potential performance degradation (Gu et al.,
2018). The degradation results from the removal of conditional dependencies within the decoding
sentence(yt depend on y<t). Without such dependencies, the decoder is hard to leverage the inherent
sentence structure in prediction.

2.3 LATENT VARIABLES FOR NON-AUTOREGRESSIVE DECODING

A non-autoregressive model could be incorporated with conditional dependency as latent variable to
alleviate the degradation resulted from the absence of dependency:

P (Y |X) =

∫
z

P (z|X)

M∏
t=1

P (yt|z, X)dz (3)
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Figure 1: Illustration of the proposed model, where the black solid arrows represent differentiable
connections and the dashed arrows are non-differentiable operations. Without loss of generality, this
figure shows the case of N = 3, M = 4.

For example, NAT-FT (Gu et al., 2018) models the inherent sentence structure with a latent fertility
variable, which represents how many target tokens that a source token would translate to. Lee et al.
(2018) introduces L intermediate predictions Y 1:L as random variables , and to refine the predictions
from Y 1 to Y L in a iterative manner.

3 PNAT: POSITION-BASED NON-AUTOREGRESSIVE TRANSFORMER

We propose position-based non-autoregressive transformer (PNAT), an extension to transformer
incorporated with non auto-regressive decoding and position learning.

3.1 MODELING POSITION WITH LATENT VARIABLES

Languages are usually inconsistent with each other in word order. Thus reordering is usually required
when translating a sentence from a language to another. In NAT family, words representations or
encoder states at source side are copied to the target side to feed into decoder as its input. Previously,
Gu et al. (2018) utilizes positional attention which incorporates positional encoding into decoder
attention to perform local reordering. But such implicitly reordering mechanism by position attention
may cause a repeated generation problem, because position learning module is not optimized directly,
and is likely to be misguided by target supervision.

To tackle with this problem, we propose to explicitly model the position as a latent variable. We
rewrite the target sequence Y with its corresponding position latent variable z = z1:M as a set Yz =
yz1:zM . The conditional probability P (Y |X) is factorized with respect to the position latent variable:

P (Y |X) =
∑

z∈π(M)

P (z|X) · P (Y |z, X) (4)

where π(M) is a set consisting of permutations with M elements. At decoding time, the factorization
allows us to decode sentences in parallel by pre-predicting the corresponding position variables z.
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3.2 MODEL ARCHITECTURE

As shown in Figure 1, PNAT is composed of four modules: an encoder stack, a bridge block, a
position predictor as well as a decoder stack. Before detailing each component of PNAT model, we
overview the architecture for a brief understanding.

Like most sequence-to-sequence models, PNAT first encodes a source sequence X=x1:N into its
contextual word representations E=e1:N with the encoder stack. With generated contextual word
representation E at source side, the bridge block is leveraged to computed the target length M as well
as the corresponding features D=d1:M , which is fed into the decoder as its input. It is worth noting
that the decoder inputs D is computed without reordering. Thus the position predictor is introduced
to deal with this issue by predicting a permutation z=z1:M over D. Finally, PNAT generates the
target sequence from the decoder input D and its permutation z.

Encoder and Decoder Given a source sentence X with length N , PNAT encoder produces its
contextual word representations E. The contextual word representations E are further used in
computing target length M and decoder initial states D, and are also used as memory of attention at
decoder side.

Generally, PNAT decoder can be considered as a transformer with a broader vision, because it
leverages future word information that is blind to the autoregressive transformer. Intuitively, we
use relative position encoding in self-attention(Shaw et al., 2018), rather than absolute one that is
more likely to cause position errors. Following Shaw et al. (2018) with a clipping distance d (usually
d ≥ 2) set for relative positions, we preserve d = 4 relations.

Bridge The bridge module predicts the target length M , and initializes the decoder inputs D from
the source representations E. The target length M could be estimated from the source encoder
representation:

M = N + arg maxφ(E) (5)
where φ(·) produces a categorical distribution ranged in [−B,B]. Then, we adopt the method
proposed by Li et al. (2019) to compute D. Given the source representation E and the estimated
target length M , we linearly combine the embeddings of the neighboring source tokens to generate
D as follows:

dj =
∑
i

wji · ei (6)

wji = softmax(−|j − i|/τ) (7)
where wji is a normalized weight that reflects the contribution of ei to dj , and τ is a hyperparameter
indicating the sharpness of the weight distribution.

Position Predictor For the proposed PNAT, we model position permutations with a position
predictor. As shown in Figure 1, the position predictor takes the decoder inputs D and the source
representation E to predict a permutation z. The position predictor has a sub-encoder which stacks
multiple layers of encoder units to predict its predicted input R=r1:M . Depending on whether the
decision-making process is autoregressive or non-autoregressive, there are two types of position
predictor: autoregressive position predictor and non-autoregressive position predictor.

With the predicted inputsR, we conduct an autoregressive position predictor, denoted as AR-Predictor.
The AR-Predictor searches a permutation z with:

P (z|D,E) =

M∏
t=1

p(zt|z<t, D,E; θ) (8)

where θ is the parameter of AR-Predictor, which includes a RNN-based model incorporated with a
pointer network (Vinyals et al., 2015).

We also build a non-autoregressive version for the position predictor, denoted as NAR-Predictor, to
model the position permutation probabilities with:

P (z|D,E) =

M∏
t=1

p(zt|D,E; θ) (9)
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To obtain the permutation z, AR-Predictor performs greedy search whereas NAR-Predictor performs
direct arg max.

3.3 TRAINING

Training requires maximizing the marginalized likelihood in Eqn. 4. However, this is intractable
since we need to enumerate all the M ! permutations of tokens. We therefore optimize this objective
by Monte Carlo sampling method with a heuristic search algorithm.

Heuristic Search for Positions Intuitively, each target token should have a corresponding decoder
input, and meanwhile each decoder input should be assigned to a target token. Based on this idea,
we design a heuristic search algorithm to allocate positions. Given the decoder inputs and its target
tokens, we first estimate the similarity between each pair of the decoder input di and the target token
embedding yj , which is also the weights of the target word classifier:

simi,j = cosine (di, yj) (10)

Based on the cosine similarity matrix, HSP is designed to find a perfect matching between decoder
inputs and target tokens:

HSP(z) = arg max
z

M∑
i=0

(simi,zi) (11)

Here we apply a greedy algorithm to select the pair with the highest similarity score iteratively until a
permutation is generated.

The intuition behind is that, if the decoder input di is already the most similar one to a target word, it
would be easier to keep and even reinforce this association in learning the model.

Objective Function With the heuristically discovered positions as reference positions zref, the
position predictor could be trained with a position loss:

Lp = − logP (zref|D,E) (12)

Besides, grounding on the referenced positions, the generative process of target sequences is optimized
by:

Lg = −
M∑
t=1

logP (Y |zref;X) (13)

Finally, combining two loss functions mentioned above, a full-fledged loss is derived as

L = Lg + αLp (14)

4 EXPERIMENTS

We test PNAT on several benchmark sequence generation tasks. We first describe the experimental
design and training details, and then present the main results, followed by some deep studies.

4.1 EXPERIMENTAL DESIGN

To show the generation ability of PNAT, we conduct experiments on the popular machine translation
and paraphrase generation tasks. These sequence generation task evaluation models from different
perspectives. Translation tasks test the ability of semantic transforming across bilingual corpus. While
paraphrase task focuses on substitution between the same languages while keeping the semantics.

Machine Translation We valid the effectiveness of PNAT on the most widely used benchmarks for
machine translation — IWSLT16 English-German(196k pairs) and WMT14 English-German(4.5M
pairs). The dataset is processed by Lee et al. (2018) with Moses script (Koehn et al., 2007), and the
words are segmented into subword units using byte-pair encoding (BPE) (Sennrich et al., 2016).
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Paraphrase Generation We conduct experiments following previous work (Miao et al., 2019) for
paraphrase generation. We make use of the established Quora dataset1 to evaluate on the paraphrase
generation task. We consider the supervised paraphrase generation and split the Quora dataset in the
standard setting. We sample 100k pairs sentence as training data, and holds out 3k, 30k for validation
and testing, respectively.

4.2 TRAINING DETAILS

Model Setting For machine translation, we follow the settings from Gu et al. (2018). In the case of
IWSLT16 English-German, we use a small model (dmodel = 278,dhidden = 507 , pdropout = 0.1,nlayer = 5
and nhead = 2) for Transformer(Vaswani et al., 2017) and NAT models. For WMT14 English-German,
we use transformer-base by Vaswani et al. (2017) (dmodel = 512,dhidden = 512 , pdropout = 0.1,nlayer =
6). We also use inverse square root learning rate scheduling(Vaswani et al., 2017) for the WMT14,
and using linear annealing(from 3e− 4 to 1e− 5) suggested by Lee et al. (2018) for the IWSLT task.

For paraphrase generation, we follow the settings from Miao et al. (2019), and set the 300-dimensional
GRU with 2 layer for Seq-to-Seq (GRU). We empirically select a Transformer and NAT models with
hyperparameters (dmodel = 400,dhidden = 800 , pdropout = 0.1,nlayer = 3 and nhead = 4). Each mini-batch
consists of approximately 2k tokens for IWSLT16 and paraphrase, 8k tokens for WMT14. All of our
experiments are based on the open-source implementation of dl4mt-nonauto 2. The hyperparameter
α used in Eqn. 14 was be set to 1.0 for WMT14, 0.3 for IWSLT16 and Quora.

Knowledge Distillation Sequence-level knowledge distillation is applied to alleviate multi-
modality in the training dataset, using Transformer as a teacher (Hinton et al., 2015). Previous
studies on non-autoregressive generation (Gu et al., 2018; Lee et al., 2018; Wei et al., 2019) have used
translations produced by a pre-trained Transformer model as the training data, which significantly
improves the performance. We follow this setting in translation tasks and use the released distillation
data from https://github.com/nyu-dl/dl4mt-nonauto.

Length Parallel Decoding At the inference stage, we follow the common practice of noisy parallel
decoding (Gu et al., 2018), which generates a number of decoding candidates in parallel and selects
the best t via re-scoring using a pre-trained autoregressive model. For PNAT, we first use the bridge
to predict the target length as M̂ , then generate multiple generation candidates by predicting different
target length M ∈ [M̂ −∆M, M̂ + ∆M ], which was called LPD (length parallel decoding). The
model generates several outputs in parallel, then we use the pre-trained autoregressive model to
identify the best overall output.

4.3 MAIN RESULTS

Machine Translation We include 5 NAT efforts as our competitors, the NAT with fertility (NAT-
FT), the NAT with iterative refinement (IR-NAT), the NAT with regularization (NAT-REG), the
NAT with enhanced decoder input (ENAT), and the NAT with learning from auto-regressive model
(imitate-NAT) (Gu et al., 2018; Lee et al., 2018; Wang et al., 2019; Guo et al., 2019; Wei et al., 2019).
For all our tasks, we obtain the performance of competitors by either directly using the performance
figures reported in the previous works if they are available or producing them by using the open source
implementation of baseline algorithms on our datasets. Clearly, PNAT significantly outperforms all
the competitors with a big margin.

The results are shown in the Table 1. We basically compare the proposed PNAT against the autore-
gressive counterpart both in terms of generation quality, which is measured with BLEU (Papineni
et al., 2002) and inference speed. Our best results are obtained with length parallel decoding which
employ autoregressive model to rerank the multiple generation candidates of different target length.
On the large scale WMT14 DE-EN task, PNAT (+LPD) surpass the imitate-NMT by 0.6 BLEU
score. Without reranking, the gap has increased to 1 BLEU score (26.65 v.s. 25.67). The experiments
shows the power of explicitly position modeling which reduces the gap between non-autoregressive
and the autoregressive models.

1https://www.kaggle.com/c/quora-question-pairs/data
2https://github.com/nyu-dl/dl4mt-nonauto
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Models WMT14 DE-EN IWSLT16 DE-EN
BLEU Speedup BLEU Speedup
Autoregressive Methods

Transformer (Vaswani et al., 2017) 31.29 / / /
*Transformer 31.25 1.0× 34.81 1.0×

NAT w/o Reranking
NAT-FT 21.47 15.6× / /
IR-NAT(idec=1) 16.77 8.9× 27.68 9.0×
NAT-REG 24.77 27.6× / /
NAT-REG(WT) 23.20 - / /
ENAT 23.23 24.3× / /
imitate-NAT 25.67 18.6× / /
*NAT-base 16.71 13.5× / /
*PNAT 26.65 7.3× 31.23 7.4×

NAT w/ Reranking
NAT-FT(+ NPD s=10) 22.41 7.7× / /
NAT-FT(+ NPD s=100) 23.20 2.4× / /
IR-NAT(idec=10) 25.48 1.3× 32.31 1.5×
NAT-REG(WT, + LPD,∆M = 4) 27.12 - / /
ENAT(+ LPD,∆M = 4) 26.10 12.4× / /
imitate-NAT(+ LPD,∆M = 3) 27.28 9.70× / /
*PNAT(+ LPD,∆M = 3) 27.90 3.7× 32.60 3.7×

Table 1: Performance on the newstest-2014 test set for WMT14 German-English and test2013
evaluation set for IWSLT German-English. ‘-’ denotes same numbers as above. ‘*’ indicates our
implementation.

Paraphrase Generation Given a sentence, paraphrase generation aims to synthesize another
sentence that is different from the given one, but conveys the same meaning. Comparing with
translation task, paraphrase generation prefers a more similar order between source and target
sentence, which possibly learn a trivial position model. PNAT can potentially yield better results with
the position model to infer the relatively ordered alignment relationship. The results of paraphrase

Model Paraphrase(BLEU)
Valid Test

Seq-to-seq(GRU) 24.68 24.75
Transformer 25.88 25.46
NAT-base 19.80 20.34
PNAT (Searched-Position) 51.01 50.23
PNAT (AR-Predictor) 29.30 29.00

Table 2: Results on validation set and test set of Quora.

generation are shown in Table 2. In consist with our intuition, PNAT achieves the best result on this
task and even surpass transformer around 3.5 BLEU. The comparison between NAT-base and PNAT
shows that explicit position modeling in PNAT plays a crucial role in generating sentences. The NAT
model is not power enough to capture the latent position relationship. It is also worth mentioning
that, PNAT with searched-position achieves surprisingly good performance on this task to show
the potential of PNAT. As suggest by the result, a stronger position model may lead to substantial
improvements.

4.4 ANALYSIS

Effectiveness of Position Modeling We analysis the accuracy of our position modeling and its
influence for the quality of generation on the WMT14 DE-EN task. For evaluating the position
accuracy, we adopt the heuristic searched position as the searched position reference which is the
training target of the position predictor. PNAT requires the position information of two places. The
first is the mutual relative relationship between the states that will be used during decoding. And
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Model Position Accuracy(%) WMT14 DE-EN
permutation-acc relative-acc(r=4) BLEU

PNAT w/ AR-Predictor 25.30 57.05 26.67
PNAT w/ NAR-Predictor 23.11 55.57 20.81
PNAT w/ Searched-Position / / 46.03

Table 3: Results on validation set of WMT14 DE-EN with different position strategy.

the second is to reorder the decoded output after decoding. We then propose the corresponding
metrics for evaluation, which is the relative position accuracy (with relation threshold r = 4) and the
permutation accuracy.

As shown in Table 3, better position accuracy always yields better generation performance. The
position model is crucial to the success of PNAT. The non-autoregressive position model is less
effective than the current autoregressive position model, both in the accuracy of the permutation and
the relative position. Notably PNAT is promising, as PNAT achieves a large improvement with the
searched position. Even though the current PNAT with a simple AR-Predictor have surpassed the
previous NAT model, the position accuracy is still less desirable (say, less than 30%) and has a great
exploration space.

Model WMT14 DE-EN(BLEU)
w/ distillation w/o distillation ∆BLEU

NAT-base 16.71 11.02 - 5.69
PNAT (AR-Predictor) 26.67 24.04 - 2.63
PNAT (Searched-Position) 45.87 44.31 - 1.56

Table 4: Results on test set of WMT14 DE-EN for evaluate the impact of knowledge distillation.

Impact of Knowledge Distillation Previous NAT model relies heavily on Knowledge Distillation
to reduce the difficulty of learning from complex patterns. Generally, NAT can not get satisfactory
results without Knowledge Distillation. One important reason is that without explicit sequential
information the model capability of NAT is not powerful enough to capture the complex patterns.

As showed in Table 4, without knowledge distillation, NAT achieves only 11.02 BLEU score on
WMT14. Limited by the model capability, NAT has to introduce several tricks to obtain better results.
While for PNAT, we achieve 24.04 BLEU score even without knowledge distillation. We believe
that position learning greatly contributes to improve the model capability of NAT model.

Convergence Efficiency We also perform the training efficiency analysis in IWSLT16 DE-EN
Translation task. The learning curves are shown in 2. The curve of the PNAT is on the top-left
corner. Remarkably, PNAT has the best convergence speed compared with the NAT competitors
and even a strong autoregressive model. The results are in line with our intuition, that the position
learning brings meaningful information of position relationship and benefits the generation of the
target sentence.

Model Paraphrase(Test-BLEU)
w/ remove repeats w/o remove repeats ∆BLEU

NAT-base 20.34 19.45 0.89
PNAT (AR-Predictor) 29.00 28.95 0.05

Table 5: Results on test set of Quora.

Repeated Generation Analysis Previous NAT often suffers from the repeated generation problem
due to the lack of sequential position information. NAT is less effective to distinguish adjacent
decoder hidden states, which is copied from the adjacent source representation. To further study
this problem, we proposed to evaluate the gains of simply remove the repeated tokens. As shown in
Table 5, we perform the repeated generation analysis on the paraphrase generation tasks. Removing
repeated tokens has little impact for PNAT model, with only 0.05 BLEU differences. However for
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Figure 2: The learning curves from training of models on evaluation set of IWSLT-16 DE-EN.
Mini-batch size is 2048 tokens.

the NAT-base model, the gap comes with almost 1 BLEU (0.89). The results clearly demonstrate that
the explicitly position model essentially learns the sequential information for sequence generation.

5 RELATED WORK

Gu et al. (2018) first develop a non-autoregressive Transformer for neural machine translation(NMT)
tasks, which produces the outputs in parallel and the inference speed is thus significantly boosted.
Due to the removal of the dependencies between the target outputs, it comes at the cost that the
translation quality is largely sacrifices. A line of work has been proposed to mitigate such performance
degradation. Some previous work is focused on enhancing the decoder inputs by replacing the target
words as inputs, such as Guo et al. (2019) and Lee et al. (2018). Lee et al. (2018) proposed a method
of iterative refinement based on latent variable model and denoising autoencoder. Guo et al. (2019)
enhance decoder input by introducing phrase table in statistical machine translation and embedding
transformation. Another part of previous work focus on improving the supervision of NAT’s decoder
states, including imitation learning from autoregressive models (Wei et al., 2019) or regularizing
the decoder state with backward reconstruction error (Wang et al., 2019). Unlike previous work, we
explicitly model the position, which has shown its importance to the autoregressive model and can
well model the dependence between states. To the best of our knowledge, PNAT is the first work to
explicitly model position information for non-autoregressive text generation.

6 CONCLUSION

We proposed PNAT, a non-autoregressive transformer by explicitly modeled positions, which
bridge the performance gap between the non-autoregressive decoding and autoregressive decoding.
Specifically, we model the position as latent variables, and training with heuristic searched positions
with MC algorithms. As a result, PNAT leads to significant improvement and move more close to the
performance gap between the NAT and AT on machine translation tasks. Besides, the experimental
results of the paraphrase generation task show that the performance of the PNAT can exceed that of
the autoregressive model, and at the same time, it also has a large improvement space. According to
our further analysis on effectiveness of position modeling, in future work, we can still enhance the
performance of the NAT model by strengthening position learning.
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Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical machine
translation. In ACL, pp. 177–180, 2007.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In NIPS, pp. 1097–1105, 2012.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural sequence
modeling by iterative refinement. In EMNLP, pp. 1173–1182, 2018.

Zhuohan Li, Di He, Fei Tian, Tao Qin, Liwei Wang, and Tie-Yan Liu. Hint-based training for
non-autoregressive translation. In NeuralIPS (to appear), 2019.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei Li. CGMH: Constrained sentence generation by
Metropolis-Hastings sampling. In AAAI, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method for automatic
evaluation of machine translation. In ACL, pp. 311–318, 2002.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In ACL, pp. 1715–1725, 2016.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In NAACL-HLT, pp. 464–468, 2018.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessandro Sordoni, Aaron Courville, and Yoshua
Bengio. Straight to the tree: Constituency parsing with neural syntactic distance. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1171–1180, 2018.
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