
Under review as a conference paper at ICLR 2020

DISTANCE-BASED LEARNING FROM ERRORS FOR
CONFIDENCE CALIBRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks (DNNs) are poorly-calibrated when trained in conventional
ways. To improve confidence calibration of DNNs, we propose a novel training
method, distance-based learning from errors (DBLE). DBLE bases its confidence
estimation on distances in the representation space. We first adapt prototypical
learning for training of a classification model for DBLE. It yields a representation
space where the distance from a test sample to its ground-truth class center can
calibrate the model performance. At inference, however, these distances are not
available due to the lack of ground-truth labels. To circumvent this by approxi-
mately inferring the distance for every test sample, we propose to train a confidence
model jointly with the classification model by merely learning from mis-classified
training samples, which we show to be highly beneficial for effective learning. On
multiple datasets and DNN architectures, we demonstrate that DBLE outperforms
alternative single-modal confidence calibration approaches. DBLE also achieves
comparable performance with computationally-expensive ensemble approaches
with lower computational cost and lower number of parameters.

1 INTRODUCTION

Deep neural networks (DNNs) are being deployed in many important decision-making scenarios
(Goodfellow et al., 2016). Making wrong decisions could be very costly in most of them (Brundage
et al., 2018) – it could cost human lives in medical diagnosis and autonomous transportation, and it
could cost significant business losses in loan categorization and sales forecasting. To prevent these
from happening, it is strongly desired for a DNN to output its confidence on its decisions. In almost
all of the aforementioned scenarios, detrimental consequences could be avoided by refraining from
making decisions or consulting human experts, in the cases of decisions with insufficient confidence.
In addition, by tracking the confidence in decisions, dataset shifts can be detected and developers can
build insights towards improving the model performance.

Despite their success in many scenarios (Mahajan et al., 2018; Park et al., 2019), confidence quan-
tification (also referred as ‘confidence calibration’) is particularly a challenging problem for DNNs.
For a ‘well-calibrated’ model, the predictions with higher confidence should be more likely to be
accurate. However, as studied in (Nguyen et al., 2014; Guo et al., 2017), for DNNs with conventional
(also referred as ‘vanilla’) training to optimize maximum likelihood for classification, the outputs do
not contain sufficient information for well-calibrated confidence estimation. Posterior probability
estimates (the softmax outputs) can be interpreted as confidence estimation, but it calibrates the
decision quality poorly (Gal & Ghahramani, 2016) – the confidence value tends to be large even when
the classification is inaccurate. Therefore, it would be desirable if the training approach is redesigned
to shed more light upon its decision making process to provide more accurate confidence calibration.

In this paper, we propose a novel training method, Distance-based Learning from Errors (DBLE)
towards better-calibrated DNNs. Generally, DBLE learns a distance-based representation space
through classification and exploits distances in the space to yield well-calibrated classification. Our
motivation is that a test sample’s location in the representation space and its distance to training
samples contain important information about the model’s decision-making process which is useful
for guiding confidence estimation. However, in vanilla training, since both training and inference
are not based on distances in the representation space, they are not optimized to fulfill this goal.
Therefore, in DBLE, we propose to adapt prototypical learning for training and inference to learn a
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distance-based representation space through classification. In this space, a test sample’s distance to
its ground-truth class center can calibrate the model’s performance. However, this distance cannot
be calculated at inference directly since the ground truth label is unknown. To this end, we propose
to train a separate confidence model in DBLE jointly with the classification model to estimate this
distance at inference. To train the confidence model, we utilize the mis-classified training samples
during training. We demonstrate that on multiple DNN models and datasets, DBLE achieves superior
confidence calibration without increasing the computational cost as ensemble methods.

2 RELATED WORK

Many studies (Nguyen et al., 2014; Guo et al., 2017) have shown that the classification performance
of DNNs are poorly-calibrated under vanilla training. One direction of work to improve calibration is
adapting regularization methods for vanilla training. Such regularization methods are often originally
proposed for other purposes. For example, Label Smoothing (Szegedy et al., 2016), which is proposed
for improving generalization, has empirically shown to improve confidence calibration (Müller et al.,
2019). Mixup (Zhang et al., 2017), which is designed mostly for adversarial robustness, also improves
confidence calibration (Thulasidasan et al., 2019). The benefits from such approaches are typically
limited, as the modified objective functions do not represent the goal of confidence estimation. To
directly minimize a confidence scoring objective, Temperature Scaling (Guo et al., 2017), modifies
learning by minimizing a Negative Log-Likelihood (Friedman et al., 2001) objective on a small
training subset. It yields better-calibrated confidence by directly minimizing an evaluation metric of
the calibration task. However, since it requires training set to be split for the two tasks, classification
and calibration, it results in a trade-off – if more training data is used for calibration, then the model’s
classification performance would drop because less training data are left for classification.

Bayesian DNNs constitute another direction of related work. Bayesian DNNs promise to directly
model the posterior distribution for the test set given the training set (Rohekar et al., 2019). In
Bayesian DNNs, since getting the posterior of large amount of parameters is usually intractable,
different approximations are applied, such asMarkov chain Monte Carlo (MCMC) methods (Neal,
2012) and variational Bayesian methods (Blundell et al., 2015; Graves, 2011). Therefore, the
calibration of Bayesian DNNs heavily depends on the degree of approximation and the pre-defined
prior in variational methods. Moreover, in practice, Bayesian DNNs often yield prohibitively slow
training due to the slow convergence of the posterior predictive estimation. (Lakshminarayanan et al.,
2017). Recent work on Bayesian DNNs (Heek & Kalchbrenner, 2019) reports that the training time
of their model is an order of magnitude higher than vanilla training. As Bayesian-inspired approaches,
Monte Carlo Dropout (Gal & Ghahramani, 2016) and Deep Ensembles (Lakshminarayanan et al.,
2017) are two widely-used methods since they only require minor changes to the classic training
method of DNNs and are relatively faster to train.

3 LEARNING A DISTANCE-BASED SPACE FOR CONFIDENCE CALIBRATION
THROUGH CLASSIFICATION

We first introduce how DBLE applies prototypical learning to train DNNs for classification. Then, we
explain that under this new training method, a distance-based representation space can be achieved to
benefit confidence calibration.

3.1 PROTOTYPICAL LEARNING FOR CLASSIFICATION

DBLE bases the training of the classification model on prototypical learning (Snell et al., 2017). Pro-
totypical learning is originally proposed for few-shot learning to learn a distance-based representation
space (Ravi & Larochelle, 2016; Oreshkin et al., 2018; Xing et al., 2019). In prototypical learning,
both training and prediction directly depend on the distance of the samples to their corresponding
class ‘prototypes’ (referred as ‘class centers’ in the paper) in the representation space. It trains the
model with the goal of minimizing the intra-class distances, whereas maximizing inter-class distances
such that related samples are clustered together. We adapt this training method for classification
training in DBLE. Subsequent subsections describe the two main components of prototypical training:
episodic training and prototypical loss for classification. Later, we explain the inference at test in
DBLE and why it leads to a representation space that benefits confidence calibration.

2



Under review as a conference paper at ICLR 2020

3.1.1 EPISODIC TRAINING

Vanilla DNN training for classification is based on variants of mini-batch gradient descent (Bottou,
2010). Episodic training, on the other hand, samples K-shot, N -way episodes at every update (as
opposed to sampling a batch of training data). An episode e is created by first sampling N random
classes out of M total classes1, and then sampling two sets of training samples for these classes: (i)
the support set Se = {(sj , yj)}N×Kj=1 containing K examples for each of the N classes and (ii) the
query set Qe = {(xi, yi)}Qi=1 containing different examples from the same N classes.

L(θ) = E
(Se,Qe)

−
Qe∑
i=1

log p(yi|xi,Se; θ). (1)

xi
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Figure 1: The training of DBLE. Taking support set
Se and a query image xi as input, fθ learns a repre-
sentation space through the training of classification
model. In this space, µi is the encoded query inputs
and {p1, ...,pN} are the class centers. For classifi-
cation, DBLE employs proto-loss to update fθ. For
calibration, DBLE employs the centers and the sam-
pled representation zi for the query to update gφ. If
the query xi is correctly classified, the components
in the dotted rectangular are not be computed. Solid
arrows represent the forward pass and dotted arrows
represent the backward pass to update the network.

At episode e, the model is updated to map the
query xi to its correct label yi, with the help
of support set Se. The model is a function
parameterized by θ and the loss is negative
log-likelihood of the ground-truth class label
of each query sample given the support set
according to Eq. 1.

3.1.2 PROTOTYPICAL LOSS

How does the support set Se help the classi-
fication of query samples at episode e? We
firstly employ the DNN classification model,
f : Rnv → Rnp to encode inputs in a rep-
resentation space, where θ are trainable pa-
rameters. Prototypical training then uses the
support set Se to compute the center for each
class (in the sampled episode). The query sam-
ples are classified based on their distance to
each class center in the representation space.
For every episode e, each center pc is com-
puted by averaging the representations of the
support samples from class c:

pc =
1

|Sce |
∑

(sj ,yj)∈Sc
e

fθ(sj) , (2)

where Sce ⊂ Se is the subset of support samples belonging to class c. The prototypical loss calculates
the predictive label distribution of query xi based on its distances to the N centers:

p(yi|xi, Se; θ) =
exp(−d(µi,pyi))∑
k exp(−d(µi,pk))

, (3)

where µi is the representation of xi in the space:
µi = fθ(xi). (4)

The model is trained by minimizing Eq. 1 with p(yi|xi, Se; θ) in Eq. 3. Through this training, in the
representation space that we calculate µi and class centers, the inter-class distances are maximized
and the intra-class distances are minimized. Therefore, training samples belonging to the same class
are clustered together and clusters representing different classes are pushed apart.

3.1.3 INFERENCE AND THE TEST SAMPLE’S DISTANCE TO ITS GROUND-TRUTH CLASS CENTER

At inference, we calculate the center of every class c using the training set, by averaging the
representations of all corresponding training samples:

ptestc =
1

|Tc|
∑

(xi,yi)∈Tc

fθ(xi) , (5)

1Note that we do not require N to be equal to M because fitting the support samples of all M classes in a
batch to processor memory can be challenging when M is very large.
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where Tc is the set of all training samples belonging to class c. Then, given a test sample xt in the test
set Dtest = {(xt, yt)}Ntest

t=1 (where yt is the ground-truth label), the distances of its representation µt
(Eq. 4) to all class centers are calculated. The prediction of the label of xt is based on these distances:

y′t = argmin
c
{d(µt,ptestc )}c∈M, (6)

whereM consists of all classes in the training set. In other words, xt is assigned to the class with the
closest center in the representation space. Consequently, for a test sample (xt, yt), if at inference µt
is too far away from its ground-truth class center ptestyt , it is likely to be mis-classified. Therefore, in
this distance-based representation space, a test sample’s distance to its ground-truth class center, is a
strong signal indicating how well the model would perform on this sample. In the next section, we
empirically show it under DBLE and compare with other methods.

3.2 DISTANCE TO THE GROUND-TRUTH CLASS CENTER CALIBRATES CLASSIFICATION
PERFORMANCE IN DBLE

(a) CIFAR-100 (b) Tiny-ImageNet

Figure 2: Average test accuracy as dt or d′t increases. dt is the distance of a test sample xt to its
ground-truth class center and d′t is its distance to the predicted class center. It shows that dt in the
space achieved by prototypical learning in DBLE can better estimate the model’s performance on xt,
since DBLE’s accuracy curve is more monotonic and less oscillating as the distance increases.

We design an experiment to show that in the space learned by prototypical learning of DBLE, the
model’s performance given a test sample can be estimated by the test sample’s L2-distance to its
ground-truth class center. On the other hand, other intuitive measures such as L2-distance to the
predicted class center in prototypical learning, L2-distance to the predicted class center in vanilla
training or L2-distance to the ground-truth center in vanilla training, can’t calibrate performance very
well. Here, we describe the empirical observations on DBLE’s classification model with prototypical
learning, to motivate the confidence modeling of DBLE before we explain the method.

In the learned representation space (either the output space of a model from vanilla training or
prototypical learning), for every sample (xt, yt) in the test set Dtest = {(xt, yt)}Ntest

t=1 , we calculate
its L2-distance to its ground-truth class center ptestyt as:

dt = d(fθ(xt),p
test
yt ) (7)

where ptestyt is given by Eq. 5. fθ is the trained classification model and d(, ) is L2-distance. We can
also calculate xt’s distance to its predicted class center ptesty′t

where y′t is the predicted label, in both
DBLE and vanilla training as comparison. We denote xt’s distance to its predicted class center as
d′t = d(fθ(xt),p

test
y′t

). We then sort {dt}Ntest
t=1 or {d′t}

Ntest
t=1 in ascending order and partition them

in I equally-spaced bins. For every bin, we calculate the model’s classification accuracy of the test
samples lying in the bin. Then we plot the average test accuracy curve as the distance increases. This
curve shows the the relationship between the distance and the model’s performance on xt, illustrating
how well the calculated distance can act as confidence score, calibrating the model’s prediction.

Shown in Fig. 2, dt, which is the distance of a test sample xt to its ground-truth class center, calibrates
the model’s performance the best. The curve of dt under DBLE’s prototypical learning, despite its
slight oscillation near 0 in the end, decreases monotonically to almost zero. Farther away the sample
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is to its ground-truth class center, more poorly the model performs on it. These results suggest that
dt can be used as a gold confidence measure, calibrating the quality of the model’s decision of xt.
This benefit of DBLE’s prototypical learning is due to the distance-based training and inference – if a
test sample is farther away from its ground-truth class center, it is more likely to be mis-classified as
other classes.

Although we have observed this gold calibration in DBLE enabled by prototypical learning, it requires
access to the ground-truth labels of test samples, dt. At inference however, we do not have access to
the ground-truth label of xt at inference and dt cannot be directly calculated. Therefore, we propose
to use a separate confidence model to estimate dt, trained jointly with the classification training of
DBLE. It regresses dt by learning from the mis-classified training samples in DBLE’s classification
training, described next.

4 CONFIDENCE MODELING BY LEARNING FROM ERRORS

In the classification model learned by DBLE, a test sample xt’s L2-distance dt to its ground-truth
class center (Eq. 7), is highly-calibrated with the model’s performance on it, as described in Sec. 3.
However, dt cannot be directly computed without ground-truth labels, which is the case at inference.
Therefore, we introduce a confidence model parameterized by φ, to learn to estimate dt jointly with
the training of classification in DBLE.

To train φ, a straightforward option would be using the distance mapping for all training samples,
{(xi, di)}|T |i=1. Through this way, φ can be trained to give an estimate of dt for the test sample
xt at inference. However, correctly-classified samples constitute the vast majority during training,
especially considering that state-of-the-art DNNs yield much lower training errors compared to test
errors (Neyshabur et al., 2014). Thus, if all data is used, training of gφ would be dominated by
the small distances of the correctly-classified samples, which would make it harder for gφ capture
the larger distances for the minor mis-classified samples. Moreover, given that we choose gφ as a
small-scale MLP with limited representation capacity for the purposes of fast training, it becomes
more challenging to capture larger di from the incorrectly-classified samples if all training samples
are used (i.e. the confidence model would underfit). Therefore, we propose to track all training
samples that are mis-classified in episode e during the training of the classification model in DBLE.
We save them inMe = {(xs, ys),where y′s 6= ys} to train gφ. With our ablation studies in Sec. 5.4,
we demonstrate the importance of learning from errors vs. learning from all.

In the following, we introduce the training procedure for gφ with mis-classified samples for estimation
of dt at inference for test sample t. We train gφ by sampling from the isotropic Gaussian distribution
N (µs, diag(σs � σs)), where the standard deviation σs is gφ’s output given training error xs. gφ is
trained to output a larger σs for xs with a larger ds. gφ takes the representation µs (calculated with
Eq. 4) of a training error xs inMe = {(xs, ys)} as input, and outputs σs as,

σs = gφ(µs). (8)
To train gφ, we firstly sample another representation zs for xs from the isotropic Gaussian distribution
parameterized by µs and σs, zs ∼ N (µs, diag(σs � σs)). Then, we optimize gφ based on the
prototypical loss with zs, using zs’s predictive label distribution:

p(ys|xs;φ) =
exp(−d(zs,pys))∑
k exp(−d(zs,pk))

. (9)

When updating φ with the prototypical loss given zs, it encourages a larger σs when the ds of xs
is larger. This is because when µs is fixed for xs in the space, maximizing Eq. 9 forces zs to be as
close to its ground-truth class center as possible. Given zs is sampled fromN (µs, diag(σs � σs)), if
µs is farther away from its ground-truth center, then it requires a larger σs for zs to go close to it. Fig.
3 visualizes how σ changes before vs. after updating φ. The training of DBLE is described in Fig. 1
and in Algorithm 1 in the appendix. Note that in order to make sampling of zs differentiable, we use
the reparameterization trick (Kingma & Welling, 2013).

At inference, for every test sample xt, we make prediction y′t with µt (see Eq. 6). While for
confidence estimation of the predictions, we take advantage of σt. For confidence estimation, after
getting µt and σt, we sample multiple zut from N (µt, diag(σt � σt)) and average their predictive
label distributions as confidence estimation:

p̂(y′t|xt;φ) =
1

U

U∑
u=1

exp(−d(zut ,py′t))∑
k exp(−d(zut ,pk))

. (10)
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Figure 3: The Gaussian distribution within one standard deviation σ away from mean, shown before
and after updating φ. The dotted circles represent the σ of the sample inside it. Red and blue dots
represent training samples belonging two different classes in the representation space. The dotted line
is the decision boundary in the space. Let’s take the two mis-classified training samples µa, µb and
the correctly classified µc as examples. (a), before updating φ, the σs of both correctly and wrongly
located samples are initialized with a small value. (b), after updating φ, σ of mis-classified samples
are much larger. Because the proto-loss for calibration will move z, sampled fromN (µ, diag(σ�σ)),
to be as close to the correct class center as possible.

U is the total number of representation samples zt. p̂(y′t|xt;φ) is used as the confidence score
calibrating the prediction y′t. Through this way, for a test sample farther away from its ground-truth
class center (which means they are more likely to be mis-classified), the model will add more
randomness to the representation sampling since its estimated variance from gφ is large. More
randomness in the distance calculation leads to a lower expected softmax output (Gal & Ghahramani,
2016), which is the confidence score p̂(y′t|xt;φ).

5 EXPERIMENTS

In this section, we firstly compare our method DBLE with recent baselines on confidence calibration
of DNNs. We conduct experiments on a variety of data sets and network architectures and evaluate
DBLE’s performance on two most commonly used metrics for confidence calibration: Expected
Calibration Error (ECE) (Naeini et al., 2015) and Negative Log Likelihood (NLL) (Friedman et al.,
2001). Results show that DBLE outperforms single-modal baselines on confidence calibration in
every scenario tested. We then conduct analysis ablation study to verify the effectiveness of the two
main components in DBLE. Implementation and training details of DBLE and baselines are described
in Appendix.

5.1 EXPERIMENTAL SETUP

Baselines. We compare our method with 5 baselines that use a single DNN: vanilla training, MC-
Dropout (Gal & Ghahramani, 2016), Temperature Scaling (Guo et al., 2017), Mixup (Thulasidasan
et al., 2019), Label Smoothing (Szegedy et al., 2016) and TrustScore (Jiang et al., 2018). We also
compare DBLE with Deep Ensemble (Lakshminarayanan et al., 2017) with 4 DNNs.

Datasets and Network Architectures. We conduct experiments on various combinations of datasets
and architectures: MLP on MNIST (LeCun et al., 1998), VGG-11 (Simonyan & Zisserman, 2014) on
CIFAR-10 (Krizhevsky et al., 2009), ResNet-50 (He et al., 2016) on CIFAR-100 (Krizhevsky et al.,
2009) and ResNet-50 on Tiny-ImageNet (Deng et al., 2009).

Evaluation Metrics. We evaluate DBLE on model calibration with Expected Calibration Error
(ECE) and Negative Log Likelihood (NLL). ECE approximates the expectation of the difference
between accuracy and confidence. It partitions the confidence estimations (the likelihood of the
predicted label p(y′t|xt)) of all test samples into L equally-spaced bins and calculates the average
confidence and accuracy of test samples lying in each bin Il:

ECE =

L∑
l=1

|Il|
|Dtest|

|
∑
xt∈Il

p(y′t|xt)−
∑
xt∈Il

1(y′t = yt)|, (11)

where y′t is the predicted label of xt. NLL averages the negative log-likelihood of all test samples:

NLL =
1

|Dtest|
∑

(xt,yt)∈Dtest

− log(p(yt|xt)) (12)
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Method MNIST-MLP CIFAR10-VGG11

Accuracy% ECE% NLL Accuracy% ECE% NLL

Vanilla Training 98.32 1.73 0.29 90.48 6.3 0.43
MC-Dropout 98.32 1.71 0.34 90.48 3.9 0.47
Temperature Scaling 95.14 1.32 0.17 89.83 3.1 0.33
Label Smoothing 98.77 1.68 0.30 90.71 2.7 0.38
Mixup 98.83 1.74 0.24 90.59 3.3 0.37
TrustScore 98.32 2.14 0.26 90.48 5.3 0.40
DBLE 98.69 0.97 0.12 90.92 1.5 0.29

Deep Ensemble-4 networks 99.36 0.99 0.08 92.4 1.8 0.26

Method CIFAR100-ResNet50 Tiny-ImageNet-ResNet50

Accuracy% ECE% NLL Accuracy% ECE% NLL

Vanilla Training 71.57 19.1 1.58 46.71 25.2 2.95
MC-Dropout 71.57 9.7 1.48 46.72 17.4 3.17
Temperature Scaling 69.84 2.5 1.23 45.03 4.8 2.59
Label Smoothing 71.92 3.3 1.39 47.19 5.6 2.93
Mixup 71.85 2.9 1.44 46.89 6.8 2.66
TrustScore 71.57 10.9 1.43 46.71 19.2 2.75
DBLE 71.03 1.1 1.09 46.45 3.6 2.38

Deep Ensemble-4 networks 73.58 1.3 0.82 51.28 2.4 1.81

Table 1: Test Accuracy, ECE and NLL of DBLE and baselines under 4 scenarios.

5.2 RESULTS

Table 1 shows the results. In every scenario tested, DBLE is comparable with vanilla training in test
accuracy – applying prototypical learning for classification problems does not hurt generalization of
models on classification. On confidence calibration, DBLE performs better than all single-modal
baselines on every scenario tested on both ECE and NLL. Moreover, our method reaches comparable
results with Deep Ensemble of 4 networks with a smaller time complexity and parameter size. For
MNIST-MLP, CIFAR10-VGG11 and CIFAR100-ResNet50, our method outperforms Deep ensemble
(4 networks) on ECE. Among other baselines, Temperature Scaling performs the best in every
scenario, which is because Temperature Scaling directly optimizes NLL on the small sub-training
set. MC-dropout gives the least improvement on confidence calibration, especially on NLL. The
potential reason for MC-dropout’s limited improvement on NLL can be that when applying dropout
at inference, it adds similar level of randomness on mis-classified samples and correctly classified
samples. Therefore, the predictive likelihood of the correct labels becomes smaller in general,
which leads to worse NLL. Compared to Temperature Scaling, DBLE decouples classification
and calibration, therefore achieves better calibration without sacrificing classification performance.
Compared to MC-dropout, our model is trained to add randomness on predictive distributions for
mis-classified samples specifically, thus achieving significantly better calibration.

5.3 COMPUTATIONAL COST

DBLE adds extra training time complexity and trainable parameters compared with vanilla training.
However, compared with Deep Ensembles and other Bayesian methods, DBLE’s cost is significantly
less. For training time complexity, although DBLE requires two forwards passes for fθ at each update
step (see Algorithm 1), its actual training time is less than twice of vanilla training since the number
of iterations required until convergence is smaller. Empirically we observe that DBLE’s total training
time on CIFAR10-VGG11 is 1.4x of vanilla training and on CIFAR100-ResNet50 is 1.7x of vanilla
training. While Deep Ensemble of 4 networks takes 4x vanilla training time. DBLE adds extra
trainable parameters φ compared with vanilla training. φ is the parameters of a MLP in practice. It’s
size is usually 1%− 3% of the classification model, while ensembling 4 DNNs in Deep Ensemble
increases the size of trainable parameters to 4x of vanilla training.
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Figure 4: Test ECE and NLL of the last 45 epochs during training on CIFAR-100. The learning rate
of both vanilla training and DBLE is annealed by 10x at epoch 60, 70, 80.

Method CIFAR100 Tiny-ImageNet

ECE% NLL ECE% NLL

Vanilla Training 19.1 1.58 25.2 2.95
Learning with errors in vanilla training 18.3 1.43 20.9 2.61
DBLE with calibration learning using all samples 18.9 1.54 24.8 2.87
DBLE 1.1 1.09 3.6 2.38

Table 2: Ablation study on CIFAR-100 and Tiny-ImageNet

5.4 ALGORITHM ANALYSIS AND ABLATION STUDY

DBLE alleviates the NLL overfitting problem. NLL overfitting problem of vanilla training has
been observed in (Guo et al., 2017) – after annealing the learning rate, as the test accuracy goes up,
the model overfits to NLL score (test NLL starts to increase instead of decreasing or maintaining flat).
Fig. 4 shows that this phenomenon is alleviated by DBLE. Under vanilla training, the model starts
overfitting to NLL after the first learning rate annealing. DBLE on the other hand, decreases and
maintains its test NLL every time after learning rate annealing. We see the same trend for test ECE
as well – with vanilla training the model overfits to ECE after learning rate annealing while DBLE
decreases and maintains its test ECE.

Distance-based representation space and learning from errors are both essential for DBLE.
We conduct ablation studies to verify the effectiveness of the two main design choices of our model,
the distance-based space and learning calibration from training errors. Table 2 shows the results.
In “Learning with errors in Vanilla training”, we conduct calibration learning with errors in vanilla
training. In other words, instead of updating φ by maximizing Eq. 9, we update φ by maximizing the
softmax likelihood with z as logits and fθ is updated with vanilla training. In “DBLE with calibration
learning using all samples”, we update φ with all training samples by maximizing Eq. 9. We can see
from the results that firstly, learning to calibrate with errors also helps vanilla training. It improves
calibration in vanilla training slightly since it to some extent, introduces more randomness in the
decision making process for misclassified samples. However, the improvement is very small without
the distance-based space. Secondly, we notice that in DBLE if we learn calibration with all training
samples, it significantly decreases DBLE’s performance on calibration. The potential reason is the
model’s underfitting to mis-classified training samples in learning to estimate the distance.

6 CONCLUSION

Confidence calibration of DNNs, which has significant practical impacts, still remains an open
problem. In this paper, we have proposed Distance-Based Learning from Errors (DBLE) to try to
solve this problem. DBLE starts with applying prototypical learning to train the DNN classification
model. It results in a distance-based representation space in which the model’s performance on a test
sample is calibrated by the sample’s distance to its ground-truth class center. DBLE then utilizes
a confidence model to learn from training errors for for estimating this distance at inference. We
have empirically shown the effectiveness of DBLE on various classification datasets and network
architectures. We have also conducted analysis and ablation studies to verify our motivations of
DBLE.
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A APPENDIX

A.1 ALGORITHM OF ONE UPDATE OF DBLE

Algorithm 1: One update of DBLE. M is the total number of classes in the training set, N is the
number of classes in every episode, K is the number of supports for each class, KQ is the number of
queries for each class.

Input: Training set Dtrain = {(xi, yi)}i, yi ∈ {1, ...,M}. Dctrain = {(xi, yi) ∈ Dtrain | yi = c}.
# Build training episode e
## Select N classes for episode e
C ← RandomSample({1, ...,M}, N )
## Sample supports and queries for every class in e
for c in C do
Sce ← RandomSample(Dctrain,K)
Qce ← RandomSample(Dctrain \ Sce ,KQ)

end for
# Compute Loss
## Compute center representation for every class c in e
for c in C do
pc ← 1

|Sc
e |
∑

(sj ,yj)∈Sc
e
fθ(sj)

end for
## Compute prototypical loss for classification
L(θ)← 0
for c in C do

for (xi, yi) in Qce do
µi = fθ(xi)
L(θ)← L(θ) + 1

N ·K [d(µi,pyi) + log
∑
k exp(−d(µi,pk))]

end for
end for
## Compute confidence loss
L(φ)← 0
### Make predictions and track mis-classified training samples
Me = {}
for c in C do

for (xi, yi) in Qce do
y′i = argminc{d(µi,pc)}Nc=1 #µi = fθ(xi)
if y′t 6= yt then
Me ← AddTo(xi, yi)

end if
end for

end for
### Compute confidence loss with mis-classified training samples
for (xs, ys) in Me do
σs = gφ(µs) #µs = fθ(xs)
ε ∼ N(0, 1)
zs = µs + ε · σs
L(φ)← L(φ) + 1

N ·K [d(zs,pys) + log
∑
k exp(−d(zs,pk))]

end for
# Update θ with prototypical loss for classification
θ ← θ − r · OL(θ)
# Update φ with confidence loss
φ← φ− r · OL(φ)

A.2 IMPLEMENTATION AND TRAINING DETAILS OF DBLE AND BASELINES

For a fair comparison with baseline methods, in every scenario tested, the network architecture is
identical for DBLE and all other baselines. As regularization techniques such as BatchNorm, weight
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decay are observed to affect confidence calibration (Guo et al., 2017), we also keep them constant
while comparing to baselines in every scenario. All models are trained with stochastic gradient
descent with momentum (Sutskever et al., 2013). We use an initial learning rate of 0.1 and a fixed
momentum coefficient of 0.9 for all methods tested. The learning rate scheduling is tuned according
to classification performance on validate set. All other hyperparameters of classification models for
baselines are also chosen based on accuracy on validation set.

There are several unique hyper-parameters in DBLE. We describe how we choose them in the
following paragraph. In DBLE, we stop the training when the classification model converges. The
confidence model gφ is a two-layer MLP with Dropout (Srivastava et al., 2014) added in between.
we use ReLU non-linearity (Glorot et al., 2011) for the MLP. We fix the dropout rate as 0.5. The
N (number of classes), K (number of shots) and the batch-size of the query set for every episode
in DBLE’s are firstly tuned according to the classification performance on validation set to reach
comparable performance with vanilla training. Then the N , K and the batch-size of the query set
for every episode are fine-tuned according to the DBLE’s calibration performance on validation set.
At inference, we fix the number of representation sampling U in Eq. 10 as 20. This is because we
empirically observed that a U larger than 20 doesn’t give performance improvements. We set the
number of bins L in Eq. 11 as 15 following (Guo et al., 2017).
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