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ABSTRACT

Saliency methods attempt to explain a deep net’s decision by assigning a score to
each feature/pixel in the input, often doing this credit-assignment via the gradient
of the output with respect to input. Recently Adebayo et al. (2018) questioned
the validity of many of these methods since they do not pass simple sanity checks,
which test whether the scores shift/vanish when layers of the trained net are ran-
domized, or when the net is retrained using random labels for inputs.
We propose a simple fix to existing saliency methods that helps them pass sanity
checks, which we call competition for pixels. This involves computing saliency
maps for all possible labels in the classification task, and using a simple com-
petition among them to identify and remove less relevant pixels from the map.
Some theoretical justification is provided for it and its performance is empirically
demonstrated on several popular methods.

1 INTRODUCTION

Saliency methods attempt to explain a deep net’s decision to humans by assigning a score to each
feature/pixel in the input, often doing this credit-assignment via the gradient of the output with
respect to input (from now on refered to as just “gradient”). Here we are interested in tasks involving
multiclass classification, and for simplicity the exposition will assume the input is an image. Then
a saliency method assigns scores to input pixels, which are presented as a heat map. (Extensions of
these ideas to higher-level features of the net will not be discussed here.)

While gradient alone is often too noisy, it as well as related notions are the basis of other more
successful methods. In Gradient � Input (Shrikumar et al., 2017) the pixel score is product of the
corresponding coordinate of gradient vector with the pixel value. Layer-wise Relevance Propaga-
tion (LRP) (Bach et al., 2015) uses a back-propagation technique where every node in the deep net
receives a share of the output which it distributes to nodes below it. This happens all the way to the
input layer, whereby every pixel gets assigned a share of the output, which is its score. Another rule
Deep-Lift (Shrikumar et al., 2016) does this in a different way and is related to Shapley values of
cooperative game theory. DASP Ancona et al. (2019) is a state of the art method that performs an
efficient approximation of the Shapley values. The perceived limitations of these methods in turn
motivated a long list of new ones. See Montavon et al. (2018) for a survey, and brief discussion in
Section 2.

The focus of the current paper is an evaluation of saliency methods called sanity checks in Adebayo
et al. (2018). This involves randomizing the model parameters or the data labels (see Section 2
for details). The authors show that maps produced using corrupted parameters and data are often
difficult to visually distinguish from those produced using the original parameters and data. The
authors concluded that “...widely deployed saliency methods are independent of both the data the
model was trained on, and the model parameters.”

The current paper shows how to pass sanity checks via a simple modification to existing methods:
Competition for pixels. Section 3 motivates this idea by pointing out a significant issue with previous
methods: they produce saliency maps for a chosen output (label) node using gradient information
only for that node while ignoring the gradient information from the other (non-chosen) outputs.
To incorporate information from non-chosen labels/outputs in the multiclass setting we rely on an
axiom called completeness satisfied by many saliency methods, according to which the sum of pixel
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scores in a map is equal to the value of the chosen node (see Section 3). Existing methods design
saliency maps for all outputs and the map for each label satisfies completeness. One can then view
the various scores assigned to a single pixel as its “votes” for different labels. The competition idea
is roughly to zero out any pixel whose vote for the chosen label was lower than for another (non-
chosen) label. Section 4 develops theory to explain why this modification helps pass sanity checks
in the multi-class setting, and yet produces maps not too different from existing saliency maps. It
also introduces a notion called approximate completeness and suggests that it is both a reasonable
alternative to completeness in practice, and also allows our analysis of the competition idea to go
through. We the present an new empirical finding that saliency methods that were not designed to
satisfy completeness in practice seem to satisfy approximate completeness anyway. This may be
relevant for future research in this area.

Section 5 reports experiments applying the competition idea to three well-regarded methods, Gra-
dient � Input, LRP, and DASP, and shows that they produce sensible saliency maps while also
passing the sanity checks. List of testbeds and methods is largely borrowed from Adebayo et al.
(2018), except for inclusion of DASP, which draws inspiration from cooperative game theory.

2 RELATED WORK

See Adebayo et al. (2018); Montavon et al. (2018) for a survey of saliency methods. Brief descrip-
tions of some methods used in our experiments appear in Appendix Section 7.1. Here we briefly
discuss the issue most relevant to the current paper, which is the interplay between tests/evaluations
of saliency methods and principled design of new methods.

Controversies here often boil down to interpretations of the word “saliency,” which method designers
have sought to codify via axioms. (Completeness is a simple example.) Evaluations then suggest
that the axioms fail to ensure other desirable properties. To give an example, does the map change a
lot if we blank out or modify a portion of the image that humans find insignificant Kim et al. (2019)
? But in such cases it is sometimes unclear if the failure is due to the method alone, or traces to
other unsolved issues in deep learning related to distribution shift, domain adaptation, adversarial
examples, etc..

ROAR evaluation Hooker et al. (2018) greys out pixels/features found informative by a saliency
method, and retrains the classifier on these modified inputs. The method is considered low quality
if the accuracy drop is less than greying out the same fraction of randomly-chosen pixels. Many
popular methods (including some tested here) do poorly on this, and ensemble methods fare best.
But clearly this evaluation is using a different definition of saliency than the axiomatic approaches.
The axiomatic approaches seek to find a set of pixels that are sufficient to justify the output label.
Since real-life images have high redundancy, multiple sets of pixels could be sufficient to justify
the label. ROAR defines the goal as identifying every pixel that’s potentially relevant, and then
ensembling would clearly help. (To see this, imagine taking any dataset and duplicating each feature
k times.)

The current paper sidesteps some of these controversies by focusing solely on the sanity checks eval-
uation of Adebayo et al. (2018), and their exact testbed and framework. At first sight the problems
uncovered by the sanity checks appear quite serious. While the distribution-shift based evaluations
were asking “Does the map shift too much upon changes to the input that humans find insignificant?,”
the sanity checks asks the simpler question “Does the map fail to shift when the model/labels are
dramatically changed to become nonsensical?” So it is surprising that most methods already failed
the following sanity checks (the authors suggest there could be others).

The model parameter randomization test. According to the authors, this “compares the output
of a saliency method on a trained model with the output of the saliency method on a randomly
initialized untrained network of the same architecture.” The saliency method fails if the maps are
similar for trained models and randomized models. The randomization can be done in a cascading
or layerwise fashion.

The data randomization test “compares a given saliency method applied to a model trained on a
labeled data set with the method applied to the same model architecture but trained on a copy of the
data set in which we randomly permuted all labels.” Clearly the model in the second case has learnt
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no useful relationship between the data and the labels and does not generalize. The saliency method
fails if the maps are similar in the two cases on test data.

To the best of our knowledge, no subsequent paper has designed reasonable saliency methods that
pass the sanity checks.

3 ADDING COMPETITION

The idea of competition suggests itself naturally when one examines saliency maps produced using
all possible labels/logits in a multiclass problem, rather than just the chosen label. Figure 1 shows
some Gradient�Input maps produced using AlexNet trained on MNIST, where the first layer was
modified to accept one color channel instead of 3. Notice: Many pixels found irrelevant by humans
receive heat (i.e., positive value) in all the maps, and many relevant pixels receive heat in more
than one map. Our experiments showed similar phenomenon on more complicated datasets such as
ImageNet. This figure highlights an important point of Adebayo et al. (2018), which is that many
saliency maps pick up a lot of information about the input itself —e.g., presence of sharp edges–
that may be incidental to the final classification. Furthermore, these incidental features can survive
during the various randomization checks, leading to failure in the sanity check. Thus it is a natural
idea to create a saliency map by combining information from all labels, in the process filtering out
or downgrading the importance of incidental features.

Suppose the input is x and the net is solving a k-way classification. We assume a standard softmax
output layer whose inputs are k logits, one per label. Let x be an input, y be its label and `y denote
the corresponding logit.

Map for logit "3" Map for logit "7" Map for logit "5" CGI Map

Figure 1: Heatmap of Gradient � Input saliency maps produced by various logits of a deep net
trained on MNIST. Red denotes pixels with positive values and Blue denotes negative values. The
input image is of the number 3 , which is clearly visible in all maps. Note how maps computed using
logits/labels ”7” and ” 5” assign red color (resp., blue color) to pixels that would have been expected
to be present (resp., absent) in those digits. The last figure shows the map produced using our CGI
method.

Usually prior methods do not combine information from maps from different labels, but we wish
to do so to design a simple competition among labels for pixels. A priori it can be unclear how
to compare scores across labels, since this could end up being an “apples vs oranges” comparison
due to potentially different scaling. However, prior work Sundararajan et al. (2017) has identified
a property called completeness: this requires that the sum of the pixel scores is exactly the logit
value. For example, Gradient� Input satisfies completeness exactly for ReLU nets with zero bias1.
(Recall that the ReLU function with bias a is ReLU(z, a) max{z − a, 0}. ) Ensuring completeness
for nonzero bias requires more computationally expensive operations.

Enter competition. Completeness (and also approximate completeness, a property explained be-
low in Section 4.1) allows an apples-to-apples comparison of saliency scores from different labels,
and to view them as “votes” for a label. Now consider the case where y is the label predicted by
the net for input x. Suppose pixel i has a positive score for label y and an even more positive score
for label y1. This pixel contributes positively to both logit values. But remember that since label y1
was not predicted by the net as the label, the logit `y1

is less than than logit `y , so the contribution
of pixel xi’s “vote” to `y1

is proportionately even higher than its contribution to `y . This perhaps
should make us realize that this pixel may be less relevant or even irrelevant to label y since it is
effectively siding with label y1 (recall Figure 1). We conclude that looking at saliency maps for

1If function f is computed by a ReLU net with zero bias at each node, then it satisfies f(λx) = λf(x) .
Partial differentiation with respect to λ at λ = 1 shows x · ∇x(f) = f(x).
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non-chosen labels should allow us to fine-tune our estimate of the relevance of a pixel to the chosen
label.

Now we formalize the competition idea. Note that positive and negative pixel scores should in
general be interpreted differently; the former should be viewed as supporting the chosen label, and
the latter as opposing that label.

Competitive version of saliency method
Input : An image, I , an underlying saliency method, Su and some chosen label y
Output : A saliency map S of same dimensions as the input, I

For each pixel pi in the input

1. Calculate the saliency scores assigned by each label to pixel pi by Su

2. Zero out pixel pi in the saliency map S if either
(a) pi has a positive saliency score for label y that is not maximal among its saliency

scores for all labels
(b) pi has a negative saliency score for label y that is not minimal among its saliency

scores for all labels

4 WHY COMPETITION WORKS: SOME THEORY

Figure 1 suggests that it is a good idea to zero out some pixels in existing saliency maps. Here we
develop a more principled understanding of why adding competition (a) is aggressive enough to zero
out enough pixels to help pass sanity checks on randomized nets and (b) not too aggressive so as to
retain a reasonable saliency map for properly trained nets.

Adebayo et al. (2018) used linear models to explain why methods like Gradient�Input fail their
randomization tests. These tests turn the gradient into a random vector, and if ξ1, ξ2 are random
vectors, then x � ξ1 and x � ξ2 are visually quite similar when x is an image. (See Figure 10 in
their appendix.) Thus the saliency map retains a strong sense of x after the randomization test, even
though the gradient is essentially random. Now it is immediately clear that with k-way competition
among the labels, the saliency map would be expected to become almost blank in the randomization
tests since each pixel is equally likely to receive its highest score from each label, and thus in each
saliency map the pixel becomes zero with probability 1 − 1/k. Thus we would expect that adding
competition enables the map to pass the sanity checks in multiclass settings, even for relatively small
number of classes. Our experiments later show that the final map is indeed very sparse.

But one cannot use the simple (Adebayo et al., 2018) model to understand why competition does not
also destroy the saliency map for properly trained nets. The reason being that the saliency map is
not random and depends on the input —since completeness property requires that the sum of pixel
saliencies is the label logit. We give a simple model for thinking about this dependence, which we
hope will motivate further theory on the best way to aggregate information from different labels.
We rely upon the completeness property, although Section 4.1 shows that a weaker property should
suffice.

Figure 2: Histogram of Gradient � Input scores for VGG-19 on Imagenet versus scores produced
by mixture of two gaussians.
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Mental model for saliency maps. One should keep in mind that a saliency map is the outcome of
a stochastic process: training a deep net, with stochasticity coming from dataset choice, random
initialization, and SGD. Let `y and µx,y be random variables denoting respectively the logit value
for label y on input x and the corresponding saliency map.

These random variables are complicated. For simplicity we assume the saliency method correlates
with a certain ground truth saliency as follows. There exists a subset Sx,y of pixels (e.g., the pixels
of x that a human may find salient for label y) such that for each pixel in Sx,y the corresponding
coordinate of µx,y is distributed asN (c, σ2

1) and each pixel in Sx,y is distributed as N(0, σ2
2) where

c = c(x, y) and σ1, σ2 are some constants.

This modeling assumption — “noisy signal” mixed with “white noise”—makes intuitive sense and
has some experimental support; see Figure 2 where distribution of saliency scores does seem similar
to mixture of two Gaussians (maybe three?), one centered at zero and other at some positive value.
One could consider variants of our model, e.g., allowing means and variances to differ across pixels
so the maps can include certain image portions (e.g., sharp edges) with very high probability. These
don’t qualitatively affect the phenomena discussed below.

Now µx,y · 1 is the sum of pixel saliencies (where 1 is the all-1’s vector), which by completeness,
is `y . By linearity of expectation E[`y] = c · |Sx,y|. By measure concentration, with probability at
least 1− exp(−t2/4) we have

|`y − c · |Sx,y|| ≤ t
(
σ1

√
|Sx,y|+ σ2

√
|Sx,y|

)
. (1)

Since the sets are fairly large (say, reasonable fraction of all pixels), this concentration should be
good2.

After applying competition, the saliency map changes to µx,y �Ix,y where Ix,y is the vector with 1
in coordinates where label y wins the competition for pixels, and 0 elsewhere. Now we note various
plausible conditions under which µx,y ⊗ Ix,y can be seen as a reasonable approximation to µx,y .
For simplicity we consider how well competition preserves completeness, though obviously other
properties can be analysed.

Theorem 1 (Informal meta-theorem) For many plausible conditions on the Sx,y’s there is a scale
factor γ > 0 (depending on the conditions) such that the vector γµx,y �Ix,y satisfies completeness
up to a small additive error.

Proof (sketch) One uses measure concentration. As an illustrative example suppose Sx,y’s are
disjoint for different y’s. For each coordinate in Sx,y there is a certain probability p = p(c, σ1, σ2)
that the coordinate is nonzero in Ix,y . Thus the expected sum of coordinates in the map µx,y �Ix,y
is p|Sx,y|, and so rescaling coordinates by c/p makes them satisfy completeness, up to an additive
error given by measure concentration. Qualitatively similar results are obtained when Sx,y’s are not
disjoint but for Sx,y ∩ ∪y′ 6=ySx,y is small compared to Sx,y .

Remarks:(1) Obviously, the additive error will have smaller impact for the larger logit values than
for smaller ones. (2) The above proof suggests that adding competition is akin to sampling a subset
of the salient pixels. At least for image data, where pixel-level information has a lot of redundancy,
the essence of the original map survives, as seen in the experiments later.

4.1 APPROXIMATE COMPLETENESS

While some methods satisfy completeness by design (Bach et al., 2015), others don’t. Can our
theory apply to the latter class of methods? While an exhaustive study was not performed, randomly
sampling a few such methods suggests that the saliency maps Ancona et al. (2019) (Shrikumar et al.,
2017) in practice satisfy approximate completeness anyway (theory is of course lacking), in sense
of the following definition. See Figure 3.

2Clearly, weaker but qualitatively similar results hold under changes to the assumptions, e.g. some non-
Gaussian distribution for entries of µx,y; allowing them to be pairwise independent instead of iid, and so on.
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Figure 3: Approximate completeness property of some saliency methods on VGG19, illustrated by
near-linear fit of (a) Gradient � Input on ReLU nets with nonzero bias (b) DASP.

original image Gradient  Input CGI

Figure 4: Comparison of CGI saliency maps with Gradient � Input saliency maps. Original images
are shown on the left.

Definition 2 (Approximate completeness) A saliency method satisfies (α, β)-approximate com-
pleteness if sum of the pixel saliencies for label y lies in the interval [α`y − β, α`y + β],.

Theorem 3 (Modified meta theorem) If a saliency method satisfies (α, β)-approximate complete-
ness, then under various plausible conditions on the Sx,y’s similar to Theorem 1 there are constants
(α′, β′) such that after applying competition the maps satisfy (α′, β′)-approximate completeness.

5 EXPERIMENTS

We consider saliency methods Gradient � Input, LRP, and DASP, and adding competition to them
to get methods CGI, CLRP, and CDASP, respectively. CGI is tested using VGG-19 architecture
Simonyan & Zisserman (2015) trained on ImageNet Russakovsky et al. (2015); LRP using VGG-16
architecture with Imagenet; DASP using a CNN model on MNIST. While these architectures are
not the most powerful ones around, this is not a limitation for testing saliency methods, which are
supposed to work for all architectures. The available code for these maps is slow, and computing
even gradient for all 1000 ImageNet labels can be rather slow.

5.1 VISUAL QUALITY OF MAPS

Figure 4 shows underlying saliency maps versus maps with our modifications for VGG-19 on Im-
agenet. Applying competition does not visibly degrade the map. Some more examples (labeled
“original”) also appear in Figure 5.

5.2 PARAMETER RANDOMIZATION TEST

The goal of these experiments is to determine whether our modification may be applied to an under-
lying saliency method to pass the first sanity check in Adebayo et al. (2018). We conduct cascading
and layerwise randomization as described in Adebayo et al. (2018) from top to bottom.
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• The top figure in Figure 5 shows the results of layerwise randomization on Gradient �
Input. (Figure 8 in the Appendix shows the full figure ).The text underneath each image
represents which layer of the model was randomized, with the leftmost label of ’original’
representing the original saliency map of the fully trained model. The top panel shows the
saliency maps produced by CGI , and the bottom panel the maps produces by Gradient�
Input. We find that the Gradient� Input method displays the bird no matter which layer
is randomized, and that our method immediately stops revealing the structure of the bird
in the saliency maps as soon as any layer is randomized. Figure 10 in the Appendix shows
a similar result but utilizing absolute value visualization. Notice that CGI’s sensitivity to
model parameters still holds.
• The second figure in Figure 5 shows the results for cascading randomization on Gradient�

Input. The rightmost column represents the original saliency map when all layer weights
and biases are set to their fully trained values. The leftmost saliency map represents the
map produced when only the softmax layer has been randomized. The image to the right of
that when everything up to and including conv5 4 has been randomized, and so on. Again
we find that CGI is much more sensitive to parameter randomization than Gradient �
Input.
• The bottom figure in Figure 5 shows our results for cascading randomization on LRP. We

find that our competitive selection process (CLRP) benefits the LRP maps as well. The LRP
maps show the structure of the bird even after multiple blocks of randomization, while our
maps greatly reduce the prevalence of the bird structure in the images.
• Figure 6 shows our results for cascading randomization on DASP Ancona et al. (2019), a

state of the art method that satisfies approximate completeness. DASP still shows the struc-
ture of the digit even after randomization, while CDASP eliminates much of this structure.
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Figure 5: The first two figures depict layerwise and cascading randomization, respectively, for a
VGG19 model trained on Imagenet for Gradient � Input versus CGI. We find that in CGI, the
saliency map is almost blank when any weights are reinitialized. By contrast, we find that the origi-
nal Gradient� Input method displays the structure of the bird, no matter which layer is randomized.
The third figure depicts saliency map for cascading randomization on VGG -16 on Imagenet LRP
versus CLRP. We notice that LRP shows the structure of the bird even after multiple blocks of
randomization. CLRP eliminates much of the structure of the bird.

5.3 DATA RANDOMIZATION TEST

We run experiments to determine whether our saliency method is sensitive to model training. We use
a version of Alexnet Krizhevsky et al. (2012) adjusted to accept one color channel instead of three
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Figure 6: Saliency map cascading randomization on MNIST for CDASP versus DASP. We notice
that DASP shows the structure of the digit even after randomization. CDASP eliminates the structure
of the digit.

Original Gradient  Input

Data Randomization Test

CGI

Figure 7: Second sanity check for Alexnet MNIST. On the middle image we find that using the
original gradient times input method results in an image where the original structure of the number
3 is still visible. On the right hand side image we find that our modification removes the structure of
the original input image, as we would expect for a model that had been fitted on randomized data.

and train on MNIST. We randomly permute the lables in the training data set and train the model to
greater than 98 % accuracy and examine the saliency maps. Figure 7 shows our results. On the left
hand side is the original image. In the middle is the map produced by Gradient � Input . We find
that the input structure, the number 3, still shows through with the Gradient � Input method. On
the other hand, CGI removes the underlying structure of the number.

6 CONCLUSION

Competition among labels is a simple modification to existing saliency methods that produces
saliency maps by combining information from maps from all labels, instead of just the chosen label.
Our modification keeps existing methods relevant for visual evaluation (as shown on three well-
known methods Gradient � Input, LRP, and DASP) while allowing them to pass sanity checks
of Adebayo et al. (2018), which had called into question the validity of saliency methods. Possibly
our modification even improves the quality of the map, by zero-ing out irrelevant features. We gave
some theory in Section 4 to justify the competition idea for methods which satisfy approximate com-
pleteness. Many methods satisfy completeness by design, and experimentally we find other methods
satisfy approximate completeness.

We hope the simple analysis of Section 4—modeling the saliency map as “noisy signal” mixed with
“white noise”—will inspire design of other new saliency maps. We leave open the question of what
is the optimum way to design saliency maps by combining information from all labels3. When pixel
values are spatially correlated it is natural to involve that in designing the competition. This is left
for future work.

The sanity checks of Adebayo et al. (2018) randomize the net in a significant way, either by ran-
domizing a layer or training on corrupted data. It is an interesting research problem to devise sanity
checks that are less disruptive.

3One idea that initially looked promising —looking at gradients of outputs of the softmax layer instead of
the logits—did not yield good methods in our experiments.
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7 APPENDIX

7.1 SOME SALIENCY METHODS

MOVE TO APPENDIX Let Sy denote the logit computed for the chosen output node of interest, y.

1. The Gradient � Input explanation: Gradient � Input method Shrikumar et al. (2017)
computes .∂Sy

∂x � x where � is the elementwise product.
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2. Integrated Gradients Integrated gradients Sundararajan et al. (2017) also computes the
gradient of the chosen class’s logit. However, instead of evaluating this gradient at one
fixed data point, integrated gradients consider the path integral of this value as the input
varies from a baseline, x̄, to the actual input, x along a straight line.

3. Layerwise Relevance Propagation Bach et al. (2015) proposed an approach for propagat-
ing importance scores called Layerwise Relevance Propagation (LRP). LRP decomposes
the output of the neural network into a sum of the relevances of coordinates of the input.
Specifically, if a neural network computes a function f(x) they attempt to find relevance
scores R(1)

p such that f(x) ≈
∑

pR
(1)
p

4. Taylor decomposition As stated Montavon et al. (2018) for special classes of piecewise
linear functions that satisfy f(tx) = tf(x), including ReLU networks with no biases,
one can always find a root point near the origin such that f(x) =

∑d
i=1Ri(x) where the

relevance scores Ri(x) simplify to Ri(x) = ∂f
∂xi
· xi

5. DeepLIFT explanation The DeepLIFT explanation Shrikumar et al. (2016) calculates the
importance of the input by comparing each neuron’s activation to some ’reference’ activa-
tion. Each neuron is assigned an attribution that represents the amount of difference from
the baseline that that neuron is responsible for. Reference activations are determined by
propagating some reference input, x̄, through the neural network.

6. DASP The Deep Approximate Shapley Propagation Ancona et al. (2019) is a state of the
art method that computes the approximate Shapley values. By Proposition 2 in Ancona
et al. (2019) the Shapley values satisfy completeness.

Relationships between different methods .Kindermans et al. (2016) and Shrikumar et al. (2017)
showed that if modifications for numerical stability are not taken into account, the LRP rules are
equivalent within a scaling factor to Gradient � Input. Ancona et al. (2018) showed that for ReLU
networks (with zero baseline and no biases) the ε-LRP and DeepLIFT (Rescale) explanation methods
are equivalent to the Gradient � Input. DASP Ancona et al. (2019), like DeepLIFT relies on the
Shapley values, but designs an efficient way to approximately compute these values.
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Figure 8: Saliency map for layer-wise randomization of the learned weights. Diverging visualization
where we plot the positive importances in red and the negative importances in blue. We find that
with CGI, the saliency map is almost blank when any layer is reinitialized. By contrast, we find that
Gradient � Input displays the structure of the bird, no matter which layer is randomized.
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Figure 9: Saliency map cascading randomization LRP versus CLRP.
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Figure 10: Saliency map for layer-wise randomization of the learned weights. Absolute value visu-
alization where we plot the absolute value of the saliency map. We find that using CGI, the saliency
map is almost blank when any layer is reinitialized. By contrast, we find that Gradient � Input
displays the structure of the bird, no matter which layer is randomized.
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