
Under review as a conference paper at ICLR 2020

IMPACT: IMPORTANCE WEIGHTED ASYNCHRONOUS
ARCHITECTURES WITH CLIPPED TARGET NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The practical usage of reinforcement learning agents is often bottlenecked by
the duration of training time. To accelerate training, practitioners often turn to
distributed reinforcement learning architectures to parallelize and accelerate the
training process. However, modern methods for scalable reinforcement learning
(RL) often tradeoff between the throughput of samples that an RL agent can
learn from (sample throughput) and the quality of learning from each sample
(sample efficiency). In these scalable RL architectures, as one increases sample
throughput (i.e. increasing parallelization in IMPALA (Espeholt et al., 2018)),
sample efficiency drops significantly. To address this, we propose a new distributed
reinforcement learning algorithm, IMPACT. IMPACT extends PPO with three
changes: a target network for stabilizing the surrogate objective, a circular buffer,
and truncated importance sampling. In discrete action-space environments, we
show that IMPACT attains higher reward and, simultaneously, achieves up to
30% decrease in training wall-time than that of IMPALA. For continuous control
environments, IMPACT trains faster than existing scalable agents while preserving
the sample efficiency of synchronous PPO.

1 INTRODUCTION

Proximal Policy Optimization (Schulman et al., 2017) is one of the most sample-efficient on-policy
algorithms. However, it relies on a synchronous architecture for collecting experiences, which is
closely tied to its trust region optimization objective. Other architectures such as IMPALA can
achieve much higher throughputs due to the asynchronous collection of samples from workers. Yet,
IMPALA suffers from reduced sample efficiency since it cannot safely take multiple SGD steps per
batch as PPO can. The new agent, Importance Weighted Asynchronous Architectures with Clipped
Target Networks (IMPACT), mitigates this inherent mismatch. Not only is the algorithm highly
sample efficient, it can learn quickly, training 30 percent faster than IMPALA. At the same time,
we propose a novel method to stabilize agents in distributed asynchronous setups and, through our
ablation studies, show how the agent can learn in both a time and sample efficient manner.

In our paper, we show that the algorithm IMPACT realizes greater gains by striking the balance
between high sample throughput and sample efficiency. In our experiments, we demonstrate in the
experiments that IMPACT exceeds state-of-the-art agents in training time (with same hardware) while
maintaining similar sample efficiency with PPO. The contributions of this paper are as follows:

1. We show that when collecting experiences asynchronously, introducing a target network
allows for a stabilized surrogate objective and multiple SGD steps per batch (Section 3.1).

2. We show that using a circular buffer for storing asynchronously collected experiences allows
for smooth trade-off between real-time performance and sample efficiency (Section 3.2).

3. We show that IMPACT, when evaluated using identical hardware and neural network models,
improves both in real-time and timestep efficiency over both synchronous PPO and IMPALA
(Section 4).

1

Under review as a conference paper at ICLR 2020

Worker
Learner

+

Batch

Weights

(a) PPO

Worker

Worker

Worker

Learner

Batch

Weights

(b) IMPALA

Learner

Buffer

Batch

Target
Network

Worker

Worker

Worker
Batch

Weights

(c) IMPACT

Figure 1: Architecture schemes for distributed PPO, IMPALA, and IMPACT. PPO aggregates worker batches
into a large training batch and the learner performs minibatch SGD. IMPALA workers asynchronously generate
data. IMPACT consists of a batch buffer that takes in worker experience and a target’s evaluation on the
experience. The learner samples from the buffer.

2 BACKGROUND

Reinforcement Learning assumes a Markov Decision Process (MDP) setup defined by the tuple
(S,A, p, γ, r) where S and A represent the state and action space, γ ∈ [0, 1] is the discount factor,
and p : S ×A× S → R and R : S ×A→ R are the transition dynamics and reward function that
models an environment.

Let π(at|st) : S ×A→ [0, 1] denote a stochastic policy mapping that returns an action distribution
given state st ∈ S. Acting out with π(at|st) is equivalent to sampling a trajectory τ ∼ P(τ |π),
where τ := (s0, a0,, aT−1, sT , aT). We can compactly define the trajectory distribution P(τ |π)
with state and state-action marginals pπ(st) and pπ(st, at).The goal for reinforcement learning aims
to maximize the follow objective: J(·) = E(st,at)∼pπ [

∑T
t=0 γ

tR(st, at)].

When θ parameterizes π(at|st), performing a gradient w.r.t θ is equivalent to the Policy Gradient
Theorem (Sutton & Barto, 2018):

∇θJ(θ) = E(st,at)∼pπ(·)

[
∇θ log πθ(at|st)Âπθ (st, at)

]
,

where Âπθ (st, at) is an estimator of the advantage function. Policy gradients, however, suffer from
high variance and large update-step sizes, oftentimes leading to sudden drops in performance.

2.1 DISTRIBUTED PPO

Per iteration, Proximal Policy Optimization (PPO) optimizes policy πθ from target πθold via the
following objective function

L(θ) = Epπθold

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε)

)
Ât

]
,

where rt(θ) =
πθ(at|st)
πθold (at|st)

and ε is the clipping hyperparameter. In addition, many PPO implementa-

tions use GAE-λ as a low bias, low variance advantage estimator for Ât (Schulman et al., 2015b).
PPO’s surrogate objective contains the importance sampling ratio rt(θ), which can potentially explode
if πθold is too far from πθ. (Han & Sung, 2017). PPO’s surrogate loss mitigates this with the clipping
function, which ensures that the agent makes reasonable steps. Alternatively, PPO can also be seen as
an adaptive trust region introduced in TRPO (Schulman et al., 2015a).

In Figure 1a, distributed PPO agents implement a synchronous data-gathering scheme. Before data
collection, workers are updated to πold and aggregate worker batches to training batch Dtrain. The
learner performs many mini-batch gradient steps on Dtrain. Once the learner is done, learner weights
are broadcast to all workers, who start sampling again.

2.2 IMPORTANCE WEIGHTED ACTOR-LEARNER ARCHITECTURES

In Figure 1b, IMPALA decouples acting and learning by having the learner threads send actions,
observations, and values while the master thread computes and applies the gradients from a queue of

2

Under review as a conference paper at ICLR 2020

learners experience (Espeholt et al., 2018). This maximizes GPU utilization and allows for increased
sample throughput, leading to high training speeds on easier environments such as Pong. As the
number of learners grows, worker policies begin to diverge from the learner policy, resulting in stale
policy gradients. To correct this, the IMPALA paper utilizes V-trace to correct the distributional shift:

vst = Vφ (st) +

t+n−1∑
i=t

γi−t

i−1∏
j=t

cj

 ρi (ri+1 + γVφ (si+1)− Vφ (si))

where, Vφ is the value network, πθ is the policy network of the master thread, µθ′ is the policy

network of the learner thread, and ci = ρi =
(
πθ(ai|si)
µθ′ (ai|si)

)
.

Algorithm 1 IMPACT

Input: Batch size M , number of workers W , circular buffer size N , replay coefficient K, target
update frequency ttarget, weight broadcast frequency tfrequency, learning rates α and β

1: Randomly initialize network weights (θ, w)
2: Initialize target network (θ′, w′)← (θ, w)
3: Create W workers and duplicate (θ, w) to each worker
4: Initialize circular buffer C(N,K)
5: for t = 1, .., T do
6: Obtain batch B of size M traversed k times from C(N,K)
7: If k = 0, evaluate B on target θ′, append target output to B
8: Compute policy and value network gradients

∇θJ(θ) =
1

M

∑
(i,j)∈B

∇θπθ(sj |aj)
max(πtarget(sj |aj), βπworkeri(sj |aj))

ÂV -GAE−η∇θKL (πtarget (·), πθ(·))

∇wL(w) =
1

M

∑
j

(Vw(sj)− V̂V -GAE(sj))∇wVw(sj)

9: Update policy and value network weights θ ← θ + αt∇θJ(θ),w ← w − βt∇wL(w)
10: If k = K, discard batch B from C(N,K)
11: If t ≡ 0 (mod ttarget), update target network (θ′, w′)← (θ, w)
12: If t ≡ 0 (mod tfrequency), broadcast weights to workers
13: end for

Worker-i
Input: Worker sample batch size S

1: repeat
2: Bi = ∅
3: for t = 1, ..., S do
4: Store (st, at, rt, st+1) ran by θi in batch Bi
5: end for
6: Send Bi to C(N,K)
7: If broadcasted weights exist, set θi ← θ
8: until learner finishes

3 IMPACT ALGORITHM

Like IMPALA, IMPACT separates sampling workers from learner workers. Algorithm 1 and Figure 1c
describe the main training loop and architecture of IMPACT. In the beginning, each worker copies
weights from the master network. Then, each worker uses their own policy to collect trajectories
and sends the data (st, at, rt) to the circular buffer. Simultaneously, workers also asynchronously
pull policy weights from the master learner. In the meantime, the target network occasionally syncs
with the master learner every ttarget iterations. The master learner then repeatedly draws experience
from the circular buffer. Each sample is weighted by the importance ratio of πθ

πworkeri
as well as clipped

with target network ratio πworkeri
πtarget

. The target network is used to provide a stable trust region (Figure

3

Under review as a conference paper at ICLR 2020

PPO Asynchronous PPO

Invariants πworker== πmaster Async sampling means πworker is out of sync with πmaster

Likelihood ratio πθ/πworker πθ/πworker πθ/πmaster min(πθ/πworker,
ρπθ/πtarget)

Effectiveness In synchronous
PPO, all rollouts are
fully on-policy,
hence πworker is the
same as πmaster.

Since πworker may differ
per worker, using this
ratio results in trust
region conflicts across
multiple batches.

Since πmaster is updated
after each batch from
the worker, only a single
SGD step can be taken
per batch.

The IMPACT objective
allows for multiple SGD
steps per async batch and
has a stable trust region.

Figure 2: In asynchronous PPO, there are multiple candidate policies from which the trust region
can be defined: (1) πworkeri , the policy of the worker process that produced the batch of experiences,
(2) πmaster, the current policy of the learner process, and (3) πtarget, the policy of a target network.
Introducing the target network allows for both a stable trust region and multiple SGD steps per batch
of experience collected asynchronously from workers, improving sample efficiency. Since workers
can generate experiences asynchronously from their copy of the master policy, this also allows for
good real-time efficiency.

2), allowing multiple steps per batch (i.e., like PPO) even in the asynchronous setting (i.e., with the
IMPALA architecture). In the next section, we describe the design of this improved objective.

3.1 MAXIMAL TARGET-WORKER CLIPPING

PPO gathers experience from previous iteration’s policy πθold , and the current policy trains via
importance sampling experience with respect to πθ. In the asynchronous setting, worker i’s policy,
denoted as πworkeri , generates experience for the policy network πθ. The probability that batch B
comes from worker i can be parameterized as a categorical distribution i ∼ D(α1, ..., αn). We
include this by adding an extra expectation to the importance-sampled policy gradient objective
(IS-PG) (Jie & Abbeel, 2010):

JIS(θ) = Ei∼D(α)

[
E(st,at)∼πworkeri

[
πθ

πworkeri
Ât

]]
.

Since each worker contains a different policy, our agent introduces a target network for stability
(Figure 2). Off-policy agents such as DDPG and DQN update target networks with a moving average.
For IMPACT, we periodically update the target network with the master network. However, training
with importance weighted ratio πθ

πtarget
can lead to numerical instability, as shown in Figure 3. To

prevent this, we clip the importance sampling ratio from worker policy to target policy:

JAIS(θ) = Ei∼D(α)

[
E(st,at)∼πworkeri

[
min(

πworkeri

πtarget
, ρ)

πθ
πworkeri

Ât

]]
= Ei∼D(α)

[
E(st,at)∼πworkeri

[
πθ

max(πtarget, βπworkeri)
Ât

]]
,

where β = 1
ρ . In our experiments, we set ρ as a hyperparameter with ρ ≥ 1 and β ≤ 1.

For intuition, during periods of training that learner network’s output changes drastically, worker i’s
policy, πworkeri , samples data outside of the target policy, πtarget, leading to large likelihood ratios,
πworkeri
πtarget

. The clipping min(
πworkeri
πtarget

, ρ) will pull back the large term back to ρ. Figure 7 provides
intuition behind our target clipping objective. We show that our target network clipping is a lower
bound for the IS-PG objective.

For ρ > 1, the clipped target ratio is larger and serves to augment advantage estimator Ât. This
incentivizes the agent toward good actions while avoiding bad actions. Thus, higher values of ρ
encourages the agent to learn faster at the cost of instability.

4

Under review as a conference paper at ICLR 2020

Batch

N=8
K = 4

Pointer k=3

k=2
3

Old Batch
k=4

New Batch
k=0

k=2

k=0k=1

k=3 k=1

(a) Circular Buffer.

0 100 200 300 400 500 600

Total Time

20

15

10

5

0

5

10

15

20

Ep
is

od
e

M
ea

n
R

ew
ar

d

PongNoFrameskip-v4 Buffer Passes Time(s)
1
2
4
8
16
32

(b) Sample Efficiency vs. K

0 1000000 2000000 3000000 4000000 5000000

Total Timesteps

20

15

10

5

0

5

10

15

20

Ep
is

od
e

M
ea

n
R

ew
ar

d

PongNoFrameskip-v4 Buffer Passes Timesteps
1
2
4
8
16
32

(c) Wall Clock-time vs. K

Figure 4: Left: The Circular Buffer in a nutshell: N and K correspond to buffer size and max times
a batch can be traversed. Old batches are replaced by worker-generated batches. Right: IMPACT
can achieve greater timestep as well as time efficiency by manipulating K. K = 2 outperforms all
other settings in time and is more sample efficient than K = 1, 2, 4, 16, 32.

We use GAE-λ with V-trace (Han & Sung, 2019). The V-trace GAE-λ modifies the advantage
function by adding clipped importance sampling terms to the summation of TD errors:

ÂV -GAE =

t+n−1∑
i=t

(λγ)i−t

i−1∏
j=t

cj

 δi,

where ci =
πtarget(ai|si)
πworker(ai|si) and δi is the importance sampled 1-step TD error.

0 2000 4000 6000 8000 10000

Time (s)

0

2000

4000

6000

8000

10000

Ep
is

od
e

M
ea

n
R

ew
ar

d

Likelihood Ratios
Pi-Target
Pi-Worker
Ours

(a) Ratio ablation study.

0 2000 4000 6000 8000 10000

Time (s)

0

2000

4000

6000

8000

10000

Ep
is

od
e

M
ea

n
R

ew
ar

d

Target Network Frequency Ablation
1
n/16
n/8
n/4
n/2
n
2n
4n
8n
16n

(b) Target update frequency study.

Figure 3: Training curves of the ablation study on control benchmarks. In (a), the IMPACT objective outperforms
other possible ratio choices for the surrogate loss: R1 = πθ

πtarget
, R2 = πθ

πworkeri
, R3 = πθ

max(πtarget,βπworkeri)
.

In (b), we show the target network update frequency is robust to a range of choices. We try target network update
frequency ttarget equal to the multiple (ranging from 1/16 and 16) of n = N ·K, the product of the size of
circular buffer and the replay times for each batch in the buffer.

3.2 CIRCULAR BUFFER

IMPACT uses a circular buffer (Figure 4) to emulate the mini-batch SGD used by standard PPO. The
circular buffer stores N batches that can be traversed at max K times. Upon being traversed K times,
a batch is discarded and replaced by a new worker batch.

For motivation, the circular buffer and the target network are analogous to mini-batching from
πold experience in PPO. When target network’s update frequency f = NK, the circular buffer is

5

Under review as a conference paper at ICLR 2020

equivalent to distributed PPO’s training batch when the learner samples N minibatches for K SGD
iterations.

This is in contrast to standard replay buffers, such as in ACER and APE-X, where transitions
(st, at, rt, st+1) are either uniformly sampled or sampled based on priority, and, when the buffer is
full, the oldest transitions are discarded (Wang et al., 2016; Horgan et al., 2018).

Figure 4 illustrates an empirical example where tuning K can increase training sample efficiency and
decrease training wall-clock time.

4 EVALUATION

In our evaluation we seek to answer the following questions:

1. How does our target-clipping objective affect the performance of the agents compared to
prior work? (Section 4.1)

2. How does the IMPACT circular buffer affect sample efficiency and training wall-clock time?
(Section 4.2)

3. How does IMPACT compare to PPO and IMPALA baselines in terms of sample and real-time
performance? (Section 4.3)

4.1 TARGET CLIPPING PERFORMANCE

We investigate the performance of the clipped-target objective relative to prior work, which includes
PPO and IS-PG based objectives. Specifically, we consider the following ratios below:

R1 = πθ
πtarget

R2 = πθ
πworkeri

R3 = πθ
max(πtarget,βπworkeri)

For all three experiments, we truncate all three ratios with PPO’s clipping function: c(r) = clip(r, 1−
ε, 1 + ε) and train in an asynchronous setting. Figure 4(a) reveals two important takeaways: first, R1

suffers from sudden drops in performance midway through training. Next, R2 trains stably but does
not achieve good performance.

We theorize that R1 fails due to the target and worker network mismatch. During periods of training
where the master learner undergoes drastic changes, worker’s action outputs vastly differ from the
learner’s outputs, resulting in small action probabilities. This creates large ratios in training and
destabilizes training. We hypothesize that R2 fails due to different workers pushing and pulling
the learner in multiple directions. The learner moves forward the most recent worker’s suggestions
without developing a proper trust region, resulting in many worker’s suggestions conflicting with
each other.

Our loss function, R3 shows that clipping is necessary and can help facilitate training. By clipping the
target-worker ratio, we make sure that our ratio does not explode and destabilize training. Furthermore,
we prevent workers from making mutually-destructing suggestions by having a target network provide
singular guidance.

4.1.1 TARGET NETWORK UPDATE FREQUENCY

In Section 3.2, an analogy was drawn between PPO’s mini-batching mechanism and the circular
buffer. Our primary benchmark for target update frequency is n = N ·K, where N is circular buffer
size and K is maximum replay coefficient. This is the case when PPO is equivalent to IMPACT.

In Figure 4(b), we test the frequency of updates with varying orders of magnitudes of n. In general,
we find that agent performance is robust to vastly differing frequencies. However, when n = 1 ∼ 4,
the agent does not learn. Based on empirical results, we theorize that the agent is able to train as long
as a stable trust region can be formed. On the other hand, if update frequency is too low, the agent is
stranded for many iterations in the same trust region, which impairs learning speed.

6

Under review as a conference paper at ICLR 2020

4.2 TIME AND SAMPLE EFFICIENCY WITH CIRCULAR BUFFER

Counter to intuition, the tradeoff between time and sample efficiency when K increases is not
necessarily true. In Figure 4b and 4c, we show that IMPACT realizes greater gains by striking the
balance between high sample throughput and sample efficiency. When k = 2, IMPACT performs the
best in both time and sample efficiency. Our results reveal that wall-clock time and sample efficiency
can be optimized based on tuning values of K in the circular buffer.

0 2000 4000 6000 8000 10000
Time (s)

0

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 M

ea
n

Re
wa

rd

Hopper-v2
IMPALA
IMPACT
PPO

0 2000 4000 6000 8000 10000

Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Ep
is

od
e

M
ea

n
R

ew
ar

d

Humanoid-v2
IMPALA
IMPACT
PPO

0 2000 4000 6000 8000 10000
Time (s)

0

2000

4000

6000

8000

10000

12000

Ep
iso

de
 M

ea
n

Re
wa

rd

HalfCheetah-v2
IMPALA
IMPACT
PPO

(a) Time

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Timesteps 1e8

0

500

1000

1500

2000

2500

3000

Ep
iso

de
 M

ea
n

Re
wa

rd

Hopper-v2
IMPALA
IMPACT
PPO

0 1 2 3 4 5 6

Timesteps 1e7

0

1000

2000

3000

4000

5000

6000

Ep
is

od
e

M
ea

n
R

ew
ar

d

Humanoid-v2
IMPALA
IMPACT
PPO

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Timesteps 1e8

0

2000

4000

6000

8000

10000

Ep
iso

de
 M

ea
n

Re
wa

rd

HalfCheetah-v2
IMPALA
IMPACT
PPO

(b) Timesteps

Figure 5: IMPACT outperforms baselines in both sample and time efficiency in the Continuous
Control Domain: Hopper, Humanoid, HalfCheetah.

4.3 COMPARISON WITH BASELINES

We investigate how IMPACT strikes the balance between wall clock-time and sample efficiency
compared with PPO and IMPALA across six different continuous control and discrete action tasks.

We tested our agent on three continuous environments (Figure 5): HalfCheetah-v2, Hopper-v2, and
Humanoid-v2 on 16 CPUs and 1 Titan XP. The policy networks were FC networks with two hidden
layers of 256 units and nonlinear activation tanh. For the value network, we used a similar separate
fully connected network without weight sharing. For fairness, same network hyperparameters were
used across PPO, IMPALA, and IMPACT.

For the discrete environments (Figure 6), we ran our experiments on 32 CPUs and 1 Titan XP. Our
policy network consists of three 4x4 and one 11x11 convolutional layer, with ReLU as our nonlinear
activation. Our critic network shares weights with the policy network. The input of the network is
a stack of four 42x42 down-sampled images of the Atari environment. Our hyper-parameters for
continuous and discrete environments are listed in the Appendix table 3 and 6 respectively.

Figure 5 and 6 show the total average return of evaluation rollouts for IMPACT, IMPALA and PPO.
We train each algorithm with three different random seeds on each environment with the total time of
three hours, except 10 minutes on Pong environments. According to the experiments, our algorithm
is able to achieve greater timestep efficiency than synchronous distributed PPO, while training faster
than IMPALA.

Our results show that continuous control tasks for IMPACT can be sensitive to the choice of N and
K for the circular buffer, and N = 8 and K = 20 seemed to be a robust choice for a variety of tasks.
Although the high K reduces the sample throughput of the algorithm, the increased sample efficiency

7

Under review as a conference paper at ICLR 2020

results in an overall reduction in training wall-clock time and improved performance. According to
the results from the discrete control tasks, N = 1 and K = 2 seemed to be a good choice for the
circular buffer. Unlike continuous control environments, sampling new data instead of replaying old
data helps the agents learn faster.

0 2000 4000 6000 8000 10000
Time (s)

0

100

200

300

400

500

600

Ep
iso

de
 M

ea
n

Re
wa

rd

BreakoutNoFrameskip-v4
IMPALA
IMPACT
PPO

0 2000 4000 6000 8000 10000
Time (s)

0

200

400

600

800

1000

1200

1400

Ep
iso

de
 M

ea
n

Re
wa

rd

SpaceInvadersNoFrameskip-v4
IMPALA
IMPACT
PPO

0 100 200 300 400 500 600

Time (s)

20

15

10

5

0

5

10

15

20

Ep
is

od
e

M
ea

n
R

ew
ar

d

PongNoFrameskip-v4
IMPALA
IMPACT
PPO

(a) Time

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e7

0

100

200

300

400

500

600

Ep
iso

de
 M

ea
n

Re
wa

rd

BreakoutNoFrameskip-v4
IMPALA
IMPACT
PPO

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Timesteps 1e7

0

200

400

600

800

1000

Ep
iso

de
 M

ea
n

Re
wa

rd
SpaceInvadersNoFrameskip-v4
IMPALA
IMPACT
PPO

0 1000000 2000000 3000000 4000000 5000000

Timesteps

20

10

0

10

20

Ep
is

od
e

M
ea

n
R

ew
ar

d

PongNoFrameskip-v4
IMPALA
IMPACT
PPO

(b) Timesteps

Figure 6: IMPACT outperforms PPO and IMPALA in both real-time and sample efficiency in the
Discrete Control Domain: Breakout, SpaceInvaders, and Pong.

5 RELATED WORK

Distributed RL architectures are often used to accelerate training. Gorila (Nair et al., 2015) and
A3C (Mnih et al., 2016) use workers to compute gradients to be sent to the learner. A2C (Mnih
et al., 2016) and IMPALA (Espeholt et al., 2018) send experience tuples to the learner. Distributed
replay buffers, introduced in ACER (Wang et al., 2016) and Ape-X (Horgan et al., 2018), collect
worker-collected experience and define an overarching heuristic for learner batch selection. IMPACT
is the first to fully incorporate the sample-efficiency benefits of PPO in an asynchronous setting.

Surreal PPO (Fan et al., 2018) also studies training with PPO in the asynchronous setting, but do
not consider adaptation of the surrogate objective nor IS-correction. Their use of a target network for
broadcasting weights to workers is also entirely different from IMPACT’s. Consequently, IMPACT is
able to achieve better results in both real-time and sample efficiency.

Off-policy methods, including DDPG(Lillicrap et al., 2015) and QProp, utilize target networks to
stabilize learning the Q function (Lillicrap et al., 2015; Gu et al., 2016). This use of a target network
is related but different from IMPACT, which uses the network to define a stable trust region for the
PPO surrogate objective.

6 CONCLUSION

In conclusion, we introduce IMPACT, which extends PPO with a stabilized surrogate objective for
asynchronous optimization, enabling greater real-time performance without sacrificing timestep
efficiency. We show the importance of the IMPACT objective to stable training, and show it can
outperform tuned PPO and IMPALA baselines in both real-time and timestep metrics.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan Creus-Costa, Silvio
Savarese, and Li Fei-Fei. Surreal: Open-source reinforcement learning framework and robot
manipulation benchmark. In Conference on Robot Learning, pp. 767–782, 2018.

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and Sergey Levine. Q-prop:
Sample-efficient policy gradient with an off-policy critic. arXiv preprint arXiv:1611.02247, 2016.

Seungyul Han and Youngchul Sung. Amber: Adaptive multi-batch experience replay for continuous
action control. arXiv preprint arXiv:1710.04423, 2017.

Seungyul Han and Youngchul Sung. Dimension-wise importance sampling weight clipping for
sample-efficient reinforcement learning. arXiv preprint arXiv:1905.02363, 2019.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Tang Jie and Pieter Abbeel. On a connection between importance sampling and the likelihood ratio
policy gradient. pp. 1000–1008, 2010.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria,
Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al. Massively
parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas. Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

9

Under review as a conference paper at ICLR 2020

A EXPERIMENT HYPER-PARAMETERS FOR CONTINUOUS ENVIRONMENTS

Hopper Humanoid Half-Cheetah
clip param 0.4 0.3 0.4
entropy coeff 0.0 0.0 0.01
grad clip 0.5 1.0 0.5
lambda 1.0 0.95 0.95
learning rate 0.00002 0.0001 0.0008
minibatch buffer size 5 16 16
num sgd iter 20 20 32
sample batch size 4096 1024 512
train batch size 32768 32768 4096
kl coeff 1.0 1.0 1.0
kl target 0.01 0.04 0.04

Table 1: Hyper-parameters for continuous control tasks (IMPACT)

Hopper Humanoid Half-Cheetah
entropy coeff 0.0 0.0 0.0
grad clip 0.5 0.5 0.5
gamma 0.995 0.995 0.995
learning rate 0.00002 0.00001 0.000013
sample batch size 4096 4096 4096
train batch size 32768 32768 32768
value function loss coeff 1.0 0.5 0.5

Table 2: Hyper-parameters for continuous control tasks (IMPALA)

Hopper Humanoid Half-Cheetah
clip params 0.3 0.2 0.3
entropy coeff 0.00 0.00 0.00
lambda 1.0 1.0 1.0
learning rate 0.0001 0.00005 0.0003
num sgd iter 20 20 32
sgd minibatch size 32768 32768 4096
train batch size 160000 320000 65536
kl coeff 1.0 1.0 1.0
kl target 0.01 0.04 0.04

Table 3: Hyper-parameters for continuous control tasks (PPO)

Breakout Spaceinvader Pong
clip param 0.2 0.2 0.3
entropy coeff 0.01 0.01 0.01
grad clip 2.5 2.5 10
lambda 0.995 0.995 1.0
learning rate 0.0005 0.0005 0.0005
num sgd iter 1 2 2
sample batch size 50 50 50
train batch size 500 800 500
value function loss coeff 0.25 1.0 1.0
kl coeff 0.0 0.0 1.0
kl target 0.01 0.01 0.01

Table 4: Hyper-parameters for discrete control tasks (IMPACT)

10

Under review as a conference paper at ICLR 2020

Breakout Spaceinvader Pong
entropy coeff 0.01 0.01 0.01
grad clip 40.0 40.0 40.0
learning rate 0.0005 0.0005 0.0005
sample batch size 50 50 50
train batch size 500 500 750
value function loss coeff 0.5 0.5 0.5

Table 5: Hyper-parameters for discrete control tasks (IMPALA)

Breakout Spaceinvader Pong
clip param 0.1 0.1 0.1
entropy coeff 0.01 0.01 0.01
lambda 0.95 0.95 0.95
learning rate 0.00005 0.00005 0.00005
num sgd iter 10 10 10
sample batch size 100 100 20
train batch size 5000 5000 5000
kl coeff 0.5 0.5 0.5
kl target 0.01 0.01 0.01

Table 6: Hyper-parameters for discrete control tasks(PPO)

−8 −6 −4 −2 0 2 4 6 8
at

0.00

0.05

0.10

0.15

0.20

0.25

pr
ob

ili
ty

de
ns

it
y

worker i

target

master

Action Distributions

−4 −2 0 2 4
at

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

ra
ti

o

IS ratio

IMPACT

PPO clip, eps=0.1

IMPACT clip, eps=0.1

Likelihood Ratios w.r.t Different Objectives

Figure 7: Likelihood ratio rt(θ) for different objective functions, including PPO’s. We assume a diagonal
Gaussian policy for our policy. Left: Corresponding one dimensional action distributions for Worker i, Target,
and Master Learner; Right: Ratio values graphed as a function of possible action values. IMPACT with PPO
clipping is a lower bound of PPO.

B THE INTUITION OF THE OBJECTIVE

In the Figure 7, the formula we make the plot is as follows. Without the loss of the generality, we can
assume the advantage function is one. Then, the following ratio just represents the objective function.

• IS ratio: πθ
πworkeri

• IMPACTtarget: min
(
πworkeri
πtarget

, ρ
)

πθ
πworkeri

• PPO clip with epsilon: min
(

πθ
πworkeri

, clip(πθ
πworkeri

, 1− ε, 1 + ε)
)

• IMPACT target clip: min
(
min

(
πworkeri
πtarget

, ρ
)

πθ
πworkeri

, clip
(
min

(
πworkeri
πtarget

, ρ
)

πθ
πworkeri

, 1− ε, 1 + ε
))

11

Under review as a conference paper at ICLR 2020

We can see from the Figure 7, the first ratio is bigger where πworkeri has little probability. Among all
the curves, we can find the last one is the lower bounds for all the others. This gives the intuition
that using the IMPACT target clip ratio as the objective can be more stable because one gradient step
ahead won’t change the master policy too much.

12

	Introduction
	Background
	Distributed PPO
	Importance Weighted Actor-Learner Architectures

	IMPACT Algorithm
	Maximal Target-Worker Clipping
	Circular Buffer

	Evaluation
	Target Clipping Performance
	Target Network Update Frequency

	Time and Sample Efficiency with Circular Buffer
	Comparison with Baselines

	Related Work
	Conclusion
	Experiment hyper-parameters for continuous environments
	The intuition of the objective

