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ABSTRACT

Point clouds, as a form of Lagrangian representation, allow for powerful and
flexible applications in a large number of computational disciplines. We propose a
novel deep-learning method to learn stable and temporally coherent feature spaces
for points clouds that change over time. We identify a set of inherent problems
with these approaches: without knowledge of the time dimension, the inferred
solutions can exhibit strong flickering, and easy solutions to suppress this flickering
can result in undesirable local minima that manifest themselves as halo structures.
We propose a novel temporal loss function that takes into account higher time
derivatives of the point positions, and encourages mingling, i.e., to prevent the
aforementioned halos. We combine these techniques in a super-resolution method
with a truncation approach to flexibly adapt the size of the generated positions. We
show that our method works for large, deforming point sets from different sources
to demonstrate the flexibility of our approach.

1 INTRODUCTION

Deep learning methods have proven themselves as powerful computational tools in many disciplines,
and within it a topic of strongly growing interest is deep learning for point-based data sets. These
Lagrangian representations are challenging for learning methods due to their unordered nature, but
are highly useful in a variety of settings from geometry processing and 3D scanning to physical
simulations, and since the seminal work of Qi Charles et al. (2017), a range of powerful inference
tasks can be achieved based on point sets. Despite their success, interestingly, no works so far have
taken into account time. Our world, and the objects within it, naturally move and change over time,
and as such it is crucial for flexible point-based inference to take the time dimension into account. In
this context, we propose a method to learn temporally stable representations for point-based data sets,
and demonstrate its usefulness in the context of super-resolution.

An inherent difficulty of point-based data is their lack of ordering, which makes operations such as
convolutions, which are easy to perform for Eulerian data, unexpectedly difficult. Several powerful
approaches for point-based convolutions have been proposed (Qi et al., 2017; Hermosilla et al.,
2018; Hua et al., 2018), and we leverage similar neural network architectures in conjunction with
the permutation-invariant Earth Mover’s Distance (EMD) to propose a first formulation of a loss for
temporal coherence.

In addition, several works have recognized the importance of training point networks for localized
patches, in order to avoid having the network to rely on a full view of the whole data-set for tasks that
are inherently local, such as normal estimation (Qi Charles et al., 2017), and super-resolution (Yu
et al., 2018a). This also makes it possible to flexibly process inputs of any size. Later on we will
demonstrate the importance of such a patch-based approach with sets of changing cardinality in our
setting. A general challenge here is to deal with varying input sizes, and for super-resolution tasks,
also varying output sizes. Thus, in summary we target an extremely challenging learning problem:
we are facing permutation-invariant inputs and targets of varying size, that dynamically move and
deform over time. In order to enable deep learning approaches in this context, we make the following
key contributions: Permutation invariant loss terms for temporally coherent point set generation;
A Siamese training setup and generator architecture for point-based super-resolution with neural
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networks; Enabling improved output variance by allowing for dynamic adjustments of the output
size; The identification of a specialized form of mode collapse for temporal point networks, together
with a loss term to remove them. We demonstrate that these contributions together make it possible
to infer stable solutions for dynamically moving point clouds with millions of points.

a) b)

Figure 1: Our algorithm upsamples an input point cloud (a)
in a temporally coherent manner. Three exemplary outputs in
(b).

More formally, we show that our learn-
ing approach can be used for generating
a point set with an increased resolution
from a given set of input points. The gen-
erated points should provide an improved
discretization of the underlying ground
truth shape represented by the initial set
of points. For the increase, we will target a
factor of two to three per spatial dimension.
Thus, the network has the task to estimate
the underlying shape, and to generate suit-
able sampling positions as output. This is generally difficult due to the lack of connectivity and
ordering, and in our case, positions that move over time in combination with a changing number of
input points. Hence it is crucial that the network is able to establish a temporally stable latent space
representation. Although we assume that we know correspondences over time, i.e., we know which
point at time t moved to a new location at time t+ ∆t, the points can arbitrarily change their relative
position and density over the course of their movement, leading to a substantially more difficult
inference problem than for the static case.

2 RELATED WORK

Deep learning with static point sets was first targeted in PointNet (Qi Charles et al., 2017) via
order-invariant networks, while PointNet++ (Qi et al., 2017) extended this concept to generate
features for localized groups similar to a convolution operation for grid-based data. This concept
can be hierarchically applied to the generated groups, in order to extract increasingly abstract and
global features. Afterwards, the extracted features can be interpolated back to the original point
cloud. The goal to define point convolutions has been explored and extended in several works. The
MCNN approach (Hermosilla et al., 2018) phrased convolution in terms of a Monte Carlo integration.
PointCNN (Hua et al., 2018) defined a pointwise convolution operator using nearest neighbors,
while extension-restriction operators for mapping between a point cloud function and a volumetric
function were used in Atzmon et al. (2018). The PU-Net (Yu et al., 2018a) proposed a network for
upsampling point clouds, and proposed a similar hierarchical network structure of PointNets along
the lines of PointNet++ to define convolutions. Being closer to our goals, we employ this approach
for convolutional operations in our networks below. We do not employ the edge-aware variant of the
PU-Net (Yu et al., 2018b) here, as we focus on temporal changes in our work.

Permutation invariance is a central topic for point data, and was likewise targeted in other works
(Ravanbakhsh et al., 2016; Zaheer et al., 2017). The Deep Kd-network (Klokov and Lempitsky,
2017) defined a hierarchical convolution on point clouds via kd-trees. PointProNets (Roveri et al.,
2018) employed deep learning to generate dense sets of points from sparse and noisy input points
for 3D reconstruction applications. PCPNet (Guerrero et al., 2018), as another multi-scale variant of
PointNet, has demonstrated high accuracy for estimating local shape properties such as normal or
curvature. P2PNet (Yin et al., 2018) used a bidirectional network and extends PointNet++ to learn a
transformation between two point clouds with the same cardinality.

Recently, the area of point-based learning has seen a huge rise in interest. One focus here are 3D
segmentation problems, where numerous improvements were proposed, e.g., by SPLATNet (Su et al.,
2018), SGPN (Wang et al., 2018a), SpiderCNN (Xu et al., 2018), PointConv (Wu et al., 2018), SO-
NEt(Li et al., 2018a) and 3DRNN (Ye et al., 2018). Other networks such as Flex Convolution (Groh
et al., 2018), the SuperPoint Graph (Landrieu and Simonovsky, 2018), and the fully convolutional
network (Rethage et al., 2018) focused on large scale segmentation. Additional areas of interest are
shape classification (Wang et al., 2018b; Lei et al., 2018; Zhang and Rabbat, 2018; Skouson, 2018)
and object detection (Simon et al., 2018; Zhou and Tuzel, 2018), and hand pose tracking (Ge et al.,
2018). Additional works have targeted rotation and translation invariant inference (Thomas et al.,
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2018), and point cloud autoencoders (Yang et al., 2018; Deng et al., 2018). A few works have also
targeted generative models based on points, e.g., for point cloud generation (Sun et al., 2018), and
with adversarial approaches (Li et al., 2018b). It is worth noting here that despite the huge interest,
the works above do not take into account temporally changing data, which is the focus of our work.
A notable exception is an approach for scene flow (Liu et al., 2018), in order to estimate 3D motion
directly on the basis of point clouds. This work is largely orthogonal to ours, as it does not target
generative point-based models.

3 METHODOLOGY

We assume an input point cloud X = {x1, x2, ..., xk} of size k ∈ [1, kmax]. It consists of points
xi ∈ Rd, where d includes 3 spatial coordinates and optionally additional features. Our goal is to let
the network fs(X) infer a function Ỹ which approximates a desired super-resolution output point
cloud Y = {y1, y2, ..., yn} of size n ∈ [1, nmax] with yi ∈ R3, i.e. fs(X) = Ỹ ≈ Y . For now we
assume that the number of output points n is defined by multiplying k with a user-defined upsampling
factor r, i.e. n = rk. Figure 2a) illustrates the data flow in our super-resolution network schematically.
We treat the upsampling problem as local one, i.e., we assume that the inference problem can be
solved based on a spatially constrained neighborhood. This allows us to work with individual patches
extracted from input point clouds. At the same time, it makes it possible to upsample adaptively, for
example, by limiting the inference to relevant areas, such as complex surface structures. For the patch
extraction we use a fixed spatial radius and normalize point coordinates within each patch to lie in
the range of [−1, 1].

Our first building block is a measure for how well two point clouds represent the same object or scene
by formulating an adequate spatial loss function. Following Achlioptas et al. (2017), we base our
spatial loss LS on the Earth Mover’s Distance (EMD), which solves an assignment problem to obtain
a differentiable bijective mapping φ : ỹ → y. With φ we can minimize differences in position for
arbitrary orderings of the points clouds via:

LS = min
φ:ỹ→y

∑
ỹi∈Ỹ

‖ỹi − φ(ỹi)‖22 (1)

3.1 TEMPORAL COHERENCE
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Figure 2: a) Schematic overview of fs(X). Black ar-
rows represent scalar data. Point data is depicted as
colored arrows with the color indicating data cardinality
(brown=k, red = kmax, green = nmax, blue = n, and
purple = ñ). b) Siamese network setup for temporal loss
calculation.

When not taking temporal coherence explicitly
into account, the highly nonlinear and ill-posed
nature of the super-resolution problem can cause
strong variations in the output even for very sub-
tle changes in the input. This results in signifi-
cant temporal artifacts that manifest themselves
as flickering. In order to stabilize the output
while at the same time keeping the network
structure as small and simple as possible, we
propose the following training setup. Given a se-
quence of high resolution point clouds Y t, with
t indicating time, we can compute a velocity
V t = {vt1, vt2, ..., vtk}, where vti ∈ R3. For this
we use a finite difference (yt+1

i − yti), where we
assume, without loss of generality, ∆t = 1, i.e.
the time step is normalized to one. For training,
the low resolution inputs X can now be generated from Y via down-sampling by a factor of r, which
yields a subset of points with velocities. Details of our data generation process will be given below.

To train a temporally coherent network with the Y t sequences, we employ a Siamese setup shown in
Figure 2b. We evaluate the network several times (3 times in practice) with the same set of weights,
and moving inputs, in order to enforce the output to behave consistently. In this way we avoid
recurrent architectures that would have to process the high resolution outputs multiple times. In
addition, we can compute temporal derivatives from the input points, and use them to control the
behavior of the generated output.
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Figure 3: An illustration of the relationship between input and output size. (a,b,d) show histograms of point set
sizes for: (a,b) the input set; (c) the ground truth target sets; and (d) the network output, i.e. r times larger than
the input. The latter deviates from the ground truth in (c), but follows its overall structure. This is confirmed in
(b), which shows a heat map visualization of input vs. ground truth output size. The diagonal structure of the
peak confirms the approximately linear relationship.

Under the assumption of slowly moving inputs, which theoretically could be ensured for training, a
straightforward way to enforce temporal coherence would be to minimize the generated positions
over consecutive time steps in terms of an L2 norm:

L2V =

n∑
i=1

‖ỹt+1
i − ỹti‖22. (2)

While this reduces flickering, it does not constrain the change of velocities, i.e., the acceleration. This
results in a high frequency jittering of the generated point positions. The jitter can be reduced by also
including the previous state at time step t− 1 to constrain the acceleration in terms of its L2 norm:

L2A =

n∑
i=1

‖(ỹt+1
i − ỹti)− (ỹti − ỹt−1i )‖22 (3)

However, a central problem of a direct temporal constraint via Equations (2) and (3) is that it
consistently leads to a highly undesirable clustering of generated points around the center point.
This is caused by the fact that the training procedure as described so far is unbalanced, as it only
encourages minimizing changes. The network cannot learn to reconstruct realistic, larger motions
in this way, but rather. can trivially minimize the loss by contracting all outputs to a single point.
For this reason, we instead use the estimated velocity of the ground truth point cloud sequence with
a forward difference in time, to provide the network with a reference. By using the EMD-based
mapping φ established for the spatial loss in Equation (1), we can formulate the temporal constraint
in a permutation invariant manner as

LEV =

n∑
i=1

‖(ỹt+1
i − ỹti)− (φ(ỹt+1

i )− φ(ỹti))‖22. (4)

Intuitively, this means the generated outputs should mimic the motion of the closest ground truth
points. As detailed for the L2-based approaches above, it makes sense to also take the ground truth
acceleration into account to minimize rapid changes of velocity over time. We can likewise formulate
this in a permutation invariant way w.r.t. ground truth points via:

LEA =

n∑
i=1

‖
(
(ỹt+1
i − ỹti)− (ỹti − ỹt−1i )

)
−
(
(φ(ỹt+1

i )− φ(ỹti))− (φ(ỹti)− φ(ỹt−1i ))
)
‖22. (5)

We found that a combination of LEV and LEA together with the spatial loss LS from Eq. 1 provides
the best results, as we will demonstrate below. First, we will introduce the additional loss terms of
our algorithm.

3.2 VARIABLE POINT CLOUD SIZES

Existing network architectures are typically designed for processing a fixed amount of input and
output points. However, in many cases, and especially for a localized inference of super-resolution,
the number of input and output points varies significantly. While we can safely assume that no
patch exceeds the maximal number of inputs kmax (this can be ensured by working on a subset),
it can easily happen that a certain spatial region has fewer points. Simply including more distant
points could guarantee that we have a full set of samples, but this would mean the network has
to be invariant to scaling, and to produce features at different spatial scales. Instead, we train our
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a) Fixed output size b) Variable output size

Figure 4: The effect of our variable output handling for exemplary patches. In red the ground truth target, in blue
the inferred solution. Left (a) with fixed output size, and on the right (b) with the proposed support for variable
output sizes. The latter approximates the shape of the red ground truth points significantly better. (a) leads to
rather uniform shapes that, e.g., cover empty space above the ground truth in both examples.

network for a fixed spatial size, and ensure that it can process varying numbers of inputs. For inputs
with fewer than kmax points, we pad the input vector to have a fixed size. Here, we ensure that
the padding values are not misinterpreted by the network as being point data. Therefore, we pad
X with p ∈ {−2}d, which represents a value outside the regular patch coordinate range [−1, 1]:
X̄ = {x1, x2, ..., xk, p, p, ..., p︸ ︷︷ ︸

kmax−k

}. The first convolutional layer in our network now filters out the

padded entries using the following mask: Min = {mi∈[0,k]} = {1, 1, ..., 1︸ ︷︷ ︸
k

, 0, 0, .., 0︸ ︷︷ ︸
kmax−k

}. The entries

of p allow us to compute the mask on the fly throughout the whole network, without having to pass
through k. For an input of size k, our network has the task to generate ñ = rk points. As the size of
the network output is constant with rkmax, the outputs are likewise masked with Mout to truncate
it to length ñ for all loss calculations, e.g., the EMD mappings. Thus, as shown in Figure 2a, ñ is
used to truncate the point cloud Ȳ = {ȳ1, ȳ2, ..., ȳnmax

} via a mask Mout to form the final output
Ỹ = {ȳi|i ∈ [1, ñ]}.
Note that in Sec. 3.1, we have for simplicity assumed that n = rk, however, in practice the number
of ground truth points n varies. As such, ñ only provides an approximation of the true number of
target points in the ground truth data. While the approximation is accurate for planar surfaces and
volumes, it is less accurate in the presence of detailed surface structures that are smaller than the
spatial frequency of the low-resolution data.

We have analyzed the effect of this approximation in Fig. 3. The histograms show that the strongly
varying output counts are an important factor in practice, and Fig. 4 additionally shows the improve-
ment in terms of target shape that results from incorporating variable output sizes. In general, ñ
provides a good approximation for our data sets. However, as there is a chance to infer an improved
estimate of the correct output size based on the input points, we have experimented with training
a second network to predict ñ in conjunction with a differentiable Mout. While this could be an
interesting feature for future applications, we have not found it to significantly improve results. As
such, the evaluations and results below will use the analytic calculation, i.e., ñ = rk.

3.3 PREVENTING HALO ARTIFACTS

For each input point the network generates r output points, which can be seen as individual groups
g: ψ(g) = {Ỹi|i ∈ [rg + 1, (r + 1)g]}. These groups of size r in the output are strongly related to
the input points they originate from. Networks that focus on maintaining temporal coherence for the
dynamically changing output tends to slide into local minima where r output points are attached as a
fixed structure to the input point location. This manifests itself as visible halo-like structures that
move statically with the input. Although temporal coherence is good in this case, these cluster-like
structures lead to gaps and suboptimal point distributions in the output, particularly over time. These
structures can be seen as a form of temporal mode collapse that can be observed in other areas deep
learning, such as GANs. To counteract this effect, we introduce an additional mingling loss term to
prevent the formation of clusters by pushing the individual points of a group apart:

LM =
1

d ñr e

d ñr e∑
i

|ψ(i)|∑
ỹg∈ψ(i)

‖
∑
ψ(i)
|ψ(i)| − ỹg‖2

(6)
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a) b) c) d)
[previous work] L2 Loss Velocity Only Velocity + Acceleration

Figure 6: Ablation study for our temporal loss formulation. Black points indicate targets, while green points
are generated (both shown as time average). a) Result from previous work; b) With L2V loss; c) the proposed
velocity loss LEV ; d) our full loss formulation with LEV + LEA. While (a) has difficulties to approximate the
target shape and the flickering output is visible as blurred positions, the additional loss terms (esp. in (c) and (d))
provide stable results that closely approximate the targets. Note that (b) leads to an undesirably static motion
near the bottom of the patch. As the input points here are moving thee output should mimic this motion, like
(c,d).

LS LN LM L2V L2A LEV LEA

2D Previous work 0.0784 0.329 5.499 0.1 0.402 0.107 0.214
2D With L2V 0.044 0.00114 2.197 1.1e-05 4.2e-05 0.00197 0.00276
2D Only LEV 0.0453 0.00114 2.713 2.6e-05 6.0e-06 6.15e-04 5.27e-04
2D Full 0.0487 0.00116 3.0307 2.1e-05 1.0e-06 6.52e-04 1.46e-04
3D Previous work 0.0948 0.494 10.558 0.325 1.299 0.19 0.365
3D Full 0.0346 0.00406 3.848 8.04e-04 2.0e-06 0.00179 7.09e-04

Table 1: Quantitative results for the different terms of our loss functions, first for our 2D ablation study and then
for our 3D versions. The first three columns contain spatial, the next four temporal metrics. LN = ‖ñ− n‖22 is
given as a measure of accuracy in terms of the size of the generated outputs (it is not part of the training).

a) b) c)

Figure 7: Our method applied to an animation of a moving spider. (a) Input point cloud, (b) three frames of our
method, (c) a detail from previous work (top) and our method (bottom). Note that our method at the bottom
preserves the shape with fewer outliers, and leads to a more even distribution of points, despite generating fewer
points in total (see Table 2).

Figure 5: Left, a result without the mingling loss from Eq. 6,
right with (a single point group highlighted in orange). The
former has many repeated copies of a single pattern, which
the mingling manages to distribute.

Note that in contrast to previously used re-
pulsion losses (Yu et al., 2018a), LM en-
courages points to globally mix rather than
just locally repelling each other. While a
repulsion term can lead to a deterioration
of the generated outputs, our formulation
preserves spatial structure and temporal co-
herence while leading to well distributed
points, as is illustrated in Fig. 5.

In combination with the spatial and temporal terms from above, this leads to our final loss function
Lfinal = LS + γLEV + µLEA + νLM , with weighting terms γ, µ, ν.

4 EVALUATION AND RESULTS

We train our network in a fully supervised manner with simulated data. To illustrate the effect of
our temporal loss functions, we employ it in conjunction with established network architectures
from previous work (Qi Charles et al., 2017; Yu et al., 2018a). Details of the data generation and
network architectures are given in the appendix. We first discuss our data generation and training
setup, then illustrate the effects of the different terms of our loss function, before showing results
for more complex 3D data sets. As our results focus on temporal coherence, which is best seen
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a) b) c)

Figure 8: Illustrations of the latent spaces learned by our networks. (a) shows averaged latent space values for
100 random patch sequences of our 2D data set. The green curve shows our method with temporal coherence
loss, while the pink curve was generated without it. The same data is shown in frequency space in (b), where the
red curve represents the frequency of the data with temporal loss, and the blue curve the frequency of the data
without. These graph highlights the reduced amount of high frequency changes in the latent space with temporal
loss, esp. in frequency space, where the red curve almost entirely lies below the blue one. (c) contains frequency
information for the latent space content of the same 100 patch sequences, but with a random order. In this case,
the blue and red curve both contain significant amounts of high-frequencies. I.e., our method reliably identifies
strongly changing inputs.

Input points P.W., output points P.W., factor Ours, output points Ours, factor
Spider 7,900 3,063,704 387.81 251,146 31.79
Moving person 10,243 5,224,536 510.06 367,385 35.87
Liquid 513,247 - - 6,430,984 12.53

Table 2: Point counts for the 3D examples of our video. Input counts together with output counts for previous
work and our proposed network are shown. Factor columns contain increase in point set size from in- to output.
As previous work cannot handle flexible output counts, a fixed number of points is generated per patch, leading
to a huge number of redundant points. However, our network flexibly adapts the output size and leads to a
significantly smaller number of generated points that cover the object or volume more evenly.

in motion, we refer readers to the supplemental video at https://www.dropbox.com/sh/
btrzxavn34qftfe/AAADpIBME0eguA4ew4ylvCX_a?dl=0 in order to fully evaluate the
resulting quality.

Ablation Study We evaluate the effectiveness of our loss formulation with a two dimensional
ablation study. An exemplary patch of this study is shown in Fig. 6. In order to compare our method
to previous work, we have trained a previously proposed method for point-cloud super-resolution, the
PU-Net (Yu et al., 2018a) which internally uses a PointNet++ (Qi et al., 2017), with our data set, the
only difference being that we use zero-padding here. This architecture will be used in the following
comparisons to previous work. Fig. 6a) shows a result generated with this network. As this figure
contains an average of multiple frames to indicate temporal stability, the blurred regions, esp. visible
on the right side of Fig. 6a), indicate erroneous motions in the output. For this network the difficulties
of temporally changing data and varying output sizes additionally lead to a suboptimal approximation
of the target points, that is also visible in terms of an increased LS loss in Table 1. While Fig. 6b)
significantly reduces motions, and leads to an improved shape as well as LS loss, its motions are
overly constrained. E.g., at the bottom of the shown patch, the generated points should follow the
black input points, but in (b) the generated points stay in place. In addition, the lack of permutation
invariance leads to an undesirable clustering of generated points in the patch center. Both problems
are removed with LEV in Fig. 6c), which still contains small scale jittering motions, unfortunately.
These are removed by LEA in Fig. 6d), which shows the result of our full algorithm. The success of
our approach for dynamic output sizes is also shown in in the LN column of Table 1, which contains
an L2 error w.r.t. ground truth size of the outputs.

Temporally Coherent Features A central goal of our work is to enable the learning of features that
remain stable over time. To shed light on how our approach influences the established latent space,
we analyze its content for different inputs. The latent space in our case consists of a 256-dimensional
vector that contains the features extracted by the first set of layers of our network. Fig. 8 contains
a qualitative example for 100 randomly selected patch sequences from our test data set, where we
collect input data by following the trajectory of each patch center for 50 time steps to extract coherent
data sets. Fig. 8a) shows the averaged latent space content over time for these sequences. While
the model trained with temporal coherence (green curve) is also visually smoother, the difference
becomes clearer when considering temporal frequencies. We measure averaged frequencies of the
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latent space dimensions over time, as shown in Fig. 8b,c). We quantify the differences by calculating
the integral of the frequency spectrum f̃ , weighted by the frequency x to emphasize high frequencies,
i.e,
∫
x
x · f̃(x)dx. Hence, small values are better. As shown in Fig. 8b), the version trained without

our loss formulations contains significantly more high frequency content. This is also reflected in the
weighted integrals, which are 36.56 for the method without temporal loss, and 16.98 for the method
with temporal loss. To verify that our temporal model actually establishes a stable temporal latent
space instead of ignoring temporal information altogether, we evaluate the temporal frequencies
for the same 100 inputs as above, but with a randomized order over time. In this case, our model
correctly identifies the incoherent inputs, and yields similarly high frequencies as the regular model
with 28.44 and 35.24, respectively. More details in Appendix C.

3D Results Our patch-based approach currently relies on a decomposition of the input volumes into
patches over time, as outlined in Appendix A. As all of the following results involve temporal data,
full sequences are provided in the accompanying video. We apply our method to several complex
3D models to illustrate its performance. Fig. 7 shows the input as well as several frames generated
with our method for an animation of a spider. Our method produces an even and temporally stable
reconstruction of the object. In comparison, Fig. 7b) shows the output from the previous work
architecture (Yu et al., 2018a). It exhibits uneven point distributions and outliers, e.g., above the legs
of the spider, in addition to uneven motions.

A second example for a moving human figure is shown in Fig. 1. In both examples, our network covers
the target shape much more evenly despite using much fewer points, as shown in Table 2. Thanks
to the flexible output size of our network, it can adapt to sparsely covered regions by generating
correspondingly fewer outputs. The previous work architecture, with its fixed output size, needs to
concentrate the fixed number of output points within the target shape, leading to an unnecessarily large
point count. In order to demonstrate the flexibility of our method, we also apply it to a volumetric
moving point cloud obtained from a liquid simulation. Thanks to the patch-based evaluation of our
network, it is agnostic to the overall size of the input volume. In this way, it can be used to generate
coherent sets with millions of points. These examples also highlight our method’s capabilities for
generalization. While the 3D model was only trained on data from physics simulations, as outlined
above, it learns stable features that can be flexibly applied to volumetric as well as to surface-based
data. The metrics in Table 1 show that for both 2D and 3D cases, our method leads to significantly
improved quality, visible in lower loss values for spatial as well as temporal terms.

Another interesting field of application for our algorithm are physical simulations. Complex simula-
tions such as fluids, often employ particle-based representations. On the one hand, the volume data
is much larger than surface-based data, which additionally motivates our dynamic output. On the
other hand, time stability plays a very important role for physical phenomena. Our method produces
detailed outputs for liquids, as can be seen in our supplemental video.

Convergence graphs for the different versions are shown in Fig. 11 of the supplemental material.
These graphs show that our method not only successfully leads to very low errors in terms of temporal
coherence, but also improves spatial accuracy. The final values of LS for the 2D case are below 0.05
for our algorithm, compared to almost 0.08 for previous work. For 3D, our approach yields 0.04 on
average, in contrast to ca. 0.1 for previous work.

5 CONCLUSION

We have proposed a first method to infer temporally coherent features for point clouds. This is
made possible by a combination of a novel loss function for temporal coherence in combination with
enabling flexible truncation of the results. In addition we have shown that it is crucial to prevent static
patterns as easy-to-reach local minima for the network, which we avoid with the proposed a mingling
loss term. Our super-resolution results above demonstrate that our approach takes an important first
step towards flexible deep learning methods for dynamic point clouds. Due to the growing popularity
and ubiquity of scanning devices, there are numerous highly interesting avenues for future work,
from processing sequences of 3D scans to Lagrangian physics simulations.
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Tranquil Clouds: Neural Networks for Learning Temporally Co-
herent Features in Point Clouds, Supplemental Material

A TRAINING AND EVALUATION MODALITIES

Data Generation We employ a physical simulation to generate our input and output pairs for
training. This has the advantage that it leads a large variety of complex motions, and gives full
control of the generation process. More specifically, we employ the IISPH (Ihmsen et al., 2014)
algorithm, a form of Lagrangian fluid simulator that efficiently generates incompressible liquid
volumes. These simulations also have the advantage that they inherently control the density of the
point sampling thanks to their volume conserving properties. In order to generate input pairs for
training, we randomly sample regions near the surface and extract points with a given radius around a
central point. This represents the high-resolution target. To compute the low-resolution input, we
downsample the points with a Poisson-disk sampling to compute a point set with the desired larger
spacing. In order to prevent aliasing from features below the coarse resolution, we perform a pass of
surface fairing and smoothing before downsampling. Due to the large number of patches that can be
extracted from these simulations, we did not find it necessary to additionally augment the generated
data sets. Examples of the low- and high-resolution pairs are shown in the supplemental material.

Below we will demonstrate that models trained with this data can be flexibly applied to moving
surface data as well as new liquid configurations. The surface data is generated from animated
triangle meshes that were resampled with bicubic interpolation in order to match a chosen average
per-point area. This pattern was generated once and then propagated over time with the animation.
When applying our method to new liquid simulations, we do not perform any downsampling, but
rather use all points of a low-resolution simulation directly, as a volumetric re-sampling over time is
typically error prone, and gives incoherent low resolution inputs.

Given a moving point cloud, we decompose it into temporally coherent patches in the following
manner: We start by sampling points via a Poisson-disk sampling in a narrow band around the surface,
e.g., based on a signed distance function computed from the input cloud. These points will persist as
patch centers over time, unless they move too close to others, or too far away from the surface, which
triggers their deletion. In addition, we perform several iterations for every new frame to sample new
patches for points in the input cloud that are outside all existing patches. Note that this resampling of
patches over time happens instantaneously in our implementation. While a temporal fading could
easily be added, we have opted for employing transitions without fading, in order to show as much of
the patch content as possible.

Network Architecture and Training Our architecture heavily relies on a form of hierarchical
point-based convolutions. I.e., the network extracts features for a subset of the points and their nearest
neighbors. For the point convolution, we first select a given number of group centers that are evenly
distributed points from a given input cloud. For each group center, we then search for a certain
number of points within a chosen radius (a fraction of the [-1,1] range). This motivates our choice
for a coordinate far outside the regular range for the padded points from Sec. 3.2. They are too far
away from all groups by construction, so they are filtered out without any additional overhead. In
this way, both feature extraction and grouping operations work flexibly with the varying input sizes.
Each group is then processed by a PointNet-like sub-structure (Qi Charles et al., 2017), yielding one
feature vector per group.

The result is a set of feature vectors and the associated group position, which can be interpreted
as a new point cloud to repeatedly apply a point convolution. In this way, the network extracts
increasingly abstract and global features. The last set of features is then interpolated back to the
original points of the input. Afterwards a sub-pixel convolution layer is used to scale up the point
cloud extended with features and finally the final position vectors are generated with the help of two
additional shared, fully connected layers. While we keep the core network architecture unmodified to
allow for comparisons with previous work, an important distinction of our approach is the input and
output masking, as described in Sec. 3.2.

Our point data was generated with a mean point spacing, i.e., Poisson disk radius, of 0.5 units. For the
2D tests, an upscaling factor of r = 9 was used. For this purpose, patches with a diameter of 5 were
extracted from the low-resolution data and patches with a diameter of 15 from the high-resolution
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data. We used the thresholds kmax = 100 and nmax = 900. For the loss, we used γ = 10, µ = 10,
and ν = 0.001. The network was trained with 5 epochs for a data set with 185k pairs, and a batch
size of 16, the learning rate was 0.001 with a decay of 0.003. For the 3D results below, the scaling
factor r was set to 8. The diameter of the patches was 6 for the low-resolution data and 12 for the
high-resolution data, with kmax = 1280 and nmax = 10240. The loss parameters were γ = µ = 5,
with ν = 0.001. Learning rate and decay were the same for training, but instead we used 10 epochs
with 54k patches in 3D, and a batch size of 4.

B NETWORK ARCHITECTURE DETAILS

The input feature vector is processed in the first part of our network, which consists of four
point convolutions. We use (ng, rg, [l1, ..., ld]) to represent a level with ng groups of radius rg
and [l1, ..., ld] the d fully connected layers with the width li(i = 1, ..., d). The parameters we
use are (kmax, 0.25, [32, 32, 64]), (kmax/2, 0.5, [64, 64, 128]), (kmax/4, 0.6, [128, 128, 256]) and
(kmax/8, 0.7, [256, 256, 512]). We then use interpolation layers to distribute the features of each
convolution level among the input points. In this step, we reduce the output of each convolution layer
with one shared, fully-connected layer per level, to a size of 64 and then distribute the features to all
points of the input point cloud depending on their position. This extends the points of our original
point cloud with 256 features. Fig. 10 shows a visual overview of the data flow in our network.

Afterwards, we process the data in r separate branches consisting of two shared, fully interconnected
layers with 256 and 128 nodes. The output is then processed with two shared fully connected layers
of 64 and 3 nodes. Finally, we add our resulting data to the input positions that have been repeated r
times. This provides an additional skip connection which leads to slightly more stable results. All
convolution layers and fully interconnected layers use a tanh() activation function.

For the input feature vector, we make use of additional data fields in conjunction with the point
positions. Our network also accepts additional features such as velocity, density and pressure of the
SPH simulations used for data generation. For inputs from other sources, those values could be easily
computed with suitable SPH interpolation kernels. In practice, we use position, velocity and pressure
fields. Whereas the first two are important (as mentioned in Sec. 3.1), the pressure fields turned out to
have negligible influence.

C FREQUENCY EVALUATION OF LATENT SPACE

In this section we give details for the frequency evaluation of Sec. 4. In order to measure the stability
of the latent space against temporal changes, we evaluated the latent space of our network with and
without temporal loss, once for 100 ordered patch sequences and once for 100 un-ordered ones. The
central latent space of our network consists of the features generated by the point-convolution layers
in the first part of the network and is 256 dimensional (see Fig. 10). To obtain information about its
general behavior, we average the latent space components over all 100 patch sequences, subtract the
mean, and normalize the resulting vector w.r.t. maximum value for each data set. The result is a time
sequence of scalar values representing the mean deviations of the latent space. The Fourier transform
of these vectors f̃ , are shown in Fig. 8, and were used to compute the weighted frequency content∫
x
x · f̃(x)dx. Here, large values indicate strong temporal changes of the latent space dimensions.

The resulting values are given in the main document, and highlight the stability of the latent space
learned by our method.

D TRAINING DATA AND GRAPHS

Two examples with ground truth points and down-sampled input versions are shown in Fig. 9.

Additionally, Fig. 11 shows loss graphs for the different versions shown in the main text: 2D previous
work, our full algorithm in 2D, as well as both cases for 3D. The mingling loss LM is only shown as
reference for the previous work versions, but indicates the strong halo-like patterns forming for the
architectures based on previous work.
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a)

b)

Figure 9: Examples from our synthetic data generation process. In (a,b) each a high resolution reference frame
is shown in purple, and in green the down-sampled low resolution frames generated from it. The training data is
generated by sampled patches from these volumes.
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Figure 11: Convergence plots for the training runs of our different 2D and 3D versions. The combined loss only
illustrates convergence behavior for each method separately, as weights and terms differ across the four variants.
LM for previous work is not minimized, and only given for reference.
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