Under review as a conference paper at ICLR 2020

PHYSICS-AS-INVERSE-GRAPHICS:
UNSUPERVISED PHYSICAL PARAMETER
ESTIMATION FROM VIDEO

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a model that is able to perform unsupervised physical parameter esti-
mation of systems from video, where the differential equations governing the scene
dynamics are known, but labeled states or objects are not available. Existing physi-
cal scene understanding methods require either object state supervision, or do not
integrate with differentiable physics to learn interpretable system parameters and
states. We address this problem through a physics-as-inverse-graphics approach
that brings together vision-as-inverse-graphics and differentiable physics engines,
enabling objects and explicit state and velocity representations to be discovered.
This framework allows us to perform long term extrapolative video prediction,
as well as vision-based model-predictive control. Our approach significantly out-
performs related unsupervised methods in long-term future frame prediction of
systems with interacting objects (such as ball-spring or 3-body gravitational sys-
tems), due to its ability to build dynamics into the model as an inductive bias. We
further show the value of this tight vision-physics integration by demonstrating
data-efficient learning of vision-actuated model-based control for a pendulum sys-
tem. We also show that the controller’s interpretability provides unique capabilities
in goal-driven control and physical reasoning for zero-data adaptation.

1 INTRODUCTION

System identification or physical parameter estimation is commonly required for control or state
estimation for physical modelling, and typically relies on dedicated sensing equipment and carefully
constructed experiments. Current machine learning approaches to physical modeling from video
either require training by supervised regression from video to object coordinates before estimating
explicit physics (Watters et al., [2017; Wu et al.| 2017b; |[Belbute-Peres et al., 2018)), or are able to
discover and segment objects from video in an unsupervised manner, but do not naturally integrate
with a physics engine for long-term predictions or generation of interpretable locations and physical
parameters for physical reasoning (Xu et al., 2019} jvan Steenkiste et al., [2018)). In this work, we
bridge the gap between unsupervised discovery of objects from video and learning the physical
dynamics of a system, by learning unknown physical parameters and explicit trajectory coordinates.

Our approach, called physics-as-inverse-graphics, solves the physical modeling problem via a novel
vision-as-inverse-graphics encoder-decoder system that can render and de-render image components
using Spatial Transformers (ST) (Jaderberg et al., |2015) in a way that makes it possible for the latent
representation to generate disentangled interpretable states (position/velocity). These can be used
directly by a differentiable physics engine (Degrave et al., 2016; [Belbute-Peres et al.,2018)) to learn
the parameters of a scene where the family of differential equations governing the system are known
(e.g. objects connected by a spring), but the corresponding parameters are not (e.g. spring constant).
This allows us to to identify physical parameters and learn vision components of the model jointly in
an end-to-end fashion. Our contribution is a solution to unsupervised learning of physical parameters
from video, without having access to ground-truth appearance, position or velocities of the objects, a
task that had so far remained unsolved (Wu et al., 2015 |Belbute-Peres et al., 2018)).

In addition to showing that our model can learn physical parameters without object or state supervision
(a task with intrinsic scientific interest in and of itself), we show that incorporating dynamics priors

Under review as a conference paper at ICLR 2020

in the form of known physical equations of motion with learnable parameters together with learnable
vision and graphics can improve model performance in two challenging tasks: long term video
prediction and visual model predictive control. We first evaluate physical parameter estimation
accuracy and future video frame prediction on 4 datasets with different non-linear interactions and
visual difficulty. We then demonstrate the value of our method by applying it for data-efficient
learning of vision-based control of an under-actuated pendulum. Notably our unique ability to extract
interpretable states and parameters from pixels without supervision enables end-to-end vision-based
control to exploit goal-paramaterized policies and physical reasoning for zero-shot adaptation.

2 RELATED WORK

The ability to build inductive bias into models through structure is a key factor behind the success
of modern neural architectures. Convolutional operations capture spatial correlations (Fukushimal
1980) in images, recurrency allows for temporal reasoning (Hochreiter & Schmidhuber,|[1997), and
spatial transformers (Jaderberg et al., 2015) provide spatial invariance in learning. However, many
aspects of common data generation processes are not yet considered by these simple inductive
biases. Importantly, they typically ignore the physical interactions underpinning data generation. For
example, it is often the case that the underlying physics of a dynamic visual scene is known, even if
specific parameters and objects are not. Incorporation of this information would be beneficial for
learning, predicting the future of the visual scene, or control. Physics-as-inverse graphics introduces
a framework that allows such high-level physical interaction knowledge to be incorporated into
learning, even when ground-truth object appearance, positions and velocities are not available.

In recent years there has been increased interest in physical scene understanding from video (Fragki{
adaki et al., 2016} |[Finn et al., 2016 |Fraccaro et al., [2017; |Chang et al.| 2017; Zheng et al.| 2018
Janner et al.| [2019). In order to learn explicit physical dynamics from video our system must discover
and model the objects in a scene, having position as an explicit latent variable. Here we build on the
long literature of neural vision-as-inverse-graphics (Hinton et al., [2011}; |Kulkarni et al., 2015} Huang
& Murphy, 2015; [Ellis et al., 2018} Romaszko et al.| 2017; Wu et al.l 2017a), particularly on the use
of spatial transformers (ST) for rendering (Eslami et al.} 2016; |Rezende et al., 2016;|Zhu et al., 2018)).

There are several models that assume knowledge of the family of equations governing system dynam-
ics, but where the individual objects are either pre-segmented or their ground-truth positions/velocities
are known (Stewart & Ermon, |2017; Wu et al.| 2017b; Belbute-Peres et al.,|2018)). In terms of learning
physical parameters, our work is directly inspired by the Galileo model and Physics 101 dataset (Wu
et al.| 2015} [2016), which fits the dynamics equations to a scene with interacting objects. However,
the Galileo model makes use of custom trackers which estimate the position and velocity of each
object of interest, and is incapable of end-to-end learning from video, thus bypasses the difficulty of
recognizing and tracking objects from video using a neural system. To the best of our knowledge, our
model is the first to offer end-to-end unsupervised physical parameter and state estimation.

Within the differentiable physics literature (Degrave et al.| | 2016]), Belbute-Peres et al.|(2018)) observed
that a multi-layer perceptron (MLP) encoder-decoder architecture with a physics engine was not able
to learn without supervising the physics engine’s output with position/velocity labels (c.f. Fig. 4 in
Belbute-Peres et al.| (2018))). While in their case 2% labeled data is enough to allow learning, the
transition to no labels causes the model to not learn at all. The key contribution of our work is the
incorporation of vision-as-inverse-graphics with physics, which makes the transition possible.

Another related area of increasing interest is unsupervised discovery of objects and/or dynamics
from video (Xu et al.l |2019; |van Steenkiste et al., 2018 |Greft et al., 2019; Burgess et al., [2019).
Though powerful, such models do not typically use interpretable latent representations that can be
directly used by a physics engine, reasoned about for physical problem solving, or that are of explicit
interest to model users. For example, Kosiorek et al.| (2018)) and [Hsieh et al.| (2018)) use ST’s to
locate/place objects in a scene and predict their motion, but this work differs from ours in that our
coordinate-consistent design obtains explicit cartesian, angular or scale coordinates, allowing us to
feed state vectors directly into a differentiable physics engine. Under a similar motivation as our
work, but without an inverse-graphics approach, Ehrhardt et al.|(2018)) developed an unsupervised
model to obtain consistent object locations. However, this only applies to cartesian coordinates, not
angles or scale.

Under review as a conference paper at ICLR 2020

t3

~
@

Encoder

e

Decoder

\
—

ty
Physics
: U-Net
engine

action action action

Localization
network

Velocity

estimator p=(0y) Coordinate-Consistent Decoder

Content

Concat

Encoder .
o E
I i N Mask
0 — ¢ e £
Softmax
to t, t,

Figure 1: Left: High-level view of our architecture. The encoder (top-right) estimates the position
of IV objects in each input frame. These are passed to the velocity estimator which estimates objects’
velocities at the last input frame. The positions and velocities of the last input frame are passed
as initial conditions to the physics engine. At every time-step, the physics engine outputs a set of
positions, which are used by the decoder (bottom-right) to output a predicted image. If the system is
actuated, an input action is passed to the physics engine at every time-step. See Section 3 for detailed
descriptions of the encoder and decoder architectures.

Output
image

-\ |
I
~r
g ||

Despite recent interest in model-free reinforcement learning, model-based control systems have re-
peatedly shown to be more robust and sample efficient (Mania et al., | 2018}; [Deisenroth & Rasmussen)
2011). Hafner et al.|(2019)) learn a latent dynamics model (PlaNet) that allows for planning from
pixels, which is significantly more sample efficient than model-free learning strategies A3C (Mnih
et al., 2016) and D4PG (Barth-Maron et al., 2018)). However, when used for control, there is often a
desire for visually grounded controllers operating under known dynamics, as these are verifiable and
interpretable (Burke et al.| [2019), and provide transferability and generality. However, system identi-
fication is challenging in vision-based control settings. [Byravan et al.|(2018) use supervised learning
to segment objects, controlling these using known rigid body dynamics. [Penkov & Ramamoorthy
(2019) learn feedforward models with REINFORCE (Williams, |1992) to predict physical states used
by a known controller and dynamical model, but this is extremely sample inefficient. In contrast, we
learn parameter and state estimation modules jointly to perform unsupervised system identification
from pixels, enabling data-efficient vision-actuated model-based control.

3 LEARNING PHYSICAL PARAMETERS FROM VIDEO VIA INVERSE GRAPHICS

In order to learn explicit physics from video, several components have to be in place. First, the
model must be able to learn to identify and represent the objects in an image. In order to perform
dynamics prediction with a physics engine, the position and velocity of the object must be represented
as explicit latent states (whereas appearance can be represented through some latent vector or, in our
case, as a set of learned object templates). Our sequence-to-sequence video prediction architecture
consists of 4 modules trained jointly: an encoder, a velocity estimator, a differentiable physics engine,
and a graphics decoder. The architecture is shown in Figure[T]

Encoder The encoder net takes a single frame I; as input and outputs a vector p;, € RV*P
corresponding to the D-dimensional coordinates of each of IV objects in the scene, p; = [p}, ..., pi¥].
For example, when modelling position in 2D space we have D = 2 and p}" = [z, y]}; when modelling
object angle we have D = 1 and p}* = [#}']. The encoder architecture is shown in Figure top right).

To extract each object’s coordinates we use a 2-stage localization approaclﬂ First, the input frame
is passed through a U-Net (Ronneberger et al., [2015) to produce N unnormalized masks. These

'Though any other architecture capable of effectively extracting object locations from images would work.

Under review as a conference paper at ICLR 2020

masks (plus a fixed background mask) are stacked and passed through a softmax to produce N + 1
masks, where each input pixel is softly assigned to a mask. The input image is then multiplied by
each mask, and a 2-layer location network produces coordinate outputs from each masked input
component. For a 2D system where the coordinates of each object are its (z, y) position (the polar
coordinates case is analogous) and the images have dimensions H x H, the encoder output represents
(z,y) coordinates with values in [0, H]. To do this, the activation of the encoder’s output layer is a
saturating non-linearity H/2 - tanh(-) + H/2.

Velocity estimator The velocity estimator computes the velocity vector of each object at the L-th
input frame given the coordinates produced by the encoder for this object at the first L input frames,
v} = f(pY, ..., p}). We implement this as a 3 hidden layer MLP with 100 tanh activated units.

Differentiable physics engine The physics engine contains the differential equations governing the
system, with unknown physical parameters to be learned — such as spring constants, gravity, mass,
etc. Given initial positions and velocities produced by the encoder and velocity estimator, the physics
engine rolls out the objects’ trajectories. In this work we use a simple physics engine with Euler
integration, where py, v; is computed from p;_1, v;_1 by repeating for i € [1..M]:
At At

Py = Pygit + v Vit 5 Virg T Vipich + a F(thr%’thr%;e) , (D
where At is the integration step, ¢ are the physical parameters and F is the force applied to each
object, according to the equations in Appendix A. We use M = 5 in all experiments. In principle,
more complex physics engines could be used (Chen et al., |2018}; |Belbute-Peres et al., |2018)).

Coordinate-Consistent Decoder The decoder takes as input the positions given by the encoder or

physics engine, and outputs a predicted image I;. The decoder is the most critical part of this system,
and is what allows the encoder, velocity estimator and physics engine to train correctly in a fully
unsupervised manner. We therefore describe its design and motivation in greater detail.

While an encoder with outputs in the range [0, H| can represent coordinates in pixel space, it does not
mean that the decoder will learn to correctly associate an input vector (x, y) with an object located at
pixel (x,y). If the decoder is unconstrained, like a standard MLP, it can very easily learn erroneous,
non-linear representations of this Cartesian space. For example, given two different inputs, (x1,y1)
and (21, y2), with y; # yo, the decoder may render those two objects at different horizontal positions
in the image. While having a correct Cartesian coordinate representation is not strictly necessary
to allow physical parameters of the physics engine to be learned from video, it is critical to ensure
correct future predictions. This is because the relationship between position vector and pixel space
position must be fixed: if the position vector changes by (Ax, Ay), the object’s position in the output
image must change by (Ax, Ay). This is the key concept that allows us to improve on Belbute-Peres
et al.| (2018)), in order to learn an encoder, decoder and physics engine without state labels.

In order to impose a correct latent-coordinate to pixel-coordinate correspondence, we use spatial
transformers (ST) with inverse parameters as the decoder’s writing attention mechanism. We want
transformer parameters w to be such that a decoder input of py" = [z, y]}’, places the center of the
writing attention window at (z,y) in the image, or that a decoder input of p}! = 6} rotates the
attention window by 6. In the original ST formulation (Jaderberg et al.,[2015)), the matrix w represents
the affine transformation applied to the oufput image to obtain the source image. This means that the
elements of w in Eq. 1 of Jaderberg et al.[{(2015)) do not directly represent translation, scale or angle of
the writing attention window. To achieve this representation, we use a ST with inverse transformation
parameters. For a general affine transformation with translation (x, y), angle 6 and scale s, we want
to modify the source image coordinates according to:

Zo s-cosf s-sinf x Ts
<y0> = <—s -sinf s-cosf y) <y5> @)
1 0 0 1 1

This transformation can be obtained with a ST by inverting @):

T 1 cosf —sinf —xzcosf+ ysinb To
<y5> = - <sin0 cosf —xsinf — ycos 9) <yo> 3)
1 S\ 0 0 s 1

Therefore, to obtain a decoder with coordinate-consistent outputs, we simply use a ST with parameters
w as given in (3]

Under review as a conference paper at ICLR 2020

Input Interpolation Extrapolation
True seq.

Physics+
InverseGraphics
(Ours)

IN+
InverseGraphics

DDPAE

VideoLSTM

HEEEE
HEREEN
HEEEE
e[
HEEEN
ENENN
ENEEN

t=12 t=16

H
Il
N
S
-
Il
w
N

t=36 t=40

Lb
BB
CBL

True seq.

I

Physics+
InverseGraphics
(Ours)

bil'b
BATAE][]

'}_d iL.\

P
=i
P
P

2 IR
2 AR

BZRZR

I

L
¥

VideoLSTM

|
/i

t=3 t=6

,_,
I
©

t=12

,_,
Il
=
v
~+
Il
=
(e}
-
I
N
[y
=
I
N
S
-
I
N
~
-
Il
w
=}

Figure 2: Future frame predictions for 3-ball gravitational system (top) and 2-digit spring system
(bottom). IN: Interaction Network. Only the combination of Physics and Inverse-Graphics maintains
object integrity and correct dynamics many steps into the future.

Each object is represented by a learnable content ¢ € [0, 1]#*#*¢ and mask m" € RH*Hx1
tensor, n = 1..N. Additionally, we learn background content chky ¢ [0, 1}H XHxC and mask
mbk9 ¢ RIXHX1 that do not undergo spatial transformation. One may think of the content as an
RGB image containing the texture of an object and the mask as a grayscale image containing the
shape and z-order of the object. In order to produce an output image, the content and mask are
transformed according to [¢}', m}'] = ST([c", m"],wpr) and the resulting logit masks are combined

. N - - bk . .)
via a softmax across channels, [mj}, ..., m, m,"?] = softmax(m}, ..., m", m®*9). The output

image is obtained by multiplying the output masks by the contents:

N
L=m™ o™+ moeép. 4)

n=1

The decoder architecture is shown in Fig. [T} bottom-right. The combined use of ST’s and masks
provides a natural way to model depth ordering, allowing us to capture occlusions between objects.

Auxiliary autoencoder loss Using a constrained decoder ensures the encoder and decoder produces
objects in consistent locations. However, it is hard to learn the full model from future frame prediction
alone, since the encoder’s training signal comes exclusively from the physics engine. To alleviate this
and quickly build a good encoder/decoder representation, we add a static per-frame autoencoder loss.

Training During training we use L input frames and predict the next T},,..q frames. Defining the
frames produced by the decoder via the physics engine as ff "4 and the frames produced by the
decoder using the output of the encoder directly as I3°, the total loss is:

L+Typrea L+Tprea
Liotal = Lyred + 0Lree = Y LI L) +a Y LIF 1) (5)
t=L+1 t=1

where « is a hyper-parameter. We use mean-squared error loss throughout. During testing we predict
an additional T¢,; frames in order to evaluate long term prediction beyond the length seen for training.

Under review as a conference paper at ICLR 2020

2-balls bouncing 2-balls spring 3-balls gravity
Extrapolation Extrapolation Extrapolation
5 1.0 3 1.0 3 10 -
Z E 2
2% 2% Zz038
508 \ £o08 =
£ £ £
n 0.7 wn 0.7 506
o [[
206 2 0.6 =
] © go4
2 = =
Eos 505 — &
0.2
0.4 0.4
0 5 10 15 20 25 0 5 10 15 20 25 0 10 20 30
Prediction step Prediction step Prediction step
—— Physics+InverseGraphics (Ours) IN+InverseGraphics —— DDPAE —— VideoLSTM

Figure 3: Frame prediction accuracy (SSI, higher is better) for the balls datasets. Left of the
green dashed line corresponds to the training range, 7},.q, right corresponds to extrapolation, T,4;.
We outperform Interaction Networks (IN) (Watters et al., [2017), DDPAE (Hsieh et al., |2018)) and
VideoLSTM (Srivastava et al., 2015)) in extrapolation due to incorporating explicit physics.

Dataset 2-balls spring 2-digits spring 3-balls gravity
Parameters (k, 1) (k, 1) g
Learned value (4.26, 6.17) (2.18, 12.24) 65.7
Ground-truth value (4.0, 6.0) (2.0, 12.0) 60.0

Table 1: Physical parameters learned from video are within 10% of true system parameters.

4 EXPERIMENTS

4.1 PHYSICAL PARAMETER LEARNING AND FUTURE PREDICTION

Setup To explore learning physical parameters and evaluate long-term prediction we train our model
on 4 different systems: two colored balls bouncing off the image edges; two colored balls connected
by a spring; and three colored balls with gravitational pull — all on a black background. To test greater
visual complexity, we also use 2 MNSIT digits connected by a spring, on a CIFAR background. We
train using values of (K, Tpred, Test) set to (3,7,20), (3,7,20), (3,7,20), (4,12,24) and (3,7, 20),
respectively. For the spring systems the physical parameters to be learned are the spring constant k
and equilibrium distance [, and for the gravitational system it is the gravity constant g. In all cases we
use objects with mass m = 1. We provide the exact equations of motion used in these systems and
other training details in Appendices A and B, respectively. All datasets consist of 5000 sequences for
training, 500 for validation, and 500 for testing. We use a learnable ST scale parameter initialized at
s = 2 in the balls datasets and s = 1 in the digits dataset. In these datasets we set 6 = 0.

Baselines We compare our model to 3 strong baselines: DDPAE (Hsieh et al., 2018 which
is a generative model that uses an inverse-graphics model with black-box dynamics; VideoLSTM
(Srivastava et al.,|2015)), which uses black-box encoding, decoding and dynamics; Interaction Network
+ Inverse-Graphics, which uses the same encoder and decoder as our Physics-as-Inverse-Graphics
model, but where the dynamics module is an Interaction Network (Battaglia et al.,|2016). The latter
model allows us to compare explicit physics with relational dynamics networks, in terms of their
ability to correctly capture object interaction

Results Table|l{shows that our model finds physical parameters close to the ground-truth values
used to generate the datasets, and Figure 4] shows the contents and masks learned by the decoder.
This highlights the fact that the proposed model can successfully perform unsupervised system
identification from pixels. Future frame predictions for two of the systems are shown in Figure 2}
and per-step Structural Similarity Index (SSI) E] of the models on the prediction and extrapolation
range are shown in Figure [3] While all models obtain low error in the prediction range (left of the

2Using the code provided by the authors.

3This baseline also serves as strong proxy for comparison with recent relational models (Watters et al.,[2017}
van Steenkiste et al., 2018), which due to their supervision method or input-output space cannot be directly
compared our model.

*We choose SSI over MSE as an evaluation metric as it is more robust to pixel-level differences and alignment.

Under review as a conference paper at ICLR 2020

green dashed line), our model is significantly better in the extrapolation range. Even many steps
into the future, our model’s predictions are still highly accurate, unlike those of other black-box
models (Figure [2). This shows the value of using an explicit physics model in systems where
the dynamics are non-linear yet well defined. Further rollouts are shown in Appendix C, and we
encourage the reader to watch the videos for all the datasets at https://sites.google.com/
view/physicsasinversegraphics.

This difference in performance is explained in part by the fact that in some of these systems the
harder-to-predict parts of the dynamics do not appear during training. For example, in the gravitational
system, whiplash from objects coming in close contact is seldom present in the first K + T},.cq Steps
given in the training set, but it happens frequently in the 7T ,; extrapolation steps evaluated during
testing. We do not consider this to be a failure of black-box model, but rather a consequence of the
generality vs specificity tradeoff: a model without a sufficiently strong inductive bias on the dynamics
is simply not able to correctly infer close distance dynamics from long distance dynamics.

) .-.) .. Train USing »Cpred ﬁl’eC

only Lpred 314 205

(>
.H. joint Lpreq + aLrec 1.39 0.63

separate gradients 28.1 0.22
black-box decoder, joint 30.9 2.87

Object 1 Object2 Object 3

Object 1 Object 2 Background

Figure 4: Contents and masks learned by Table 2: Test loss under different training conditions.
the decoder. Object masks: o(m). Ob- Separate gradients: Train encoder/decoder on Ly,
jects for rendering: o(m) ® c. Contents and velocity estimator and physics engine on Lpeq.
and masks correctly capture each part of the Black-box decoder, joint: Joint training using a
scene: colored balls, MNIST digits and CI- standard MLP network as the decoder. Only joint
FAR background. We omit the black back- training using our coordinate-consistent decoder
ground learned on the balls dataset. succeeds.

Ablation studies Since the encoder and decoder must discover the objects present in the image and
the corresponding locations, one might assume that the velocity estimator and physics engine could
be learned using only the prediction loss, and encoder/decoder using only the static autoencoder loss,
i.e., without joint training. In Table [2| we compare the performance of four variants on the 3-ball
gravity dataset: joint training using only the prediction loss; joint training using the prediction and
autoencoder losses; training the encoder/decoder on the autoencoder loss and the velocity estimator
and physics engine on the prediction loss; and joint training, but using an MLP black-box decoder.

We can see that only joint prediction and autoencoder loss obtain satisfactory performance, and that
the use of the proposed coordinate-consistent decoder is critical. The prediction loss is essential in
order for the model to learn encoders/decoders whose content and masks can be correctly used by the
physics engine. This can be understood by considering how object interaction influences the decoder.
In the gravitational system, the forces between objects depend on their distances, so if the objects
swap locations, the forces must be the same. If the content/mask learned for each object are centered
differently relative to its template center, rendering the objects at positions [z, y] and [w, 2], or [w, 2]
and [x, y] will produce different distances between these two objects in image space. This violates the
permutation invariance property of the system. Learning the encoder/decoder along with the velocity
estimator and physics engine on the prediction loss allows the encoder and decoder to learn locations
and contents/masks that satisfy the characteristics of the system and allows the physics to be learned
correctly. In Appendix D we perform further ablations on the decoder architecture and its ability to
correctly render objects in regions of the image not seen during training.

4.2 VISION-BASED MODEL-PREDICTIVE CONTROL (MPC)

Tasks One of the main applications of our method is to identify the (actuated) dynamical parameters
and states of a physical system from video, which enables vision-based planning and control. Here
we apply it to the pendulum from OpenAl Gym (Brockman et al.| [2016)) — one typically solved
from proprioceptive state, not pixels. For training we collect 5000 sequences of 14 frames with

random initialization (6, ~ Unif(—6, 6)) and actions (u; ~ Unif(—2,2)). The physical parameters

https://sites.google.com/view/physicsasinversegraphics
https://sites.google.com/view/physicsasinversegraphics

Under review as a conference paper at ICLR 2020

Data efficiecy Zero-shot transfer Goal angle
a0 0°
90 o
//' I -
80 . 80 315°) N
| g ® ..
70 \ / ours
o = \
H =70 \ / Oracle
%60 — ours = \ | \
o oracle 2 60 270°—I ﬁ,—,—,—,—‘rw
PlaNet \ 2025 30 35 40 45
50 -- DDPG (proprio) Ours \ Reward /
DDPG (VAE) 50 Oracle \ /
oy -- Random agent PlaNet \ », & /
40 AN ' s
1 2 3 5 7 19 29 05 06 0.7 08 1.0 1.2 14 16 18 2N s
Environment steps (x1000) Gravity multiplier ;s‘oi

N ST
NS AR RN RS RN R A
SHIN|INIEY VARNENIENIR VA IVAIVRIRVIEN
e 11 = Y e e Y [N A N I R A R 1

t=5 t=10 t=15 t=20 t=25 t=30 t=35 t=40 t=45 t=50 t=55 t=60 t=65 t=70 t=75 t=80 t=85 t=90 t=95 t=100 Goal

Ours

S
S
N
SN
2NN
SSn
NN

PlaNet

Figure 5: Top: Comparison between our model and PlaNet Hafner et al.| (2019) in terms of learning
sample efficiency (left). Explicit physics allows reasoning for zero-shot adaptation to domain-shift
in gravity (center) and goal-driven control to balance the pendulum in any position (right). DDPG
(VAE) corresponds to a DDPG agent trained on the latent space of an autoencoder (trained with 320k
images) after 80k steps. DDPG (proprio) corresponds to an agent trained from proprioception after
30k steps. Bottom: The first 3 rows show a zero-shot counterfactual episode with a gravity multiplier
of 1.4 for an oracle, our model and planet, with vertical as the target position (as trained). The last
row shows an episode using a goal image to infer the non-vertical goal state.

to learn are gravity g = 10.0 and actuation coefficient a = 1.0. We use K = 4 and T},,.cq = 10.
We use the trained MPC model as follows. At every step, the previous 4 frames are passed to the
encoder and velocity nets to estimate [0, 6;]. This is passed to the physics engine with learned
parameters g and a. We perform 100-step model-predictive control using the cross entropy method
(Rubinstein, |1997), exactly as described in|Hafner et al.| (2019), setting vertical position and zero
velocity as the goal. Baselines We compare our model to an oracle model, which has the true
physical parameters and access to the true pendulum position and velocity (not vision-based), as
well as a concurrent state-of-the art model-based RL method (PlaNet (Hafner et al., 2019)), and a
model-freeﬂ deep deterministic policy gradient (DDPG) agent (Lillicrap et al.,2016). To provide an
equivalent comparison to our model, we train PlaNet on random episodes.

Results In terms of system identification, our model recovers the correct gravity (g = 9.95) and
force coefficient (¢ = 0.99) values from vision alone, which is a prerequisite to perform correct
planning and control. Figure [3] (top-left) highlights the data efficiency of our method, which is
comparable to PlaNet, while being dramatically faster than DDPG from pixels. Importantly, the
interpretability of the explicit physics in our model provides some unique capabilities. We can
perform simple counter-factual physical reasoning such as ‘How should I adapt my control policy
if gravity was increased?’, which enables zero-shot adaptation to new environmental parameters.
Figure [5] (top-middle) shows that our model can exploit such reasoning to succeed immediately
over a wide range of gravities with no re-training. Similarly, while the typical inverted pendulum
goal is to balance the pendulum upright, interpretable physics means that this is only one point in a
space of potential goals. Figure [5](top-right) evaluates the goal-paramaterized control enabled by
our model. Any feasible target angle specified can be directly reached by the controller. There is
extrapolative generalisation across the space of goals even though only one goal (vertical) was seen
during training. Importantly, these last two capabilities are provided automatically by our model
due to its disentangled interpretable representation, but cannot be achieved without further adaptive
learning by alternatives that are reward-based (Mnih et al.,|2016) or rely on implicit physics (Hafner
et al.l[2019).

SDDPG, TRPO and PPO learned from pixels failed to solve the pendulum, highlighting the complexity of
the vision-based pendulum control task and brittleness of model-free reinforcement learning strategies.

Under review as a conference paper at ICLR 2020

5 CONCLUSION

Physics-as-inverse graphics provides a valuable mechanism to integrate inductive bias about physical
data generating processes into learning. This allows unsupervised object tracking and system identi-
fication, in addition to sample efficient, generalisable and flexible control. However, incorporating
this structure into lightly supervised deep learning models has proven challenging to date. We
introduced a model that accomplishes this, relying on a coordinate-consistent decoder that enables
image reconstruction from physics. We have shown that our model is able to perform accurate long
term prediction and that it can be used to learn the dynamics of an actuated system, allowing us to
perform vision-based model-predictive control.

REFERENCES

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Alistair
Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic policy
gradients. ICLR, 2018.

Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. Interac-
tion Networks for Learning about Objects, Relations and Physics. In NIPS, 2016.

Filipe De A Belbute-Peres, Kevin A Smith, Kelsey R Allen, Joshua B Tenenbaum, and J Zico Kolter.
End-to-End Differentiable Physics for Learning and Control. In NIPS, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAl Gym. 2016.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. MONet: Unsupervised Scene Decomposition and Representation. CoRR,
abs/1901.11390, 2019.

Michael Burke, Svetlin Penkov, and Subramanian Ramamoorthy. From explanation to synthesis:
Compositional program induction for learning from demonstration. Robotics: Science and Systems
(R:SS), 2019.

Arunkumar Byravan, Felix Leeb, Franziska Meier, and Dieter Fox. SE3-Pose-Nets: Structured Deep
Dynamics Models for Visuomotor Planning and Control. In /CRA, 2018.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A Compositional
Object-Based Approach to Learning Physical Dynamics. In /CLR, 2017.

Ricky T Q Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary
Differential Equations. In NIPS, 2018.

Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyftels. A Differentiable Physics Engine
for Deep Learning in Robotics. 11 2016.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In ICML, 2011.

Sebastien Ehrhardt, Aron Monszpart, Andrea Vedaldi, and Niloy Mitra. Unsupervised Intuitive
Physics from Visual Observations. CoRR, abs/1805.08095, 2018.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B. Tenenbaum. Learning to Infer
Graphics Programs from Hand-Drawn Images. In NIPS, 2018.

S M Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu, and Geoffrey E
Hinton. Attend, Infer, Repeat: Fast Scene Understanding with Generative Models. In NIPS, 2016.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised Learning for Physical Interaction
through Video Prediction. In NIPS, 2016.

Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A Disentangled Recognition and
Nonlinear Dynamics Model for Unsupervised Learning. In NIPS, 2017.

Under review as a conference paper at ICLR 2020

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning Visual Predictive
Models of Physics for Playing Billiards. In ICLR, 2016.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193-202, 1980.

Klaus Greff, Raphaél Lopez Kaufman, Rishabh Kabra, Nick Watters, Chris Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-Object Representation Learning
with Iterative Variational Inference. In ICML, 2019.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. ICML, 2019.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural Networks for Machine Learning
Lecture 6a: Overview of mini-batch gradient descent. Technical report, .

Geoffrey E. Hinton, Alex Krizhevsky, and Sida D. Wang. Transforming auto-encoders. In ICANN,
pp- 44-51, 2011.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Learning to
Decompose and Disentangle Representations for Video Prediction. In NIPS, 2018.

Jonathan Huang and Kevin Murphy. Efficient Inference in Occlusion-Aware Generative Models of
Images. CoRR, abs/1511.06362, 2015.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial Transformer
Networks. In NIPS, 2015.

Michael Janner, Sergey Levine, William T Freeman, Joshua B Tenenbaum, Chelsea Finn, and Jiajun
Wu. Reasoning About Physical Interactions with Object-Oriented Prediction and Planning. In
ICLR, 2019.

Adam R Kosiorek, Hyunjik Kim, Ingmar Posner, and Yee Whye Teh. Sequential Attend, Infer,
Repeat: Generative Modelling of Moving Objects. In NIPS, 2018.

Tejas D Kulkarni, Will Whitney, Pushmeet Kohli, and Joshua B Tenenbaum. Deep Convolutional
Inverse Graphics Network. In NIPS, 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. /CLR,
2016.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. NIPS, 2018.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, 2016.

Svetlin Penkov and Subramanian Ramamoorthy. Learning programmatically structured representa-
tions with perceptor gradients. /CLR, 2019.

Danilo J. Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and Daan Wierstra. One-Shot
Generalization in Deep Generative Models. In ICML, 2016.

Lukasz Romaszko, Christopher K I Williams, Pol Moreno, and Pushmeet Kohli. Vision-as-Inverse-
Graphics: Obtaining a Rich 3D Explanation of a Scene from a Single Image. In ICCV, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation. In MICCAI, 2015.

Reuven Y. Rubinstein. Optimization of computer simulation models with rare events. EJOR, 1997.

10

Under review as a conference paper at ICLR 2020

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised Learning of Video
Representations using LSTMs. In ICML, 2015.

Russell Stewart and Stefano Ermon. Label-Free Supervision of Neural Networks with Physics and
Domain Knowledge. In AAAI 2017.

Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jiirgen Schmidhuber. Relational Neural
Expectation Maximization: Unsupervised Discovery of Objects and their Interactions. In /CLR,
2018.

Nicholas Watters, Andrea Tacchetti, Théophane Weber, Razvan Pascanu, Peter Battaglia, and Daniel
Zoran. Visual Interaction Networks: Learning a Physics Simulator from Video. In NIPS, 2017.

Nicholas Watters, Loic Matthey, Christopher P. Burgess, and Alexander Lerchner. Spatial Broadcast
Decoder: A Simple Architecture for Learning Disentangled Representations in VAEs. 2019.

Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, 8:229-256, 1992.

Jiajun Wu, Ilker Yildirim, J.J. Lim, W.T. Freeman, and J.B. Tenenbaum. Galileo : Perceiving Physical
Object Properties by Integrating a Physics Engine with Deep Learning. In NIPS, 2015.

Jiajun Wu, Joseph J Lim, Hongyi Zhang, Joshua B Tenenbaum, and William T Freeman. Physics
101: Learning physical object properties from unlabeled videos. In BMVC, 2016.

Jiajun Wu, Mit Csail, Joshua B Tenenbaum, and Pushmeet Kohli. Neural Scene De-rendering. In
CVPR, 2017a.

Jiajun Wu, Erika Lu, Pushmeet Kohli, William T Freeman, and Joshua B Tenenbaum. Learning to
See Physics via Visual De-animation. In NIPS, 2017b.

Zhenjia Xu, Zhijian Liu, Chen Sun, Google Research, Kevin Murphy, William T Freeman, Joshua B
Tenenbaum, and Jiajun Wu. Unsupervised Discovery of Parts, Structure, and Dynamics. In ICLR,
2019.

David Zheng, Vinson Luo, Jiajun Wu, and Joshua B Tenenbaum. Unsupervised Learning of Latent
Physical Properties Using Perception-Prediction Networks. In UAI, 2018.

Guangxiang Zhu, Zhiao Huang, and Chongjie Zhang. Object-Oriented Dynamics Predictor. In NIPS,
2018.

A SYSTEM DESCRIPTIONS

In this section we describe the equations of motion used for each system.
2-balls and 2-digits spring The force applied on object ¢ by object j follows Hooke’s law:
= Y e .
Fij=—k(pi—p;) —l=—=. (6)
5J J |pi _ pj‘
Each step corresponds to an interval At = 0.3.
3-balls gravity The force applied on object 7 by object 5 follows Newton’s law of gravity:
5 Pi — Pj
Fj=—gmim; —— @)
2] J |p¢ _ pj|3
where the masses are set to 1. Each step corresponds to an interval At = 0.5.

Pendulum The pendulum follows the equations used by the OpenAl Gym environment:
= 3
F:figsin(9+7r)+3u (8)

where v is the action. Each step corresponds to an interval A¢ = 0.05. In the physics engine used by
the model we introduce an extra actuation coefficient a to be learned along with g:

ﬁ:—%gsin(@—&—w)—&—a-u 9

11

Under review as a conference paper at ICLR 2020

B TRAINING DETAILS AND HYPERPARAMETERS

For all datasets we use RMSProp Hinton et al.[|(2012) with an initial learning rate of 3 x 10~4. For
the balls and digits datasets we train for 500 epochs with a = 2, and divide the learning rate by 5 after
375 epochs. For the pendulum data we train for 1000 epochs using o = 3, but divide the learning
rate by 5 after 500 epochs. The image sizes are 32 x 32 for the 2-balls bouncing and spring, 36 x 36
for the 3-balls gravity, 64 x 64 for the 2-digits spring, and 64 x 64 grayscale for the pendulum.

The content and mask variables are the output of a neural network with a constant array of 1s as input
and 1 hidden layer with 200 units and tanh activation. We found this easier to train rather than having
the contents and masks as trainable variables themselves.

12

Under review as a conference paper at ICLR 2020

C ADDITIONAL ROLLOUTS FOR EACH DATASET

3-BALLS GRAVITY

True seq.

Physics+
InverseGraphics
(Ours)

IN+
InverseGraphics

DDPAE

VideoLSTM

True seq.

Physics+
InverseGraphics
(Ours)

IN+
InverseGraphics

DDPAE

VideoLSTM

2-BALLS SPRING

True seq.

Physics+
InverseGraphics
(Ours)

IN+
InverseGraphics

DDPAE

VideoLSTM

True seq.

Physics+
InverseGraphics
(Ours)

IN+
InverseGraphics

DDPAE

VideoLSTM

Input Interpolation Extrapolation

t=8 t=12 t=16 t=20 t=24 t=28 t=32 t=36 t=40

Interpolation Extrapolation

3 7
2
=3 »

,_,
[
SN

t=8 t=12 t=16 t=20 t=24 t=28 t=32 t=36 t=40

Interpolation Extrapolation

t=9 t=12 t=15 t=18 t=21 t=24 t=27 t=30

Interpolation Extrapolation

3 7 E
A w =1
-
I
()}

,,
[
w

t=6 t=9 t=12 t=15 t=18 t=21 t=24 t=27 t=30

Under review as a conference paper at ICLR 2020

2-BALLS BOUNCING

Interpolation Extrapolation

True seq.

Physics+
InverseGraphics
(Ours)

IN+
InverseGraphics

DDPAE

VideoLSTM

t=12 t=15 t=18 t=21 t=24 t=27 t=30
Interpolation Extrapolation
True seq.

Physics+
InverseGraphics
(Ours)

IN+
InverseGraphics

DDPAE

VideoLSTM

s 7 E
=1 w =1

-

I

()]

-

Il

[(=]

ﬂ
Il
w

t=6

-
[}
©o

t=12 t=15

,_,,
I
fusy
©

t=21 t=24 t=27 t=30

2-DIGITS SPRING

5
Bk
SIREISE

True seq.

5
.
3

TRV N

Physics+
InverseGraphics
(Ours)

B EY
T
'y

i

TpTps
)

i)

¥

L

SRS -puEsmy

L
|‘u
3
B2
H
m
H
H
L

VideoLSTM D
t=3 t=6 t=9 t=12 t=15 t=21 t=24 t=27 t=30
- - . | &
) ‘1 2 1 - 1 I
True seq. 'g‘j__ 3)_4 g LA —L_ki +| o “_4 + g + = —
Physics+) s 7z - ‘ -
InverseGraphics F2Z S8 T ’~ A L -- - N SN AN T | <LV

(Ours)

VideoLSTM

-
Il
w
-
Il
o
-+
Il
©
-
Il
un
N

t=15

-
Il

fury

=]

t=

N
[t

t=24 t=27 t=30

D EXTRAPOLATION TO UNSEEN IMAGE REGIONS

One limitation of standard fully-connected or deconvolutional decoders is the inability to decode
states corresponding to object poses or locations not seen during training. For example, if in the
training set no objects appear in the bottom half of the image, a fully-connected decoder will simply
learn to output zeros in that region. If in the test set objects move into the bottom half of the image,
the decoder lacks the inductive bias necessary to correctly extrapolate in image space.

To test this hypothesis, we replaced our model’s decoder with a Deconv and Spatial Broadcast
(Watters et al 2019) decoder, and compared them in a spatial extrapolation experiment. In this
experiments, objects never enter the bottom half of the image in the input and prediction range,
though in the extrapolation range in the test set objects move to this region of the scene. In the

14

Under review as a conference paper at ICLR 2020

rollouts shown in Fig. D] Broadcast performs better than Deconv, but they both fail to maintain object
integrity when the balls move to the bottom half of the image in the extrapolation steps, validating our
hypothesis that a black-box decoder has insufficient extrapolation ability. In contrast, our rendering
decoder is be able to correctly decode states not seen during training.

In the limit that our renderer corresponds to a full-blown graphics-engine, any pose, location, color,
etc. not seen during training can still be rendered correctly. This property gives models using
rendering decoders, such as ours and Hsieh et al.|(2018)), an important advantage in terms of data-
efficiency. We note, however, that in general this advantage does not apply to correctly inferring the
states from images whose objects are located in regions not seen during training. This is because
the encoders used are typically composed simply of convolutional and fully-connected layers, with
limited de-rendering inductive biases.

Input Interpolation Extrapolation

True Seq‘ - - -
Graphics (OurS) - - . . -

Broadcast
Deconv
t=3 t=6 t=9 t=12 t=15 t=18 t=21 t=24 t=27 t=30

Figure 6: Comparison between graphics decoder and two black-box decoders, trained on data where
objects only appear in the top half of the scene. Only the graphics decoder is able to correctly render
the objects in the bottom half of the scene at test time. Broadcast: spatial broadcast decoder (Watters
et al.| [2019); Deconv: standard deconvolutional network.

15

	Introduction
	Related Work
	Learning Physical Parameters from Video via Inverse Graphics
	Experiments
	Physical parameter learning and future prediction
	Vision-based model-predictive control (MPC)

	Conclusion
	System descriptions
	Training details and hyperparameters
	Additional rollouts for each dataset
	Extrapolation to unseen image regions

