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ABSTRACT

This paper aims to analyze knowledge consistency between pre-trained deep neu-
ral networks. We propose a generic definition for knowledge consistency between
neural networks at different fuzziness levels. A task-agnostic method is designed
to disentangle feature components, which represent the consistent knowledge,
from raw intermediate-layer features of each neural network. As a generic tool,
our method can be broadly used for different applications. In preliminary experi-
ments, we have used knowledge consistency as a tool to diagnose representations
of neural networks. Knowledge consistency provides new insights to explain the
success of existing deep-learning techniques, such as knowledge distillation and
network compression. More crucially, knowledge consistency can also be used
to refine pre-trained networks and boost performance. The code will be released
when the paper is accepted.

1 INTRODUCTION

Deep neural networks (DNNs) have shown promise in many tasks of artificial intelligence. However,
there is still lack of mathematical tools to diagnose representations in intermediate layers of a DNN,
e.g. discovering flaws in representations or identifying reliable and unreliable features. Traditional
evaluation of DNNs based on the testing accuracy cannot insightfully examine the correctness of
representations of a DNN due to leaked data or shifted datasets (Ribeiro et al., 2016).

Thus, in this paper, we propose a method to diagnose representations of intermediate layers of a
DNN from the perspective of knowledge consistency. I.e. given two DNNs pre-trained for the same
task, no matter whether the DNNs have the same or different architectures, we aim to examine
whether intermediate layers of the two DNNs encode similar visual concepts.

Here, we define the knowledge of an intermediate layer of the DNN as the set of visual concepts
that are encoded by features of an intermediate layer. This research focuses on the consistency of
“knowledge” between two DNNs, instead of comparing the similarity of “features.” In comparison,
the feature is referred to as the explicit output of a layer. For example, two DNNs extract totally
different features, but these features may be computed using similar sets of visual concepts, i.e.
encoding consistent knowledge (a toy example of knowledge consistency is shown in the footnote1).

Given the same training data, DNNs with different starting conditions usually converge to different
knowledge representations, which sometimes leads to the over-fitting problem (Bengio et al., 2014).
However, ideally, well learned DNNs with high robustness usually comprehensively encode various
types of discriminative features and keep a good balance between the completeness and the discrim-
ination power of features Wolchover (2017). Thus, the well learned DNNs are supposed to converge
to similar knowledge representations.

In general, we can understand knowledge consistency as follows. Let A and B denote two DNNs
learned for the same task. xA and xB denote two intermediate-layer features of A and B, respec-
tively. Features xA and xB can be decomposed as xA = x̂A + εA and xB = x̂B + εB , where neural

1As a toy example, we show how to revise a pre-trained DNN to generate different features but represent
consistent knowledge. The revised DNN shuffles feature elements in a layer xrev = Ax and shuffles the feature
back in the next convolutional layer x̂ = Wrev · xrev, where Wrev = WA−1; A is a permutation matrix. The
knowledge encoded in the shuffled feature is consistent with the knowledge in the original feature.
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Figure 1: Knowledge consistency. We define, disentangle, and quantify consistent features between
two DNNs. Consistent features disentangled from a filter are visualized at different orders (levels)
of fuzziness.

activations in feature components x̂A and x̂B are triggered by same image regions, thereby repre-
senting consistent knowledge. Accordingly, feature components x̂A and x̂B are termed consistent
features between A and B. Then, feature components εA and εB are independent with each oth-
er, and they are termed inconsistent features. We assume that consistent components x̂A, x̂B can
reconstruct each other, i.e. x̂A can be reconstructed from x̂B; vice versa.

In terms of applications, knowledge consistency between DNNs can be used to diagnose feature re-
liability of DNNs. Usually, consistent components (x̂A, x̂B) represent common and reliable knowl-
edge. Whereas, inconsistent components (εA, εB) mainly represent unreliable knowledge or noises.

Therefore, in this paper, we propose a generic definition for knowledge consistency between two
pre-trained DNNs, and we develop a method to disentangle consistent feature components from
features of intermediate layers in the DNNs. Our method is task-agnostic, i.e. (1) our method does
not require any annotations w.r.t. the task for evaluation; (2) our method can be broadly applied
to different DNNs as a supplement evaluation of DNNs besides the testing accuracy. Experimental
results supported our assumption, i.e. the disentangled consistent feature components are usually
more reliable for the task. Thus, our method of disentangling consistent features can be used to
boost performance.

Furthermore, to enable a solid research on knowledge consistency, we consider the following issues.

• Fuzzy consistency at different levels (orders): As shown in Fig. 1, the knowledge consistency
between DNNs needs to be defined at different fuzziness levels, because there is no strict knowledge
consistency between two DNNs. The level of fuzziness in knowledge consistency measures the
difficulty of transforming features of a DNN to features of another DNN. A low-level fuzziness
indicates that a DNN’s feature can directly reconstruct another DNN’s feature without complex
transformations.

• Disentanglement & quantification: We need to disentangle and quantify feature components,
which correspond to the consistent knowledge at different fuzziness levels, away from the chaotic
feature. Similarly, we also disentangle and quantify feature components that are inconsistent.

There does not exist a standard method to quantify the fuzziness of knowledge consistency (i.e. the
difficulty of feature transformation). For simplification, we use non-linear transformations during
feature reconstruction to approximate the fuzziness. To this end, we propose a model gk for feature
reconstruction. The subscript k indicates that gk contains a total of k cascaded non-linear activation
layers. x̂A = gk(xB) represents components, which are disentangled from the feature xA of the DNN
A and can be reconstructed by the DNN B’s feature xB . Then, we consider x̂A = gk(xB) to represent
consistent knowledge w.r.t. the DNN B at the k-th fuzziness level (or the k-th order). x̂A = gk(xB)
is also termed the k-order consistent feature of xA w.r.t. xB .

In this way, the most strict consistency is the 0-order consistency, i.e. x̂A = g0(xB) can be recon-
structed from xB via a linear transformation. In comparison, some neural activations in the 1-order
consistent feature x̂A = g1(xB) are not directly represented by xB and need to be estimated (or
guessed) via a non-linear transformation. The smaller k indicates the less guessing involved in the
reconstruction and the stricter consistency. Note that the number of non-linear operations k is just a
rough approximation of the difficulty of guessing, since there are no standard methods to quantify
guessing effects.
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Figure 2: Neural network for disentanglement of consistent features (K = 3).

More crucially, we implement the model g as a neural network, where k is set as the number of non-
linear layers in g. As shown in Fig. 2, g is designed to disentangle and quantify consistent feature
components of different orders between DNNs. Our method can be applied to different types of
DNNs and explain the essence of various deep-learning techniques.

1. Our method provides a new perspective for explaining the effectiveness of knowledge distillation.
I.e. we explore the essential reason why the born-again network (Furlanello et al., 2018) exhibits
superior performance.

2. Our method gives insightful analysis of network compression.

3. Our method can be used to diagnose and refine knowledge representations of pre-trained DNNs
and boost the performance without any additional annotations for supervision.

Contributions of this study can be summarized as follows. (1) In this study, we focus on a new prob-
lem, i.e. the knowledge consistency between DNNs. (2) We define the knowledge consistency and
propose a task-agnostic method to disentangle and quantify consistent features of different orders.
(3) Our method can be considered as a mathematical tool to analyze feature reliability of different
DNNs. (4) Our method provides a new perspective on explaining existing deep-learning techniques,
such as knowledge distillation and network compression.

2 RELATED WORK

In spite of the significant discrimination power of DNNs, black-box representations of DNNs have
been considered an Achilles’ heel for decades. In this section, we will limit our discussion to the lit-
erature of explaining or analyzing knowledge representations of DNNs. In general, previous studies
can be roughly classified into the following three types.

Explaining DNNs visually or semantically: Visualization of DNNs is the most direct way of
explaining knowledge hidden inside a DNN, which include gradient-based visualization (Zeiler &
Fergus, 2014; Mahendran & Vedaldi, 2015) and inversion-based visualization (Dosovitskiy & Brox,
2016). (Zhou et al., 2015) developed a method to compute the actual image-resolution receptive field
of neural activations in a feature map of a convolutional neural network (CNN), which is smaller
than the theoretical receptive field based on the filter size. Based on the receptive field, six types
of semantics were defined to explain intermediate-layer features of CNNs, including objects, parts,
scenes, textures, materials, and colors (Bau et al., 2017; Zhou et al., 2018).

Beyond visualization, some methods diagnose a pre-trained CNN to obtain insight understanding
of CNN representations. Fong and Vedaldi (Fong & Vedaldi, 2018) analyzed how multiple filters
jointly represented a specific semantic concept. (Selvaraju et al., 2017), (Fong & Vedaldi, 2017),
and (Kindermans et al., 2018) estimated image regions that directly contributed the network output.
The LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017) assumed a linear relationship
between the input and output of a DNN to extract important input units.

Unlike previous studies visualizing visual appearance encoded in a DNN or extracting important
pixels, our method disentangles and quantifies the consistent components of features between two
DNNs. Consistent feature components of different orders can be explicitly visualized.

Learning explainable deep models: Compared to the post-hoc explanations of DNNs, some stud-
ies directly learn more meaningful CNN representations. Previous studies extracted scene seman-
tics (Zhou et al., 2015) and mined objects (Simon & Rodner, 2015) from intermediate layers. In
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the capsule net (Sabour et al., 2017), each output dimension of a capsule usually encoded a specific
meaning. (Zhang et al., 2018b) proposed to learn CNNs with disentangled intermediate-layer repre-
sentations. The infoGAN (Chen et al., 2016) and β-VAE (Higgins et al., 2017) learned interpretable
input codes for generative models.

Mathematical evaluation of the representation capacity: Formulating and evaluating the repre-
sentation capacity of DNNs is another emerging direction. (Novak et al., 2018) proposed generic
metrics for the sensitivity of network outputs with respect to parameters of neural networks. (Zhang
et al., 2017) discussed the relationship between the parameter number and the generalization ca-
pacity of deep neural networks. (Arpit et al., 2017) discussed the representation capacity of neural
networks, considering real training data and noises. (Yosinski et al., 2014) evaluated the transferabil-
ity of filters in intermediate layers. Network-attack methods (Koh & Liang, 2017; Szegedy et al.,
2014; Koh & Liang, 2017) can also be used to evaluate representation robustness by computing
adversarial samples. (Lakkaraju et al., 2017) discovered knowledge blind spots of the knowledge
encoded by a DNN via human-computer interaction. (Zhang et al., 2018a) discovered potential,
biased representations of a CNN due to the dataset bias. (Deutsch, 2018) learned the manifold of
network parameters to diagnose DNNs. Recently, the stiffness (Fort et al., 2019) was proposed to
evaluate the generalization of DNNs.

The information-bottleneck theory (Wolchover, 2017; Schwartz-Ziv & Tishby, 2017) provides a
generic metric to quantify the information contained in DNNs. The information-bottleneck theory
can be extended to evaluate the representation capacity of DNNs (Xu & Raginsky, 2017; Cheng
et al., 2018). (Achille & Soatto, 2018) further used the information-bottleneck theory to revise the
dropout layer in a DNN.

The analysis of representation similarity between DNNs is most highly related to our research, which
has been investigated in recent years (Montavon et al., 2011). Most previous studies (Kornblith et al.,
2019; Raghu et al., 2017; Morcos et al., 2018) compared representations via linear transformations,
which can be considered as 0-order knowledge consistency. In comparison, we focus on high-order
knowledge consistency. More crucially, our method can be used to refine network features and
explain the success of existing deep-learning techniques.

3 ALGORITHM

In this section, we will introduce the network architecture to disentangle feature components of
consistent knowledge at a certain fuzziness level, when we use the intermediate-layer feature x of a
DNN to reconstruct intermediate-layer feature x∗ of another DNN2. As shown in Fig. 2, the network
g with parameters θ has a recursive architecture with K + 1 blocks. The function of the k-th block is
given as follows.

h(k) = W (k)
[
x+ xhigher] , xhigher = p(k+1)ReLU

(
Σ

− 1
2

(k+1)h
(k+1)

)
, k = 0, 1, . . . ,K−1 (1)

The output feature is computed using both the raw input and the feature of the higher order h(k+1).
W (k) denotes a linear operation without a bias term. The last block is given as h(K) = W (K)x. This
linear operation can be implemented as either a layer in an MLP or a convolutional layer in a CNN.
Σ(k+1) = diag(σ2

1 , σ
2
2 , . . . , σ

2
n) is referred to a diagonal matrix for element-wise variance of h(k+1),

which is used to normalize the magnitude of neural activations. Because of the normalization, the
scalar value p(k+1) roughly controls the activation magnitude of h(k+1) w.r.t. h(k). h(0) = gθ(x)
corresponds to final output of the network.

In this way, the entire network can be separated into (K + 1) branches (see Fig. 2), where the k-th
branch (k ≤ K) contains a total of k non-linear layers. Note that the k1-order consistent knowledge
can also be represented by the network with k2-th branch, if k1 < k2.

In order to disentangle consistent features of different orders, the k-th branch is supposed to exclu-
sively encode the k-order consistent features without representing lower-order consistent features.

2Re-scaling the magnitude of all neural activations does not affect the knowledge encoded in the DNN.
Therefore, we normalize x and x∗ to zero mean and unit variance to remove the magnitude effect.
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Thus, we propose the following loss to guide the learning process.

Loss(θ) = ‖gθ(x)− x∗‖2 + λ

K∑
k=1

(
p(k)

)2

(2)

where x and x∗ denote intermediate-layer features of two pre-trained DNNs. The second term in
this loss penalizes neural activations from high-order branches, thereby forcing as much low-order
consistent knowledge as possible to be represented by low-order branches.

Furthermore, based on (K + 1) branches of the network, we can disentangle features of x∗ into
(K + 2) additive components.

x∗ = gθ(x) + x∆, gθ(x) = x(0) + x(1) + · · ·+ x(K) (3)

where x∆ = x∗ − gθ(x) indicates feature components that cannot be represented by x. x(k) denotes
feature components that are exclusively represented by the k-order branch.

Based on Equation (1), the signal-processing procedure for the k-th feature component can be rep-
resented as Convk → Normk → ReLUk → p(k) → Convk−1 → · · · → ReLU1 → p(1) → Conv0 (see
Fig. 2). Therefore, we can disentangle from Equation (1) all linear and non-linear operations along
the entire k-th branch as follows, and in this way, x(k) can be considered as the k-order consistent
feature component.

x(k) = W (0)

(
k∏

k′=1

p(k′)A(k′)Σ
− 1

2

(k′)W
(k′)

)
x (4)

where A(k′) = diag(a1, a2, . . . , aM ) is a diagonal matrix for binary information-passing states of an
ReLU layer (x ∈ RM ). Each element is given as am = 1(vm > 0), where v = Σ

− 1
2

(k′)h
(k′).

4 COMPARATIVE STUDIES

As a generic tool, knowledge consistency based on g can be used for different applications. In
order to demonstrate utilities of knowledge consistency, we designed various comparative studies,
including (1) diagnosing and debugging pre-trained DNNs, (2) evaluating the instability of learning
DNNs, (3) feature refinement of DNNs, (4) analyzing information discarding during the compres-
sion of DNNs, and (5) explaining effects of knowledge distillation in knowledge representations.

A total of five typical DNNs for image classification were used, i.e. the AlexNet (Krizhevsky
et al., 2012), the VGG-16 (Simonyan & Zisserman, 2015), and the ResNet-18, ResNet-34, ResNet-
50 (He et al., 2016). These DNNs were learned using three benchmark datasets, which included the
CUB200-2011 dataset (Wah et al., 2011), the Stanford Dogs dataset (Khosla et al., 2011), and the
Pascal VOC 2012 dataset (Everingham et al., 2015). Note that both training images and testing im-
ages were cropped using bounding boxes of objects. We set λ = 0.1 for all experiments, except for
feature reconstruction of AlexNet (we set λ = 8.0 for AlexNet features). It was because the shallow
model of the AlexNet usually had significant noisy features, which caused considerable inconsistent
components.

4.1 NETWORK DIAGNOSIS BASED ON KNOWLEDGE CONSISTENCY

The most direct application of knowledge consistency is to use a strong (well learned) DNN to diag-
nose representation flaws hidden in a weak DNN. This is of special values in real applications, e.g.
shallow (usually weak) DNNs are more suitable to be adopted to mobile devices than deep DNNs.
Let two DNNs be trained for the same task, and one DNN significantly outperforms the other DNN.
We assume that the strong DNN has encoded ideal knowledge representations of the target task. The
weak DNN may have the following two types of representation flaws.
• Unreliable features in the weak DNN are defined as feature components, which cannot be recon-
structed by features of the strong DNN. (see Appendix C for detailed discussions).
• Blind spots of the weak DNN are defined as feature components in the strong DNN, which are
inconsistent with features of the weak DNN. These feature components usually reflect blind spots
of the knowledge of the weak DNN (see Appendix C for detailed discussions).
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Figure 3: Unreliable components and blind spots of a weak DNN (AlexNet) w.r.t. a strong DNN
(ResNet-34). Please see Section 4.1 for definitions of “unreliable components” and “blind spots.”
(left) When we used features of the weak DNN to reconstruct features of the strong DNN, we
visualize raw features of the strong DNN, feature components that can be reconstructed, and blind
spots (x∆) disentangled from features of the strong DNN. The weak DNN mainly encoded the head
appearance and ignored others. (right) When we used features of the strong DNN to reconstruct
features of the weak DNN, we visualize raw features of the weak DNN, feature components that
can be reconstructed, and unreliable features (x∆) disentangled from features of the weak DNN.
Unreliable features of the weak DNN usually repesent noisy activations.

For implementation, we trained DNNs for fine-grained classification using the CUB200-2011
dataset (Wah et al., 2011) (without data augmentation). We considered the AlexNet (Krizhevsky
et al., 2012) as the weak DNN (56.97% top-1 accuracy), and took the ResNet-34 (He et al., 2016)
as the strong DNN (73.09% top-1 accuracy).

Please see Fig. 3. We diagnosed the output feature of the last convolutional layer in the AlexNet,
which is termed xA. Accordingly, we selected the last 14 × 14 × 256 feature map of the ResNet-34
(denoted by xB) for the computation of knowledge consistency, because xA and xB had similar map
sizes. We disentangled and visualized unreliable components from xA (i.e. inconsistent components
in xA). We also visualized components disentangled from xB (i.e. inconsistent components in xB),
which corresponded to blind spots of the weak DNN’s knowledge.

4.2 STABILITY OF LEARNING

The stability of learning DNNs is of considerable values in deep learning, i.e. examining whether or
not all DNNs represent the same knowledge, when people repeatedly learn multiple DNNs for the
same task. High knowledge consistency between DNNs usually indicates high learning stability.

More specifically, we trained two DNNs (A,B) with the same architecture for the same task.
Then, we disentangled inconsistent feature components (x∆

A , x
∆
B) from their features (xA, xB) of

a specific layer, respectively. The inconsistent feature x∆
A was quantified by the variance of

feature element through different units of x∆
A and through different input images V ar(x∆

A)
def
=

EI,i[(x∆
A,I,i − EI′,i′ [x∆

A,I′,i′ ])
2], where x∆

A,I,i denotes the i-th element of x∆
A given the image I. We

can use V ar(x∆
A)/V ar(xA) to measure the instability of learning DNNs A and B.

In experiments, we evaluated the instability of learning the AlexNet (Krizhevsky et al., 2012), the
VGG-16 (Simonyan & Zisserman, 2015), and the ResNet-34 (He et al., 2016). We considered the
following cases.

Case 1, learning DNNs from different initializations using the same training data: For each net-
work architecture, we trained multiple networks using the CUB200-2011 dataset (Wah et al., 2011).
The instability of learning DNNs was reported as the average of instability over all pairs of neural
networks.

Case 2, learning DNNs using different sets of training data: We randomly divided all training sam-
ples in the CUB200-2011 dataset (Wah et al., 2011) into two subsets, each containing 50% sam-
ples. For each network architecture, we trained two DNNs (A,B) for fine-grained classification
(without pre-training). The instability of learning DNNs was reported as [V ar(x∆

A)/V ar(xA) +
V ar(x∆

B)/V ar(xB)]/2.

Table 1 compares the instability of learning different DNNs. Table 2 reports the variance of con-
sistent components of different orders. We found that the learning of shallow layers in DNNs was
usually more stable than the learning of deep layers. The reason may be as follows. A DNN with
more layers usually can represent more complex visual patterns, thereby needing more training
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Learning DNNs from different initializations
conv4 @ AlexNet conv5 @ AlexNet conv4-3 @ VGG-16 conv5-3 @ VGG-16 last conv @ ResNet-34

0.086 0.116 0.124 0.196 0.776
Learning DNNs using different training data

conv4 @ AlexNet conv5 @ AlexNet conv4-3 @ VGG-16 conv5-3 @ VGG-16 last conv @ ResNet-34
0.089 0.155 0.121 0.198 0.275

Table 1: Instability of learning DNNs from different initializations and instability of learning DNNs
using different training data. Without a huge training set, networks with more layers (e.g. ResNet-
34) usually suffered more from the over-fitting problem. Training and testing errors are compared
in Appendix B to demonstrate the over-fitting problem.

conv4 @ AlexNet conv5 @ AlexNet conv4-3 @ VGG-16 conv5-3 @ VGG-16 last conv @ ResNet-34
V ar(x(0)) 105.80 424.67 1.06 0.88 0.66
V ar(x(1)) 10.51 73.73 0.07 0.03 0.10
V ar(x(2)) 1.92 43.69 0.02 0.004 0.03
V ar(x∆) 11.14 71.37 0.16 0.22 2.75

Table 2: Magnitudes of consistent features of different orders, when we train DNNs from different
initializations. Features in different layers have significantly different variance magnitudes. Most
neural activations of the feature belong to low-order consistent components.

samples. Without a huge training set (e.g. the ImageNet dataset (Krizhevsky et al., 2012)), a deep
network may be more likely to suffer from the over-fitting problem, i.e. DNNs with different initial
parameters may learn different knowledge representations.

4.3 FEATURE REFINEMENT BASED ON KNOWLEDGE CONSISTENCY

Knowledge consistency can also be used to refine intermediate-layer features of pre-trained DNNs.
Given multiple DNNs pre-trained for the same task, feature components, which are consistent with
various DNNs, usually represent common knowledge and are reliable. Whereas, inconsistent feature
components w.r.t. other DNNs usually correspond to unreliable knowledge or noises. In this way,
intermediate-layer features can be refined by removing inconsistent components and exclusively
using consistent components to accomplish the task.

More specifically, given two pre-trained DNNs, we use the feature of a certain layer in the first DNN
to reconstruct the corresponding feature of the second DNN. The reconstructed feature is given as
x̂. In this way, we can replace the feature of the second DNN with the reconstructed feature x̂, and
then use x̂ to learn subsequent layers in the second DNN to boost performance.

In experiments, we trained DNNs with various architectures for image classification, including the
VGG-16 (Simonyan & Zisserman, 2015), the ResNet-18, the ResNet-34, and the ResNet-50 (He
et al., 2016). We conducted the following two experiments, in which we used knowledge consistency
to refine DNN features.

Exp. 1, removing unreliable features (noises): For each specific network architecture, we trained
two DNNs using the CUB200-2011 dataset (Wah et al., 2011) with different parameter initializa-
tions. Consistent components were disentangled from the original feature of a DNN and then used
for image classification. As discussed in Section 4.1, consistent components can be considered as
refined features without noises. We used the refined features as input to finetune the pre-trained up-
per layers in the DNN B for classification. Table 3 reports the increase of the classification accuracy
by using the refined feature. The refined features slightly boosted the performance.

Fairness of comparisons: (1) To enable fair comparisons, we first trained gθ and then kept gθ un-
changed during the finetuning of classifiers, thereby fixing the refined features. Otherwise, allowing
gθ to change would be equivalent to adding more layers/parameters to DNN B for classification. We
needed to eliminate such effects for fair comparisons, which avoided the network from benefitting
from additional layers/parameters. (2) As baselines, we also further finetuned the corresponding
upper layers of DNNs A and B to evaluate their performance. Please see Appendix A for more
discussions about how we ensured the fairness.

Exp. 2, removing redundant features from pre-trained DNNs: A typical deep-learning method-
ology is to finetune a DNN for a specific task, where the DNN is pre-trained for multiple tasks
(including both the target and other tasks). This is quite common in deep learning, e.g. DNNs
pre-trained using the ImageNet dataset (Deng et al., 2009) are usually finetuned for various tasks.
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VGG-16 conv4-3 VGG-16 conv5-2 ResNet-18 ResNet-34 ResNet-50
Network A 43.15 34.74 31.05 29.98
Network B 42.89 35.00 30.46 31.15
x(0) 45.15 44.48 38.16 31.49 30.40
x(0) + x(1) 44.98 44.22 38.45 31.76 31.77
x(0) + x(1) + x(2) 45.06 44.32 38.23 31.96 31.84

Table 3: Classification accuracy by using the original feature and the refined feature. Features of
DNN A were used to reconstruct features of DNN B. For residual networks, we selected the last
feature map with a size of 14× 14 as the target for refinement. All DNNs were learned without data
augmentation or pre-training. The removal of effects of additional parameters in gθ is discussed in
Section 4.3–fairness of comparisons and Appendix A. Consistent components slightly boosted the
performance.

VGG-16 conv4-3 VGG-16 conv5-2
VOC-animal Mix-CUB Mix-Dogs VOC-animal Mix-CUB Mix-Dogs

Features from the network A 51.55 44.44 15.15 51.55 44.44 15.15
Features from the network B 50.80 45.93 15.19 50.80 45.93 15.19
x(0) + x(1) + x(2) 59.38 47.50 16.53 60.18 46.65 16.70

ResNet-18 ResNet-34
VOC-animal Mix-CUB Mix-Dogs VOC-animal Mix-CUB Mix-Dogs

Features from the network A 37.65 31.93 14.20 39.42 30.91 12.96
Features from the network B 37.22 32.02 14.28 35.95 27.74 12.46
x(0) + x(1) + x(2) 53.52 38.02 16.17 49.98 33.98 14.21

Table 4: Top-1 classification accuracy before and after removing redundant features from DNNs.
Original DNNs were learned from scratch without data augmentation. For residual networks, we
selected the last feature map with a size of 14× 14 as the target for feature refinement. The removal
of effects of additional parameters in gθ is discussed in Section 4.3–fairness of comparisons and
Appendix A. Consistent features significantly alleviated the over-fitting problem, thereby exhibiting
superior performance. Training and testing errors are compared in Appendix B to demonstrate the
over-fitting problem.

However, in this case, feature components pre-trained for other tasks are redundant for the target
task and will affect the further finetuning process.

Therefore, we conducted three new experiments, in which our method removed redundant features
w.r.t. the target task from the pre-trained DNN. In Experiment 2.1 (namely VOC-animal), let two
DNNs A and B be learned to classify 20 object classes in the Pascal VOC 2012 dataset (Everingham
et al., 2015). We were also given object images of six animal categories (bird, cat, cow, dog, horse,
sheep). We fixed parameters in DNNs A and B, and our goal was to use fixed DNNs A and B to
generate clean features for animal categories without redundant features.

Let xA and xB denote intermediate-layer features of DNNs A and B. Our method used xA to
reconstruct xB . Then, the reconstructed result gθ(xA) corresponded to reliable features for animals,
while inconsistent components x∆ indicated features of other categories. We used clean features
gθ(xA) to learn the animal classifier. gθ were fixed during the learning of the animal classifier to
enable a fair comparison. In comparison, the baseline method directly used either xA or xB to
finetune the pre-trained DNN to classify the six animal categories.

In Experiment 2.2 (termed Mix-CUB), two original DNNs were learned using both the CUB200-
2011 dataset (Wah et al., 2011) and the Stanford Dogs dataset (Khosla et al., 2011) to classify both
200 bird species and 120 dog species. Then, our method used bird images to disentangle feature
components for birds and then learned a new fine-grained classifier for birds. The baseline method
was implemented following the same setting as in VOC-animal. Experiment 2.3 (namely Mix-Dogs)
was similar to Mix-CUB. Our method disentangled dog features away from bird features to learn a
new dog classifier. In all above experiments, original DNNs were learned from scratch without data
augmentation. Table 4 compares the classification accuracy of different methods. It shows that our
method significantly alleviated the over-fitting problem and outperformed the baseline.

4.4 ANALYZING INFORMATION DISCARDING OF NETWORK COMPRESSION

Network compression is an emerging research direction in recent years. Knowledge consistency
between the compressed network and the original network can evaluate the discarding of knowledge
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Discarded feature components during compression

Accuracy
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Born-again networksConsistent components in the distillated DNN
Accuracy
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Figure 4: Effects of network compression and knowledge distillation. (left) We visualized the dis-
carded feature components when 93.3% parameters of the DNN were eliminated. We found that
the discarded components looked like trivial features and noises. In the curve figure, a low value
of V ar(x∆) indicates a lower information discarding during the compression, thereby exhibiting a
higher accuracy. (right) We visualized and quantified knowledge blind spots of born-again networks
in different generations. Nets in new generations usually had fewer blind spots than old nets.

during the compression process. I.e. people may visualize or analyze feature components in the
original network, which are not consistent with features in the compressed network, to represent the
discarded knowledge in the compressed network.

In experiments, we trained the VGG-16 using the CUB200-2011 dataset (Wah et al., 2011) for fine-
grained classification. Then, we compressed the VGG-16 using the method of (Han et al., 2016)
with different pruning thresholds. We used features of the compressed DNN to reconstruct features
of the original DNN. Then, inconsistent components disentangled from the original DNN usually
corresponded to the knowledge discarding during the compression process. Fig. 4(left) visualizes the
discarded feature components. Furthermore, we used V ar(x∆) (defined in Section 4.2) to quantify
the information discarding. Fig. 4 compares the decrease of accuracy with the discarding of feature
information.

4.5 EXPLAINING KNOWLEDGE DISTILLATION VIA KNOWLEDGE CONSISTENCY

As a generic tool, our method can also explain the success of knowledge distillation. In particu-
lar, (Furlanello et al., 2018) proposed a method to gradually refine a neural network via recursive
knowledge distillation. I.e. this method recursively distills the knowledge of the current net to a
new net with the same architecture and distilling the new net to an even newer net. The new(er)
net is termed a born-again neural network and learned using both the task loss and the distillation
loss. Surprisingly, such a recursive distillation process can substantially boost the performance of
the neural network in various experiments.

In general, the net in a new generation both inherits knowledge from the old net and learns new
knowledge from the data. The success of the born-again neural network can be explained as that
knowledge representations of networks are gradually enriched during the recursive distillation pro-
cess. To verify this assertion, in experiments, we trained the VGG-16 using the CUB200-2011
dataset (Wah et al., 2011) for fine-grained classification. We trained born-again neural networks of
another four generations3. We disentangled feature components in the newest DNN, which were not
consistent with an intermediate DNN. Inconsistent components were considered as blind spots of
knowledge representations of the intermediate DNN and were quantified by V ar(x∆). Fig. 4(right)
shows V ar(x∆) of DNNs in the 1st, 2nd, 3rd, and 4th generations. Inconsistent components were
gradually reduced after several generations.

5 CONCLUSION

In this paper, we have proposed a generic definition of knowledge consistency between intermediate-
layers of two DNNs. A task-agnostic method is developed to disentangle and quantify consistent
features of different orders from intermediate-layer features. Consistent feature components are
usually more reliable than inconsistent components for the task, so our method can be used to further
refine the pre-trained DNN without a need for additional supervision. As a mathematical tool,
knowledge consistency can also help explain existing deep-learning techniques, and experiments
have demonstrated the effectiveness of our method.

3Because (Furlanello et al., 2018) did not clarify the distillation loss, we applied the distillation loss
in (Hinton et al., 2014) following parameter settings τ = 1.0 in (Mishra & Marr, 2018), i.e. Loss =
Lossclassify + 0.5Lossdistill.
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A FAIRNESS OF EXPERIMENTS IN SECTION 4.3

In Section 4.3, we used knowledge consistency to refine intermediate-layer features of pre-trained
DNNs. Given multiple DNNs pre-trained for the same task, feature components, which are con-
sistent with various DNNs, usually represent common knowledge and are reliable. In this way,
intermediate-layer features can be refined by removing inconsistent components and exclusively
using consistent components to accomplish the task.

Both Experiment 1 and Experiment 2 followed the same procedure. I.e. we trained two DNNs A
andB for the same task. Then, we extracted consistent feature components g(xA) when we used the
DNN A’s feature to reconstruct the DNN B’s feature. We compared the classification performance
of the DNN A, the DNN B, and the classifier learned based on consistent features g(xA).

However, an issues of fairness may be raised, i.e. when we added the network g upon the DNN A,
this operation increased the depth of the network. Thus, the comparison between the revised DNN
and the original DNN A may be unfair.

In order to ensure a fair comparison, we applied following experimental settings.
• For the evaluation of DNNs A and B, both the DNNs were further refined using target training
samples in Experiments 1 and 2. • For the evaluation of our method, without using any annotations
of the target task, we first trained g(xA) to use xA to reconstruct xB and disentangle consistent
feature components. Then, we fixed all parameters of DNNs A, B, and g, and only used output
features of g(xA) to train a classifier, in order to test the discrimination power of output features of
g(xA).
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As shown in the above figure, for the evaluation of our method, first, we were not given any training
annotations for the target task. Without any prior knowledge of the target task, we used the pre-
trained DNNs (blue area in the above figure) to train the network g (red area in the above figure).
Then, we fixed parameters of DNNs in both red area and blue area in the above figure. Finally, we
received training samples of the target task, and used them to exclusively train the classifier (the blue
area in the above figure).

In short, the learning of the network g was independent with the target task, and parameters of A,
B, and g were not refine-tuned during the learning of the new classifier.

Therefore, comparisons in Tables 3 and 4 fairly reflects the discrimination power of raw features of
DNNs A and B and consistent features produced by g(xA).

B CLASSIFICATION ACCURACY TO PROVE THE OVER-FITTING PROBLEM

This section shows detailed classification accuracy of different models with different training meth-
ods to support the experiments in Section 4.2 (Table 5) and Section 4.3 (Table 6). These experimental
results demonstrate that the learned models suffered from the over-fitting problem.

As shown in Table 5 and Table 6, without sufficient data for training, networks with more layers
usually suffered more from the over-fitting problem. For example, the ResNet-34 in Table 5 does
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Training methods DNNs
Training acc. Testing acc.

Net A Net B Net A Net B

Different initialization

AlexNet 99.96 99.99 32.02 29.65

VGG-16 99.95 100.00 43.15 42.89

ResNet-34 100.00 100.00 31.05 30.46

Different training data

AlexNet 99.93 99.96 12.25 12.89

VGG-16 100.00 100.00 26.53 25.85

ResNet-34 100.00 100.00 26.65 27.80
Table 5: Top-1 classification accuracy of DNNs on CUB dataset from different initializations and
DNNs using different training data. The huge gap between the training error and testing error indi-
cate the over-fitting problem.

Datasets DNNs
Training acc. Testing acc.

Net A Net B Net A Net B

VOC-animal

VGG-16 99.99 99.98 51.55 50.8

ResNet-18 99.99 99.99 37.65 37.22

ResNet-34 99.99 99.99 39.42 35.95

Mix-CUB

VGG-16 99.95 99.96 44.44 45.93

ResNet-18 100.00 100.00 31.93 32.02

ResNet-34 100.00 100.00 30.91 27.74

Mix-Dogs

VGG-16 99.93 99.94 15.15 15.19

ResNet-18 100.00 100.00 14.20 14.28

ResNet-34 100.00 100.00 12.96 12.46
Table 6: Top-1 classification accuracy of DNNs on different datasets with different initializations.
The huge gap between the training error and testing error indicate the over-fitting problem.

not outperform the AlexNet significantly, if we train these DNNs with the CUB200-2011 dataset
from scratch without any data-augmentation.

C BLIND SPOTS AND UNRELIABLE FEATURES

By our assumption, strong DNNs can encode true knowledge, while there are more representation
flaws in weak DNNs. If we try to use the intermediate features of a weak DNN to reconstruct
intermediate features of a strong DNN, the strong DNN features cannot be perfectly reconstructed
due to the inherent blind spots of the weak DNN. On the other hand, when we use features of a
strong DNN to reconstruct a weak DNN’s features, the unreconstructed feature components in these
reconstructed features also exist. These unreconstructed parts are not modeled in the strong DNN,
and they are termed unreliable features by us.
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D VISUALIZATION OF CONSISTENT AND INCONSISTENT FEATURE
COMPONENTS

D.1 VISUALIZATION OF FEATURE COMPONENTS WHEN WE USED ALEXNET FEATURES TO
RECONSTRUCT RESNET-34 FEATURES

We used the feature of the top convolutional layer in the AlexNet to reconstruct the last 14×14×256
feature in the ResNet-34. We did not normalize feature components during the visualization, in order
to objectively show the magnitudes of consistent features of different orders. We can consider these
visualization results as a supplement to those in the main texts.

Target 
feature 𝑔 𝑥 0-order𝑥∆ 1-order 2-order

Target 
feature 𝑔 𝑥 0-order𝑥∆ 1-order 2-order
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Target 
feature 𝑔 𝑥 0-order𝑥∆ 1-order 2-order

D.2 VISUALIZATION OF FEATURE COMPONENTS WHEN WE USED VGG-16 FEATURES TO
RECONSTRUCT FEATURES OF ANOTHER VGG-16

We used the feature of the top convolutional layer in a VGG-16 to reconstruct the feature of the top
convolutional layer in another VGG-16. We normalized feature components during the visualiza-
tion.

Target 
feature 𝑔 𝑥 0-order𝑥∆ 1-order 2-order
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