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ABSTRACT

In this paper, we present a deep convolutional neural network (CNN) which per-
forms arbitrary resize operation on intermediate feature map resolution at stage-
level. Motivated by weight sharing mechanism in neural architecture search,
where a super-network is trained and sub-networks inherit the weights from the
super-network, we present a novel CNN approach. We construct a spatial super-
network which consists of multiple sub-networks, where each sub-network is a
single scale network that obtain a unique spatial configuration, and the convolu-
tional layers are shared across all sub-networks. Such network, named as Resiz-
able Neural Networks, are equivalent to training infinite single scale networks,
but has no extra computational cost. Moreover, we present a training algorithm
such that all sub-networks achieve better performance than individually trained
counterparts. On large-scale ImageNet classification, we demonstrate its effec-
tiveness on various modern network architectures such as MobileNet, ShuffleNet,
and ResNet.
To go even further, we present three variants of resizable networks: 1) Resizable as
Architecture Search (Resizable-NAS). On ImageNet, Resizable-NAS ResNet-50
attain 0.4% higher on accuracy and 44% smaller than the baseline model. 2) Re-
sizable as Data Augmentation (Resizable-Aug). While we use resizable networks
as a data augmentation technique, it obtains superior performance on ImageNet
classification, outperform AutoAugment by 1.2% with ResNet-50. 3) Adaptive
Resizable Network (Resizable-Adapt). We introduce the adaptive resizable net-
works as dynamic networks, which further improve the performance with less
computational cost via data-dependent inference.

1 INTRODUCTION

Scale is the fundamental component of the physical world, and it has been an active research topic
in the field of computer vision. The latest design of scales for the Convolutional Neural Networks
(CNN) fall into two categories: single scale networks and multi-scale networks. In single scale net-
works, such as ResNet (He et al. (2016)), only a fixed scale representation is learned from the feature
maps. Alternatively, in the multi-scale networks, e.g., image pyramid (Sermanet et al., 2013; Dalal
& Triggs, 2005)/feature pyramid (Ghiasi et al., 2019; Chen et al., 2017a)/filter pyramid structure
(Szegedy et al., 2015), features from different resolutions are fused in a network; thus the models
learn various type of scales from the objects. As a result, these architectures obtain state-of-the-art
performance on scale critical tasks, such as object detection (Lin et al. (2017)) and semantic seg-
mentation (Chen et al. (2017a)). It can be observed that both single scale networks and multi-scale
networks essentially perform representation learning on a predefined feature map scales. This nat-
ural and intuitive choice, despite their success on various computer vision tasks, limits the CNNs
to a constrained predefined scaling mechanism for dealing with scale variation problem ((He et al.,
2019)).

Our approach is motivated by the recent emergence of weight sharing approach on neural archi-
tecture search (NAS) (Pham et al. (2018); Bender et al. (2018); Guo et al. (2019)), where an
over-parameterized super-network is trained and sub-networks inherit the weights from the super-
network. Generally, there are a large number of architectural configurations within a super-network.

In this work, we propose a convolutional neural network with infinite single scale networks, named
as Resizable Neural Networks. It can be viewed as a spatial super-network that includes vast sub-
networks which varies in spatial configurations. Specifically, a resizable network contains multiple
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Figure 1: Resolution scaling. (a) is a baseline network example. (b) are conventional scaling on
input resolution. (c) is our proposed resizable networks. It resizes the feature map resolution by
a non-interger scaling ratio at the stage-level. Different spatial sub-networks are jointly trained in
a single network with shared convolution. The imaginary line represents the original feature map
resolution, and the full line represents the actual feature map resolution after resize operation.

sub-networks: each sub-network obtains a unique feature map scale. The resize operation for feature
map resolution is performed on the stage-level by a non-integer scaling ratio. These sub-networks,
called spatial sub-networks, are trained jointly in the resizable networks, and the weights of all
convolution layers are shared. Figure 1 gives an illustration of the resizable networks compared
with the baseline network and input resize only network. Note that the network with resized input
resolution is a special form of spatial sub-networks.

Using the approach of resizable networks, the network capacity can be significantly increased as an
exponential number of scales for input has been trained by the networks implicitly. Additionally,
we present a training algorithm to train the proposed resizable networks, which resolve the unfair
sampling issue as well as the discrepancy of batch normalization statistics between different spatial
sub-networks. With our proposed training algorithm, we can omit the process of retraining, which is
a standard procedure in weight sharing NAS, and obtain higher accuracy for all spatial sub-networks
than individually trained counterparts.

In this paper, we first validate the effectiveness of resizable neural networks compared with stand-
alone networks. We demonstrate superior performances of Resizable Neural Network on efficient
networks such as MobileNet V1, ShuffleNet V2 as well as deep networks, i.e., ResNet-50. The ex-
periments cover the range of modern neural architecture setting such as non-residual block, residual
bottleneck, depth-wise convolution, and deep networks.

Variants of Resizable Neural Network. We further demonstrate three resizable network variants:
resizable as architecture search (Resizable-NAS), resizable as data augmentation (Resizable-Aug)
and resizable for data-dependent inference (Resizable-Adapt).

Resizable-NAS. We demonstrate that our resizable networks can adaptively switch between sub-
networks to fulfil the efficiency constraints on the target platform, thus achieve the run-time model
compression objective. We show that there consistently exists smaller sub-network with similar
(even higher) accuracy than the baseline. For example, Resizable-NAS ResNet-50 is 44% smaller
on model size and 0.4% higher on accuracy compare with the baseline. This result is significantly
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better than state-of-the-art compression methods, i.e., the accuracy of NISP (Yu et al. (2018b)) is
dropped by 0.9% with the same computational complexity.

Resizable-Aug. We introduce Resizable-Aug, a data augmentation technique using resizable net-
work training scheme. We are able to improve ResNet-50 by 2.4% compare with baseline. This
result is also higher than state-of-the-art data augmentation methods, for instance, it is 1.2% higher
than AutoAugment (Cubuk et al. (2018)) on ImageNet classification task with no search cost.
Additionally, combine our augmentation technique on a new baseline model, we obtain a model
achieve 77.8% with 365M FLOPs. This is significantly better than previous state-of-the-art model
EfficientNet-B0 (Tan & Le (2019)) which trained with AutoAugment (Cubuk et al. (2018)), 1.5%
higher on accuracy with 25M less FLOPs.

Resizable-Adapt. We introduce an auxiliary module called ResizeLearner. By integrating into re-
sizable networks, it allows data-dependent inference. This is achieved by adopting ResizeLearner
to assign the optimal spatial sub-network to each sample. Compared with the naive resizable net-
works, this approach not only lowers the computational cost during inference, but improve represen-
tation learning via switch the spatial policy from implicit to explicit. In particular, Resizable-Adapt
ResNet-50 improve the performance of Resizable-NAS ResNet-50 up to 0.5%, depends on the target
spatial sub-networks.

2 RELATED WORK

Multi-scale Training. Our work is most related to multi-scale learning, which is important in image
recognition (Li et al. (2019); Wang et al. (2019); Chen et al. (2018)), object detection(Lin et al.
(2017); Singh et al. (2018); Singh & Davis (2018)) and instance segmentation (Zhao et al. (2017);
Chen et al. (2017b)). There are several approaches to fusing information of images at different visual
resolutions. The naive approach is image pyramid (Sermanet et al. (2013); Dalal & Triggs (2005);
Felzenszwalb et al. (2009); Cai et al. (2016)), where an input image is passed through a model
multiple times at different resolutions. Our work introduce the resizable networks which comprise
infinite single scale network, that acted as a implicit multi-scale networks.

Dynamic Neural Networks. Our work is related to dynamic neural networks. Dynamic neural net-
works aim to train a single network to support different architectural configuration, especially adjust
networks according to input samples. Slimmable networks(Yu et al. (2018a)) train a single model
to support multiple width configuration by switching width at runtime. These dynamic networks
are limited by two factors: 1) Performance. Most dynamic networks methods sacrifice accuracy in
exchange of adaption in inference. 2) Flexibility. The flexibility previous methods are limited, and
the degree of flexibility are limited to width or depth, and the number of sub-networks choice is .
For example, slimmablenet (Yu et al. (2018a)) have only four to eight switches to adapt in inference.
Our proposed model is highly flexible on spatial-level, while obtain an excellent performance gain
over all individual network.

Model Compression. Compressing Over-parametrized model network with minimal performance
drop is appealing on resource-constrained devices. Modern compression methods including channel
pruning (Liu et al. (2018); He et al. (2017)), knowledge distillation(Hinton et al. (2015); Furlanello
et al. (2018); Romero et al. (2014); Zhang et al. (2018); Chen et al. (2015a)), hashing (Chen et al.
(2015b)), network binarization(Courbariaux et al. (2016); Rastegari et al. (2016)). Our work explore
network compression at the runtime on spatial-level, which is complementary to existing compres-
sion methods.

Neural Architecture Search. Recently the design of efficient neural networks has largely shifted
from leveraging human knowledge to automatic methods, which is known as neural architecture
search(NAS). Designing search space is of the most important in NAS on various vision tasks such
as image recognition (Radosavovic et al. (2019); Cai et al. (2018); Howard et al. (2019); Guo et al.
(2019); Tan et al. (2019)), instance segmentation (Liu et al. (2019)) and object detection(Ghiasi et al.
(2019); Chen et al. (2019)). Resizable networks can be consider as a designed search space, where
each spatial sub-networks is a optional architecture.

Data Augmentation. Data augmentation is effective for improving the accuracy of modern neural
network in various computer vision tasks (Szegedy et al. (2015)). Many new augmentation tech-
niques such as Cutout (DeVries & Taylor (2017)) and Mixup (Zhang et al. (2017)) on input image
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have shown promising results. Recently, a new trend is raised that automatically learn the data trans-
formation (Ho et al. (2019)). Cubuk et al. (2018) leverage RNN controller to automatically search
the best data augmentation combination for training in a large augmentation sub-policy space. We
explore the data augmentation technique on feature map spatial-level by letting the network learns
different feature map scales.

3 RESIZABLE NEURAL NETWORK

In this section, we present the resizable networks. Section 3.1 gives a description of resizable net-
works. Section 3.2 describe the training algorithm. Section 3.2 to 3.4 describe three variants of
resizable networks respectively.

3.1 DEFINITION OF RESIZABLE NETWORKS

Let sij ∈ [0, 1] be a scale factor, each sij is a jth scale ratio at ith stage. We use a set of scale factors
to describe a network. We denote the S = {sij}ni=1,j∈N to be the spatial configuration, where N
denotes the number of total stages in a network. Let xin denotes input tensor as C × Hin × Win,
where C denotes the number of channels, Hin denotes the height and Win denotes the width of the
input tensor. We can formalize the feature map resize operation as:

xout = G(xin; s
i
j) (1)

where G(·; ·) denotes the resize operation. xout is the output tensor as C × Hout × Wout after
resize operation. The typically choice for the scale is sij = 0.5 (He et al. (2016)) and G(·; ·) use
the max/average pooling or convolutional layer with stride equal to 2. Thus we can write the con-
ventional single scale network as S = {0.5j}j∈N . Unlike the conventional single scale network, in
the spatial sub-networks, the sij is a arbitrary number and G(·; ·) represent the bilinear interpolation.
This leads to a flexible scaling policy that enable the feature map resolution change to an arbitrary
size. Thus we can formalized the resizable networks as the ensemble of an infinite number of single
scale networks:

RS = {Sk}Nk=1 (2)
where RS denotes the resizable networks, N is the total number of single scale networks. Sk is some
single scale network with flexible scaling policy as we described in equation 1. From the equation
2, resizable networks can be viewed as a set of infinite single scale network, where each single scale
network Sk obtain a unique spatial configuration while all networks share the same convolutional
layers. We present a training algorithm for resizable networks in Section 3.2.

3.2 TRAINING DETAILS

Fair Sampling. The naive approach to train a resizable networks is to uniformly select a spatial
configuration at each optimization step and update the weights accordingly. However, such sampling
method brings out training bias. Each convolutional layer at different spatial configuration is trained
with different mini-batch data and learning rate, which causes the issue of unfair training between
different sub-networks. To be concrete, some convolutional layers can go through more training
iterations than the others. To reduce the training bias, we introduce a fair sampling method. The
ideology behind our proposed sampling is simple: to fairly train every scale factors. Specifically,
we propose to train multiple configurations in each iteration and accumulate the gradients of shared
convolutional layers. For each iteration, we uniformly sample scale ratios in a non-repetitive manner:
if a convolutional layer with the particular scale factor has already been chosen, then this particular
layers will not be picked again in the same iteration. Thus we ensure all scale ratios for convolution
is trained fairly.

Scale-Aware Batch Normalization. One issue with training a network layer with different feature
map size is the discrepancy of both feature mean and variance between different sampled scales.
Thus shared batch normalization (BN) (Ioffe & Szegedy (2015)) layer brings instability into the
training process, degrade the model performance. To address this issue, we use scale-aware batch
normalization in the network. Specifically, the shared convolutional layer is followed by a group
of BN layers, where the number of BN layers in this group is equal to the number of scale factors.
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Thus each scale ratio is corresponding to an independent BN layer which is scale-aware. Note
that the extra parameters and expense of memory introduced by scale-aware batch normalization is
negligible.

Training Algorithm. Algorithm 1 illustrates the training framework to efficiently and effectively
train a resizable network combine with fair sampling and BN calibration techniques. During train-
ing, we adopt fair sampling, which gradients are accumulated and fairly sample spatial configura-
tions in each iteration and then update the weights.

Algorithm 1 Training resizable neural networks RS.
Require: Initialize resizable network RS. Predefined spatial list L
for i = 1, ..., niters do

Get data x and target y of current mini-batch.
Clear gradients for all parameters.
for j = 0, ..., len(L) do

Fair sample spatial sub-network, RS′.
Select the scale-aware batch normalization for each stage.
Execute spatial sub-networks. ŷ = RS′(x).
Compute gradients for RS′ based on loss.

end
Update weights by accumulated gradients.

end

3.3 RESIZABLE NEURAL NETWORK AS MODEL SEARCH

Using the training algorithm in Section 3.2, the resizable networks now contain multiple spatial
sub-networks, where all sub-networks attain good performance. Thus, with a trained super-network,
the primary objective is to select the best-performing spatial sub-network given different efficiency
constraints (FLOPs, latency, energy, etc.). Generally, various search methods can be combined with
the resizable networks for searching the best-fit sub-networks. For simplicity, we present a naive
approach. We enumerate all spatial sub-networks and build a lookup table to include information
such as accuracy, FLOPs and latency. Therefore, given a target hardware and efficiency constraints,
we can query the lookup table to get the best-fit sub-network in the resizable networks. There is no
computational cost of querying the lookup table.

Additionally, when the best-fit spatial sub-network is chosen from the lookup table, we can fine-
tune this sub-network to increase the accuracy on target dataset further. It allows the sub-network to
recover its representation learning ability when it is under-trained in the resizable networks. It also
mitigates the co-adaptation issue which we will discuss in Section 3.3. Empirically, we find that
fine-tune 15 epochs is sufficient, and the fine-tuning process increases the accuracy considerably.

3.4 RESIZABLE NEURAL NETWORK AS DATA AUGMENTATION

In Section 3.2, we present a training algorithm to effectively train resizable networks, which make
sure that all the sub-networks obtain good accuracy. Such training algorithm compromises the ac-
curacy between the target network and the others. In Section 3.3, we further show that significant
performance enhancement can be achieved by fine-tuning the target sub-network. This performance
gain is not only coming from more training on the target network but to alleviate the co-adaptation
issue, which we will discuss below.

Co-adaptation. Co-adaptation is a common phenomenon when network operations in a single
model are shared (Bender et al., 2018). Because of the co-adaptation, when a spatial sub-network
is trained, the ability of other sub-networks will be impaired if they shared the same convolutional
layers with a particular scale factor. When we adopt resizable networks as a data augmentation
technique, we aim to achieve the best performance on the target network. If we train a resizable
network naively, the shared convolutional layers can co-adapt. Thus we introduce a simple technique
to alleviate the issue of co-adaptation, named as scheduled switching.
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Table 1: This table shows the result of Top-1 accuracy of spatial configurations in resizable networks
compare with individually trained counterparts.

Individual Networks Resizable Networks
Name FLOPs Top-1 Acc. Name FLOPs Top-1 Acc.(gain)

Individual-
MobileNetV1

569M 70.6%
Resizable-
MobileNetV1

569M 72.0%(+1.4%)
462M 70.0% 462M 71.3%(+1.3%)
391M 69.5% 391M 70.7%(+1.2%)
291M 68.1% 291M 69.5%(+1.4%)

Individual-
ShuffleNetV2

299M 72.6%
Resizable-
ShuffleNetV2

299M 73.3%(+0.7%)
251M 71.5% 251M 72.2%(+0.7%)
199M 70.3% 199M 70.9%(+0.6%)
147M 69.2% 147M 69.8%(+0.6%)

Individual-
ResNet-50

4.1G 76.4%
Resizable-
ResNet-50

4.1G 77.1%(+0.7%)
2.8G 75.4% 2.8G 76.6%(+1.2%)
2.0G 74.2% 2.0G 75.2%(+1.0%)
1.1G 71.6% 1.1G 72.3%(+0.7%)

Scheduled Switching. Instead of training the resizable networks follow the Section 3.2, we decom-
pose the entire training procedure into two-stage. At the first stage, we follow the same training
algorithm as we described in the Section 3.2. At the second stage, we stop the current training al-
gorithm at some scheduled point, and switch to the normal optimization pipeline, where only the
target network is sampled and optimized. This simple technique leverage the advantages of implicit
multi-scale learning from the resizable networks, as well as resolve the layer co-adaption problem.

3.5 ADAPTIVE RESIZABLE NEURAL NETWORK

There are two drawbacks in the original resizable networks. First, it is inefficient to process all
images to one sub-network, as the algorithm spends equal energy at every sample. Secondly, the
scaling policy in the original resizable network is implicit, which may be sub-optimal. To tackle
these issues, we introduce a ResizeLearner, such that resizable networks can make data-dependent
inference by assigning samples to different spatial sub-networks. This explicit scaling policy, while
less computational power is used, enhance the ability of the networks.

The pipeline of adaptive resizable network is simple yet effective: After a resizable network is
trained, we initialize the ResizeLearner. It is composed of three convolutional layers along with a
pooling layer and followed by the softmax, attached at the last stage of the original network. Note
that we freeze the parameters of the original network, such that only the ResizeLearner update the
weights. For the training, we randomly sample 50k images from the training data, validate on all
spatial sub-networks for each sample, and take one with the highest accuracy as the target. During
inference, we assign each sample with the optimal spatial sub-networks generated by ResizeLearner.

4 EXPERIMENTS

In this section, we validate the resizable networks on ImageNet classification from several appli-
cations. For consistency, we use RS- to indicate resizable network, ft to indicate resizable-nas
networks by fine-tuning, RS-NAS to denote the fine-tuned target spatial sub-network, RS-Aug to
represent resizable augmentation. RS-Adapt to denote adaptive resizable networks. Implementation
details can be found in the Appendix A.1. Section 4.1 give experiments for resizable networks com-
pared with individual networks. Section 4.2-4.4 gives the result of resizable-nas, resizable-aug and
resizable-adapt network respectively.
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Figure 2: (a)-(b): Resizable-NAS ResNet-50 and ShuffleNetV2 compare with the individually
trained networks and naive resizable approach. (c): Resizable-NAS ResNet-50 compare with state-
of-the-art model compression methods. (d) Resizable-Adapt ResNet-50 compare with the Resizable-
NAS ResNet-50. The horizontal line mean the FLOPs range of sub-network used in resizable-adapt
network for data-dependent inference.

Table 2: This table summarizes the validation Top-1 accuracy on ImageNet dataset for ResNet-50
architecture. We compare Resizable-Aug with multiple state-of-the-art augmentation methods and
regularization methods. Bold indicates the best results. * denotes results reported in the original
papers.

Model Top-1 Acc.(gain) Top-5 Acc.(gain)

Baseline ResNet-50 (He et al. (2016)) 76.4% 93.1%

ResNet-50 + Cutout (DeVries & Taylor (2017)) 76.5% 93.2%

ResNet-50 + MixUp* (Zhang et al. (2017)) 76.7% 93.4%

ResNet-50 + AutoAugment* (Cubuk et al. (2018)) 77.6% 93.8%

ResNet-50 + Resizable-Aug 78.8%(+2.4%) 94.4%(+1.3%)

4.1 COMPARISON BETWEEN RESIZABLE NETWORKS WITH STAND-ALONE NETWORK.

We show in Table 1 the top-1 classification accuracy for both individually trained networks and
resizable networks give the same spatial configurations. Due to the space limit, we only take sev-
eral spatial configurations for comparison. We present top-1 test accuarcy and FLOPs, which is
the primary concerns in inference time, of all networks for reference. Compared to independently
trained networks, the spatial sub-networks in resizable networks achieved significantly better top-1
accuracy, across various network architectures and computational complexity. This result confirm
our hypothesis that the implicit multi-scale training improve the model capacity.

4.2 THE RESULT OF RESIZABLE-NAS NETWORKS.

Comparison with Naive Resizable Networks. The Figure 2(a) and 2(b) demonstrate the results of
resizable networks and resizable-nas network with ResNet-50 and ShuffleNetV2. The only differ-
ence between these two networks is that the resizable-nas network can 15 epochs fine-tune on target
sub-network. It shows the notable performance improvement on individual sub-network when it is
selected and fine-tuned compare with the baseline method.

Comparison with State-of-the-art Model Compression Methods. We compare with the following
state-of-the-art model compression methods: NISP (Yu et al. (2018b)), ThiNet (Luo et al. (2017)),
ChannelPruning (He et al. (2017)), Sparse Structure Selection ResNet50 (Huang & Wang (2018))
and SlimmableNets (Yu et al. (2018a)), AMC (He et al., 2018) and Netadapt (Yang et al., 2018).
We present the ResNet-50 based results at Figure 2(c), and the detailed results of Resizable-NAS
MobileNetV1 as well as Resizable-NAS ResNet-50 can be found in the Table 4. Resizable-NAS
ResNet-50 demonstrate strong performance, especially when the compression ratio is large than
50%. It outperforms listed state-of-the-arts compression methods by a large margin over diverse
computational complexity constraints. We emphasize that our Resizable-NAS network only trained
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Table 3: Comparison with state-of-the-art architectures on ImageNet (200M to 400M FLOPs). *

denotes reported results employ AutoAugment.
Model FLOPs (M) Params (M) Top-1 Acc. Top-5 Acc.

ShuffleNetV2 1.5x (Ma et al., 2018) 300 - 72.6% -
MobileNetV2 1.0x (Sandler et al., 2018) 300 3.4 72.0% 91.0%
MobileNetV3 Large (Howard et al., 2019) 291 5.4 75.2% 92.2%
MnasNet-A2 (Tan et al. (2019)) 340 4.8 75.6% 92.7%
EfficientNet-B0* (Tan & Le (2019)) 390 5.3 76.3% 93.2%

ResizableNet w/o Aug 365 6.7 77.4% 93.6%
ResizableNet 365 6.7 77.8% 93.6%

once, and fine-tune 15 epochs on target sub-networks, where the other compression methods find
the optimal structure and retrain accordingly. Comparing to the other methods, our proposed model
is more efficient while performing better. Notice even the version without the fine-tuning process
can achieve similar (even better) performance than other model compression methods.

4.3 COMPARISON WITH STATE-OF-THE-ART AUGMENTATION METHODS

On ResNet-50. We compares the Resizable-Aug ResNet-50 with various state-of-the-art data aug-
mentation methods (i.e., Cutout (DeVries & Taylor (2017)), Mixup (Zhang et al. (2017)) and Au-
toAugment (Cubuk et al. (2018))). The results are summarized in Table 2. It shows that Resizable-
Aug improve the ResNet-50 baseline by 2.4%, outperform AutoAugment by 1.2% using the same
the baseline.

On Efficient Models. We present the resizable augmentation results based on network that are
search by AutoML. The details of the training strategy and network architecture are presented in
the Appendix A.3. Table 3 shows the results. By adopting the resizable augmentation strategy, we
improve the already high accuracy network from 77.4% to 77.8%, achieve a new state-of-the-art
result. The new models is 1.5% better than EfficientNet-B0 (Tan & Le (2019)), which is trained
AutoAugment (Cubuk et al., 2018) with 25M less FLOPs.

4.4 RESIZABLE-ADAPT NETWORKS RESULTS

Figure 3(d) shows the results of Resizable-Adapt ResNet-50. The dynamic inference is performed
on multiple computation complexity threshold. During inference, we ensure that only sub-networks
that are smaller than the target network is used for inference. The performance gain is range from
0% to 0.5%. It can be observed that the adaptive resizable ResNet-50 consistently obtain better
performance than the baseline. This is a surprising result since most dynamic network struggle at
the trade-off between efficiency and accuracy. Less computational complexity in dynamic network
always lowers the accuracy compared with the baseline. Moreover, when the target network is large,
sometimes the samples are still better predicted by the small sub-network. This gives the evidence
that the explicit way to deal with the input scale is indeed beneficial.

5 CONCLUSION

We introduced a type of convolutional neural network, named as Resizable Neural Networks. The
resizable networks consist of infinite single scale networks, where each single scale networks obtain
a unique spatial configuration. Based on this, we present a training algorithm to train this network,
such that all spatial sub-networks in the resizable networks attain good accuracy. Moreover, we
apply three variants of resizable networks. Specifically, we present Resizable-NAS, Resizable-Aug,
and Resizable-Adapt. The resizable-NAS network permits run-time model compression by search-
ing for the best-fit sub-network under efficiency constraints. Moreover, we present adaptive resizable
networks, which perform data-dependent dynamic inference. Overall, we believe that the resizable
network’s approach provides an interesting and practical new perspective on designing a convolution
neural network on the spatial dimension.
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Table 4: This table compares the Top-1 accuracy of Resizable Network with several state-of-the-
art model compression methods given FLOPS. Bold indicates highest top-1 accuracy under certain
FLOPS constraint. Blue indicates dynamic networks.

Model Top-1 Acc. Gain FLOP Compres. Ratio

ResNet50 (He et al. (2016)) 76.4% +0% 4.1G 0%

RS-NAS-ResNet50 (ft=15) 77.8% +1.4% 3.5G 15%
RS-ResNet50 77.1% +0.7% 3.5G 15%

RS-NAS-ResNet50 (ft=15) 77.4% +1.0% 2.8G 32%
RS-ResNet50 76.6% +0.2% 2.8G 32%
SSS-ResNet50 (Huang & Wang (2018)) 74.2% -2.2% 2.8G 32%
ThiNet-70 (Luo et al. (2017)) 72.5% -3.9% 2.9G 29%
NISP-ResNet50-A (Yu et al. (2018b)) 76.2% -0.2% 3.0G 27%

RS-NAS-ResNet50 (ft=15) 76.8% +0.4% 2.3G 44%
RS-ResNet50 75.4% -1.0% 2.3G 44%
Slim ResNet50 (Yu et al. (2018a)) 75.0% -1.4% 2.3G 44%
SSS-ResNet50 (Huang & Wang (2018)) 75.6% -0.8% 2.3G 44%
NISP-ResNet50-B (Yu et al. (2018b)) 75.5% -0.9% 2.3G 44%

RS-NAS-ResNet50 (ft=15) 76.5% +0.1% 2.0G 51%
RS-ResNet50 75.2% -1.2% 2.0G 51%
ChanPrun-ResNet50 (He et al. (2017)) 73.3% -3.1% 2.0G 51%
ThiNet-50 (Luo et al. (2017)) 72.5% -3.9% 2.1G 49%

RS-NAS-ResNet50 (ft=15) 72.8% -3.6% 1.1G 73%
RS-ResNet50 72.3% -4.1% 1.1G 73%
Slim-ResNet50 (Yu et al. (2018a)) 72.0% -4.4% 1.1G 73%
ThiNet-30 (Luo et al. (2017)) 69.9% -6.5% 1.2G 71%

MobileNetV1 (Howard et al. (2017)) 70.9% +0% 569M 0%

RS-NAS-MobileNetV1 (ft=15) 71.9% +1.0% 391M 31%
RS-NAS-MobileNetV1 (ft=15) 70.9% +0% 291M 49%
RS-MobileNetV1 69.5% -1.4% 291M 49%
Slim-MobileNetV1 (Yu et al. (2018a)) 69.5% -1.4% 317M 44%
NetAdapt-MobileNetV1 (Yang et al. (2018)) 70.1% -0.9% 285M 50%
AMC-MobileNetV1 (He et al. (2018)) 70.5% -0.4% 285M 50%

A APPENDIX

A.1 IMPLEMENTATION DETAILS.

Resize operation is place at the first non-stride block at each stage in network. We apply bilinear
interpolation to resize the feature map to target size. Resize factor are uniformly taken from a
predefined list of possible resize choice, except when it contradicted to fair sampling rule. Our
implementation is based on the Pytorch (Paszke et al. (2017)). The input resolution for all train and
test images for ImageNet classification are 224 x 224.

Other than ResNet-50, which we report baseline higher than the original paper, we have trained
Mobilenet v1, Mobilenet v2 and Shufflenet v2 baseline to match the performance as reported in
original paper. And based on the re-implemented settings, we perform both baseline and resizable
networks experiments.

For ResNet-50, we train for 100 epochs using weight decay of 1e-4. We use batch size of 512 and
do learning rate decay by 10 at epochs 30, 60, 80, 90. The other resizable network train for 200
epochs and double the epochs of learning rate decay.
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Figure 3: Architecture of ResizableNet. We highlight the input and output tensor shape. Conv
denotes convolution layer. SF denotes ShuffleNetV2 module. SE denotes Squeeze-and-Excitation
module.

For Mobilenet v1, Mobilenet v2 and Shufflenet v2, we use batch size of 1024 and weight decay of
4e-5. We train both models for 240 epochs using linear learning rate decay where base learning rate
is set to 0.5. All models are train across synchronous SGD across 8 GPUs. The resizable networks
train for 480 epochs

The resizable augmentation network always use the same training setting as the baseline method.
Extending the training epochs is unnecessary.

A.2 DETAIL RESULTS OF RESIZABLE-NAS NETWORKS

The detail results of Resizable-NAS ResNet-50 and Resizable-NAS MobileNetV1 can be found at
Table 4.

A.3 DETAILS OF RESIZABLENET

Training Details. ResizableNet is trained using resizable-aug technique as we discuss in the Section
3.4. It is trained for 480 epochs with batch size 1024 on 8 GPUs. The network parameters are
optimized using an SGD optimizer with an initial learning rate of 0.5 (decayed linearly after each
iteration), a momentum of 0.9 and a weight decay of 3× 10−5. Additional enhancements including
label smoothing (Szegedy et al. (2016)) and Dropout with 0.5 on last FC layer. We follow the
common practice to use inception augmentation.

Detailed Network Architecture. The network architecture along with feature map resolution and
channels number are shown in Figure 4.

B ABLATION STUDY

B.1 IS NEURAL NETWORK NATURALLY RESIZABLE?

It is intuitive to ask the question: is neural network naturally resizable? The answer is no. We
present the result of directly inference on a neural network with different spatial configurations and
compare the result with resizable neural network. The naive network is trained with scale-aware
batch normalization. Figure 5 shows that naively trained neural network can not adjust feature map
size, which result in a extremely low test accuracy.

B.2 SCALE-AWARE BN ANALYSIS.

Effect on Resizable Augmentation. Spatial BN calibration is especially important for resizable
augmentation. The following table compare two network adopt resizable augmentation with and
without BN calibration. We can observed that without BN calibration, the resizable augmentation
is only slightly better than the baseline model. The improvement is negligible. On the other hand,
when BN calibrated for spatial configurations, is boost the performance compare with the baseline.
The accuracy is increased by 1.1% on ShuffleNetV2 and 2.4% on ResNet-50.
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Figure 4: Is network naturally resizable? We compare the result of sub-networks in naive Shuf-
fleNetV2, RS-ShuffleNetV2 and RS-NAS-ShuffleNetV2.

Table 5: This table shows the result of Top-1 accuracy of ResNet-50 and ShuffleNetV2 use resizable
augmentation technique with (w/) and without (w/o spatial BN calibration.)

Model Baseline w/o BN Calibration w/ BN Calibration
Resizable-Aug ShufflenetV2 72.6% 72.8% 73.7%

Resizable-Aug ResNet-50 76.4% 76.9% 78.8%

14


	Introduction
	Related Work
	Resizable Neural Network
	Definition of Resizable Networks
	Training Details
	Resizable Neural Network As Model Search
	Resizable Neural Network as Data Augmentation
	Adaptive Resizable Neural Network

	Experiments
	Comparison between Resizable Networks with Stand-Alone Network.
	The result of Resizable-NAS Networks.
	Comparison with State-of-the-art Augmentation methods
	Resizable-Adapt Networks Results

	Conclusion
	Appendix
	Implementation Details.
	Detail Results of Resizable-NAS Networks
	Details of ResizableNet

	Ablation Study
	Is neural network naturally resizable?
	Scale-Aware BN Analysis.


