
Under review as a conference paper at ICLR 2020

PSEUDO-LIDAR++:
ACCURATE DEPTH FOR 3D OBJECT DETECTION IN
AUTONOMOUS DRIVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Detecting objects such as cars and pedestrians in 3D plays an indispensable role
in autonomous driving. Existing approaches largely rely on expensive LiDAR
sensors for accurate depth information. While recently pseudo-LiDAR has been
introduced as a promising alternative, at a much lower cost based solely on stereo
images, there is still a notable performance gap. In this paper we provide substantial
advances to the pseudo-LiDAR framework through improvements in stereo depth
estimation. Concretely, we adapt the stereo network architecture and loss function
to be more aligned with accurate depth estimation of faraway objects — currently
the primary weakness of pseudo-LiDAR. Further, we explore the idea to leverage
cheaper but extremely sparse LiDAR sensors, which alone provide insufficient
information for 3D detection, to de-bias our depth estimation. We propose a depth-
propagation algorithm, guided by the initial depth estimates, to diffuse these few
exact measurements across the entire depth map. We show on the KITTI object
detection benchmark that our combined approach yields substantial improvements
in depth estimation and stereo-based 3D object detection — outperforming the
previous state-of-the-art detection accuracy for faraway objects by 40%.

1 INTRODUCTION

Figure 1: An illustration of our proposed depth esti-
mation and correction method. The green box is the
ground truth location of the car in the KITTI dataset.
The red points are obtained with a stereo disparity net-
work. Purple points, obtained with our stereo depth net-
work (SDN), are much closer to the truth. After depth
propagation (blue points) with a few (yellow) LiDAR
measurements the car is squarely inside the green box.
(One floor square is 1m×1m.)

Safe driving in autonomous cars requires ac-
curate 3D detection and localization of cars,
pedestrians and other objects. This in turn re-
quires accurate depth information, which can
be obtained from LiDAR (Light Detection And
Ranging) sensors. Although highly precise
and reliable, LiDAR sensors are notoriously
expensive: a 64-beam model can cost around
$75,000 (USD). The alternative is to measure
depth through inexpensive commodity cameras.
However, in spite of recent dramatic progress
in stereo-based 3D object detection brought by
pseudo-LiDAR (Wang et al., 2019), a significant
performance gap remains especially for faraway
objects (which we want to detect early to allow
time for reaction). The trade-off between afford-
ability and safety creates an ethical dilemma.

In this paper we propose a possible solution to this remaining challenge that combines insights from
both perspectives. We observe that the higher 3D object localization error of stereo-based systems,
compared to LiDAR-based ones, stems entirely from the higher error in depth estimation (after the
3D point cloud is obtained the two approaches are identical (Wang et al., 2019)). Importantly, this
error is not random but systematic: we observe that stereo methods do indeed detect objects with high
reliability, yet they estimate the depth of the entire object as either too far or too close. See Figure 1
for an illustration: the red stereo points capture the car but are shifted by about 2m completely outside

1

Under review as a conference paper at ICLR 2020

the ground-truth location (green box). If we can de-bias these depth estimates it should be possible to
obtain accurate 3D localization even for distant objects without exorbitant costs.

We start by revisiting the depth estimation routine embedded at the heart of state-of-the-art stereo-
based 3D detection approach (Wang et al., 2019). A major contributor to the systematic depth bias
comes from the fact that depth is typically not computed directly. Instead, one first estimates the
disparity — the horizontal shift of a pixel between the left and right images — and then inverts it
to obtain pixel-wise depth. While the use of deep neural networks has largely improved disparity
estimation (Chang & Chen, 2018; Cheng et al., 2018; Mayer et al., 2016; Wang et al., 2018b),
designing and learning the networks to optimize the accuracy of disparity estimation simply over-
emphasizes nearby objects due to the reciprocal transformation. For instance, a unit disparity error
(in pixels) for a 5-meter-away object means a 10cm error in depth: the length of a side mirror. The
same disparity error for a 50-meter-away object, however, becomes a 5.8m error in depth: the length
of an entire car. Penalizing both errors equally means that the network spends more time correcting
subtle errors on nearby objects than gross errors on faraway objects, resulting in degraded depth
estimates and ultimately poor detection and localization for faraway objects. We thus propose to adapt
the stereo network architecture and loss function for direct depth estimation. Concretely, the cost
volume that fuses the left-right images and the subsequent 3D convolutions are the key components
in stereo networks. Taking the central assumption of convolutions — all neighborhoods can be
operated in an identical manner — we propose to construct the cost volume on the grid of depth
rather than disparity, enabling 3D convolutions and the loss function to perform exactly on the right
scale for depth estimation. We refer to our network as stereo depth network (SDN). See Figure 1 for
a comparison of 3D points obtained with SDN (purple) and disparity estimation (red).

Although our SDN improves the depth estimates significantly, stereo images are still inherently
2D and it is unclear if they can ever match the accuracy and reliability of a true 3D LiDAR sensor.
Although LiDAR sensors with 32 or 64 beams are expensive, LiDAR sensors with only 4 beams are
two orders of magnitude cheaper1 and thus easily affordable. The 4 laser beams are very sparse and
ill-suited to capture 3D object shapes by themselves, but if paired with stereo images they become the
ideal tool to de-bias our dense stereo depth estimates: a single high-precision laser beam may inform
us how to correct the depth of an entire car or pedestrian in its path. To this end, we present a novel
depth-propagation algorithm, inspired by graph-based manifold learning (Weinberger et al., 2005;
Roweis & Saul, 2000; Xiaojin & Zoubin, 2002). In a nutshell, we connect our estimated 3D stereo
point cloud locally by a nearest neighbor graph, such that points corresponding to the same object
will share many local paths with each other. We match the few but exact LiDAR measurements first
with pixels (irrespective of depth) and then with their corresponding 3D points to obtain accurate
depth estimates for several nodes in the graph. Finally, we propagate this exact depth information
along the graph using a label diffusion mechanism — resulting in a dense and accurate depth map
at negligible cost. In Figure 1 we see that the few (yellow) LiDAR measurements are sufficient to
position almost all final (blue) points of the entire car within the green ground truth box.

We conduct extensive empirical studies of our approaches on the KITTI object detection bench-
mark (Geiger et al., 2012; 2013) and achieve remarkable results. With solely stereo images, we
outperform the previous state of the art (Wang et al., 2019) by 10%. Further adding a cheap 4-beam
LiDAR brings another 27% relative improvement — on some metrics, our approach is nearly on par
with those based on a 64-beam LiDAR but can potentially save 95% in cost.

2 BACKGROUND

3D object detection. Most work on 3D object detection operates on 3D point clouds from LiDAR as
input (Li, 2017; Li et al., 2016; Meyer et al., 2019b; Yang et al., 2018a; Du et al., 2018; Shi et al.,
2019; Engelcke et al., 2017; Yan et al., 2018; Lang et al., 2019). Frustum PointNet (Qi et al., 2018)
applies PointNet (Qi et al., 2017a;b) to the points directly, while Voxelnet (Zhou & Tuzel, 2018)
quantizes them into 3D grids. For street scenes, several work finds that processing points from the
bird’s-eye view can already capture object contours and locations (Chen et al., 2017; Yang et al.,
2018b; Ku et al., 2018). Images have also been used, but mainly to supplement LiDAR (Meyer et al.,
2019a; Xu et al., 2018; Liang et al., 2018; Chen et al., 2017; Ku et al., 2018). Early work based solely

1The Ibeo Wide Angle Scanning (ScaLa) sensor with 4 beams cost $600 (USD). In this paper we simulate the
4-beam LiDAR response on KITTI benchmark (Geiger et al., 2012) by sparsifying the original 64-beam signal.

2

Under review as a conference paper at ICLR 2020

on images — mostly built on the 2D frontal-view detection pipeline (Ren et al., 2015; He et al., 2017;
Lin et al., 2017) — fell far behind in localizing objects in 3D (Li et al., 2019a; Xiang et al., 2015;
2017; Chabot et al., 2017; Mousavian et al., 2017; Chen et al., 2015; Xu & Chen, 2018; Chen et al.,
2016; Pham & Jeon, 2017; Chen et al., 2018).

Pseudo-LiDAR. This gap has been reduced significantly recently with the introduction of the pseudo-
LiDAR framework proposed in (Wang et al., 2019). This framework applies a drastically different
approach from previous image-based 3D object detectors. Instead of directly detecting the 3D
bounding boxes from the frontal view of a scene, pseudo-LiDAR begins with image-based depth
estimation, predicting the depth Z(u, v) of each image pixel (u, v). The resulting depth map Z is
then back-projected into a 3D point cloud: a pixel (u, v) will be transformed to (x, y, z) in 3D by

z = Z(u, v), x =
(u− cU)× z

fU
, y =

(v − cV)× z
fV

, (1)

where (cU , cV) is the camera center and fU and fV are the horizontal and vertical focal length. The
3D point cloud is then treated exactly as LiDAR signal — any LiDAR-based 3D detector can be
applied seamlessly. By taking the state-of-the-art algorithms from both ends (Chang & Chen, 2018;
Ku et al., 2018; Qi et al., 2018), pseudo-LiDAR obtains the highest image-based performance on the
KITTI object detection benchmark (Geiger et al., 2012; 2013). Our work builds upon this framework.

Stereo disparity estimation. Pseudo-LiDAR relies heavily on the quality of depth estimation.
Essentially, if the estimated pixel depths match those provided by LiDAR, pseudo-LiDAR with any
LiDAR-based detector should be able to achieve the same performance as that obtained by applying
the same detector to the LiDAR signal. According to (Wang et al., 2019), depth estimation from
stereo pairs of images (Mayer et al., 2016; Yamaguchi et al., 2014; Chang & Chen, 2018) are more
accurate than that from monocular (i.e., single) images (Fu et al., 2018; Godard et al., 2017) for 3D
object detection. We therefore focus on stereo depth estimation, which is routinely obtained from
estimating disparity between images.

A disparity estimation algorithm takes a pair of left-right images Il and Ir as input, captured from
a pair of cameras with a horizontal offset (i.e., baseline) b. Without loss of generality, we assume
that the algorithm treats the left image, Il, as reference and outputs a disparity map D recording the
horizontal disparity to Ir for each pixel (u, v). Ideally, Il(u, v) and Ir(u, v +D(u, v)) will picture
the same 3D location. We can therefore derive the depth map Z via the following transform (fU :
horizontal focal length),

Z(u, v) =
fU × b
D(u, v)

. (2)

A common pipeline of disparity estimation is to first construct a 4D disparity cost volume Cdisp,
in which Cdisp(u, v, d, :) is a feature vector that captures the pixel difference between Il(u, v) and
Ir(u, v+d). It then estimates the disparity D(u, v) for each pixel (u, v) according to the cost volume
Cdisp. One basic algorithm is to build a 3D cost volume withCdisp(u, v, d) = ‖Il(u, v)−Ir(u, v+d)‖2
and determine D(u, v) as argmind Cdisp(u, v, d). Advanced algorithms exploit more robust features
in constructingCdisp and perform structured prediction forD. In what follows, we give an introduction
of PSMNet (Chang & Chen, 2018), a state-of-the-art algorithm used in (Wang et al., 2019).

PSMNet begins with extracting deep feature maps hl and hr from Il and Ir, respectively. It then
constructs Cdisp(u, v, d, :) by concatenating features of hl(u, v) and hr(u, v + d), followed by layers
of 3D convolutions. The resulting 3D tensor Sdisp, with the feature channel size ending up being one,
is then used to derive the pixel disparity via the following weighted combination,

D(u, v) =
∑
d

softmax(−Sdisp(u, v, d))× d, (3)

where softmax is performed along the 3rd dimension of Sdisp. PSMNet can be learned end-to-end,
including the image feature extractor and 3D convolution kernels, to minimize the disparity error∑

(u,v)∈A

`(D(u, v)−D?(u, v)), (4)

where ` is the smooth L1 loss, D? is the ground truth map, and A contains pixels with ground truths.

3

Under review as a conference paper at ICLR 2020

Figure 3: Disparity cost volume (left) vs. depth
cost volume (right). The figure shows the 3D points
obtained from LiDAR (yellow) and stereo (pruple)
corresponding to a car in KITTI, seen from the bird’s-
eye view (BEV). Points from the disparity cost volume
are stretched out and noisy; while points from the
depth cost volume capture the car contour faithfully.

Figure 4: Depth estimation errors. We compare
depth estimation error on 3,769 KITTI validation im-
ages, taking 64-beam LiDAR depths as ground truths.
We separate pixels according to their true depths (z).

3 STEREO DEPTH NETWORK (SDN)

0 20 40 60 80 100
disparity (pixels)

0

20

40

60

80

100

de
pt

h
(m

et
er

s)

Figure 2: The disparity-to-
depth transform. We set fU =
721 (in pixels) and b = 0.54
(in meters) in Equation 2, which
are the typical values used in the
KITTI dataset.

A stereo network designed and learned to minimize the disparity
error (cf. Equation 4) may over-emphasize nearby objects with
smaller depths and therefore perform poorly in estimating depths
for faraway objects. To see this, note that Equation 2 implies that
for a given error in disparity δD, the error in depth δZ increases
quadratically with depth:

Z ∝ 1

D
⇒ δZ ∝ 1

D2
δD ⇒ δZ ∝ Z2δD. (5)

The middle term is obtained by differentiating Z(D) w.r.t. D. In
particular, using the settings on the KITTI dataset, a single pixel
error in disparity implies only a 0.1m error in depth at a depth of 5
meters, but a 5.8m error at a depth of 50 meters. See Figure 2 for
a mapping from disparity to depth.

Depth Loss. We propose two changes to adapt stereo networks for direct depth estimation. First, we
learn stereo networks to directly optimize the depth loss∑

(u,v)∈A

`(Z(u, v)− Z?(u, v)). (6)

Z and Z? can be obtained from D and D? using Equation 2. The change from the disparity loss to
the depth loss corrects the disproportionally strong emphasis on tiny depth errors of nearby objects —
a necessary but still insufficient change to overcome the problems of disparity estimation.

Depth Cost Volume. To facilitate accurate depth learning (rather than disparity) we need to further
address the internals of the depth estimation pipeline. A crucial source of error is the 3D convolutions
within the 4D disparity cost volume, where the same kernels are applied for the entire cost volume.
This is highly problematic as it implicitly assumes that the effect of a convolution is homogeneous
throughout — which is clearly violated by the reciprocal depth to disparity relation (Figure 2). For
example, it may be completely appropriate to locally smooth two neighboring pixels with disparity
85 and 86 (changing the depth by a few cm to smooth out a surface), whereas applying the same
kernel for two pixels with disparity 5 and 6 could easily move the 3D points by 10m or more.

Taking this insight and the central assumption of convolutions — all neighborhoods can be operated
upon in an identical manner — into account, we propose to instead construct the depth cost volume
Cdepth, in which Cdepth(u, v, z, :) will encode features describing how likely the depth Z(u, v) of
pixel (u, v) is z. The subsequent 3D convolutions will then operate on the grid of depth, rather than
disparity, affecting neighboring depths identically, independent of their location. The resulting 3D
tensor Sdepth is then used to predict the pixel depth similar to Equation 3

Z(u, v) =
∑
z

softmax(−Sdepth(u, v, z))× z.

We construct the new depth volume, Cdepth, based on the intuition that Cdepth(u, v, z, :) and

Cdisp

(
u, v,

fU × b
z

, :

)
should lead to equivalent “cost”. To this end, we apply a bilinear interpolation

4

Under review as a conference paper at ICLR 2020

Depth
Correction

Corrected Pseudo-LiDAR Point CloudSparse LiDAR Point Cloud

Dense Pseudo-LiDAR Point Cloud

KNN
graph

Weight Sharing

Feature
Extractor

left
feature

map

right
feature

map

3D conv
softmax

Disparity
Cost

Volume

Convert Depth
Cost

Volume
Dense Predicted Depth Map Feature

Extractor

Left Image Il<latexit sha1_base64="ac35sPpnobXhLFI3vIXtMm+1InU=">AAAB6nicbVDLSgNBEOzxGRMfMR69DEYhp7AbD3qSgBe9RTQPSJYwO5lNhszOLjOzQljiF+jFgxK8+kXe/Bsnj4MmFjQUVd10d/mx4No4zjdaW9/Y3NrO7GRzu3v7B/nDQkNHiaKsTiMRqZZPNBNcsrrhRrBWrBgJfcGa/vB66jcfmdI8kg9mFDMvJH3JA06JsdL9bVd080Wn7MyAV4m7IMVqYfL8VDrN1br5r04voknIpKGCaN12ndh4KVGGU8HG2U6iWUzokPRZ21JJQqa9dHbqGJ9ZpYeDSNmSBs/U3xMpCbUehb7tDIkZ6GVvKv7ntRMTXHopl3FimKTzRUEisInw9G/c44pRI0aWEKq4vRXTAVGEGptO1obgLr+8ShqVsntertzZNK5gjgwcwwmUwIULqMIN1KAOFPrwAm/wjgR6RRP0MW9dQ4uZI/gD9PkDNQyP9A==</latexit>

Right Image Ir<latexit sha1_base64="emBOe26klE0Zw/kQRczFLd//sRU=">AAAB6nicbVDLSgNBEOzxGRMfMR69DEYhp7AbD3qSgBe9RTQPSJYwO5lNhszOLjOzQljiF+jFgxK8+kXe/Bsnj4MmFjQUVd10d/mx4No4zjdaW9/Y3NrO7GRzu3v7B/nDQkNHiaKsTiMRqZZPNBNcsrrhRrBWrBgJfcGa/vB66jcfmdI8kg9mFDMvJH3JA06JsdL9bVd180Wn7MyAV4m7IMVqYfL8VDrN1br5r04voknIpKGCaN12ndh4KVGGU8HG2U6iWUzokPRZ21JJQqa9dHbqGJ9ZpYeDSNmSBs/U3xMpCbUehb7tDIkZ6GVvKv7ntRMTXHopl3FimKTzRUEisInw9G/c44pRI0aWEKq4vRXTAVGEGptO1obgLr+8ShqVsntertzZNK5gjgwcwwmUwIULqMIN1KAOFPrwAm/wjgR6RRP0MW9dQ4uZI/gD9PkDPiSP+g==</latexit>

hl<latexit sha1_base64="Nd9wGqAnyDkpEBh0VAa7gM/R0VQ=">AAAB6nicbVDLTgJBEOzFF4IPxKOXiWjCieziQU+GxItHjPJIYENmh1mYMDuzmZk1IRv8Ar140BCvfpE3/8bhcVCwkk4qVd3p7gpizrRx3W8ns7G5tb2T3c3l9/YPDgtHxaaWiSK0QSSXqh1gTTkTtGGY4bQdK4qjgNNWMLqZ+a1HqjST4sGMY+pHeCBYyAg2Vrof9nivUHIr7hxonXhLUqoVp89P5bN8vVf46vYlSSIqDOFY647nxsZPsTKMcDrJdRNNY0xGeEA7lgocUe2n81Mn6NwqfRRKZUsYNFd/T6Q40nocBbYzwmaoV72Z+J/XSUx45adMxImhgiwWhQlHRqLZ36jPFCWGjy3BRDF7KyJDrDAxNp2cDcFbfXmdNKsV76JSvbNpXMMCWTiBUyiDB5dQg1uoQwMIDOAF3uDd4c6rM3U+Fq0ZZzlzDH/gfP4AZEaQEw==</latexit>

hr<latexit sha1_base64="+h3HGUomtKmMBqcbNGjX0uzF+Hk=">AAAB6nicbVDLTgJBEOzFF4IPxKOXiWjCieziQU+GxItHjPJIYENmh1mYMDuzmZk1IRv8Ar140BCvfpE3/8bhcVCwkk4qVd3p7gpizrRx3W8ns7G5tb2T3c3l9/YPDgtHxaaWiSK0QSSXqh1gTTkTtGGY4bQdK4qjgNNWMLqZ+a1HqjST4sGMY+pHeCBYyAg2Vrof9lSvUHIr7hxonXhLUqoVp89P5bN8vVf46vYlSSIqDOFY647nxsZPsTKMcDrJdRNNY0xGeEA7lgocUe2n81Mn6NwqfRRKZUsYNFd/T6Q40nocBbYzwmaoV72Z+J/XSUx45adMxImhgiwWhQlHRqLZ36jPFCWGjy3BRDF7KyJDrDAxNp2cDcFbfXmdNKsV76JSvbNpXMMCWTiBUyiDB5dQg1uoQwMIDOAF3uDd4c6rM3U+Fq0ZZzlzDH/gfP4AbV6QGQ==</latexit>

Cdisp
<latexit sha1_base64="0UTOjvAXMEJksx/hVAkO9/WjhJo=">AAAB9HicbVA7SwNBEN7zGeMrammzGgSrcBcLrSSQxjKCeUByhL29SbJk7+HuXDQcKaytxcZCEVt/jJ3/xs2j0MQPBj6+b4aZ+bxYCo22/W0tLa+srq1nNrKbW9s7u7m9/ZqOEsWhyiMZqYbHNEgRQhUFSmjECljgSah7/fLYrw9AaRGFNziMwQ1YNxQdwRkayS23Wwj3mPpCx6N2Lm8X7AnoInFmJF86upOP5aeHSjv31fIjngQQIpdM66Zjx+imTKHgEkbZVqIhZrzPutA0NGQBaDedHD2iJ0bxaSdSpkKkE/X3RMoCrYeBZzoDhj09743F/7xmgp0LNxVhnCCEfLqok0iKER0nQH2hgKMcGsK4EuZWyntMMY4mp6wJwZl/eZHUigXnrFC8Nmlckiky5JAck1PikHNSIlekQqqEk1vyTF7JmzWwXqx362PaumTNZg7IH1ifP32HlYs=</latexit>

Cdepth
<latexit sha1_base64="GkKr4lOisyHRnKH92XrPamM93Wk=">AAAB9XicbVA9SwNBEN3zM8avqKXNaRCswl0stJJAGssI5gOSM+ztTZIle3vH7pwxHCmsrQUbC0Vs/S92/hs3H4UmPhh4vDfDzDw/Flyj43xbS8srq2vrmY3s5tb2zm5ub7+mo0QxqLJIRKrhUw2CS6giRwGNWAENfQF1v18e+/U7UJpH8gaHMXgh7Ure4YyikW7L7RbCPaYBxNgbtXN5p+BMYC8Sd0bypaOBeCw/PVTaua9WELEkBIlMUK2brhOjl1KFnAkYZVuJhpiyPu1C01BJQ9BeOrl6ZJ8YJbA7kTIl0Z6ovydSGmo9DH3TGVLs6XlvLP7nNRPsXHgpl3GCINl0UScRNkb2OAI74AoYiqEhlClubrVZjyrK0ASVNSG48y8vklqx4J4VitcmjUsyRYYckmNySlxyTkrkilRIlTCiyDN5JW/WwHqx3q2PaeuSNZs5IH9gff4AQOuV+g==</latexit>

Z<latexit sha1_base64="Os4sBqyRMZjol0WZQqJOURH20t0=">AAAB6HicdVDLSgNBEJyNrxhfUY9eBoPgadmNhyQnA3rwmIB5YLKE2UknGTM7u8zMCmHJF3jxoEg8+jdevfk3ziYKPgsaiqpuurr9iDOlHefNyiwtr6yuZddzG5tb2zv53b2mCmNJoUFDHsq2TxRwJqChmebQjiSQwOfQ8sdnqd+6AalYKC71JAIvIEPBBowSbaT6VS9fcOzKScUtl/Bv4trOHIXTl1mKp1ov/9rthzQOQGjKiVId14m0lxCpGeUwzXVjBRGhYzKEjqGCBKC8ZB50io+M0seDUJoSGs/VrxMJCZSaBL7pDIgeqZ9eKv7ldWI9KHsJE1GsQdDFokHMsQ5xejXuMwlU84khhEpmsmI6IpJQbX6TM0/4vBT/T5pF2z2xi3WnUD1HC2TRATpEx8hFJVRFF6iGGogiQLfoHj1Y19ad9WjNFq0Z62NmH32D9fwOka2R7g==</latexit>

Figure 5: The whole pipeline of improved stereo depth estimation: (top) the stereo depth network (SDN)
constructs a depth cost volume from left-right images and is optimized for direct depth estimation; (bottom) the
graph-based depth correction algorithm (GDC) refines the depth map by leveraging sparser LiDAR signal. The
gray arrows indicates the observer’s view point. We superimpose the (green) ground-truth 3D box of a car, the
same one in Figure 1. The corrected points (blue; bottom right) are perfectly located inside the ground truth box.

to construct Cdepth from Cdisp using the depth-to-disparity transform in Equation 2. Specifically, we
consider disparity in the range of [0, 191] following PSMNet (Chang & Chen, 2018), and consider
depth in the range of [1m, 80m] and set the gird of depth in Cdepth to be 1m. Figure 5 (top) depicts
our stereo depth network (SDN) pipeline. Crucially, all convolution operations are operated on
Cdepth exclusively. Figure 4 compares the median values of absolute depth estimation errors using the
disparity cost volume (disparity net: i.e., PSMNet) and the depth cost volume (SDN). As expected,
for faraway depth, SDN leads to drastically smaller errors with only marginal increases in the very
near range (which disparity based methods over-optimize). See the appendix for more details.

4 DEPTH CORRECTION

Our SDN significantly improves depth estimation and more precisely renders the object contours
(see Figure 3). However, there is a fundamental limitation in stereo because of the discrete nature of
pixels: the disparity, being the difference in the horizontal coordinate between corresponding pixels,
has to be quantized at the level of individual pixels while the depth is continuous. Although the
quantization error can be alleviated with higher resolution images, the computational depth prediction
cost scales cubically with resolution— pushing the limits of GPUs in autonomous vehicles.

We therefore explore a hybrid approach by leveraging a cheap LiDAR with extremely sparse (e.g.,
4 beams) but accurate depth measurements to correct this bias. We note that such sensors are too
sparse to capture object shapes and cannot be used alone for detection. However, by projecting the
LiDAR points into the image plane we obtain exact depths on a small portion of “landmark” pixels.

We present a graph-based depth correction (GDC) algorithm that effectively combines the dense stereo
depth that has rendered object shapes and the sparse accurate LiDAR measurements. Conceptually,
we expect the corrected depth map to have the following properties: globally, landmark pixels
associated with LiDAR points should possess the exact depths; locally, object shapes captured by
neighboring 3D points, back-projected from the input depth map (cf. Equation 1), should be preserved.
Figure 5 (bottom) illustrates the algorithm.

Input Matching. We take as input the two point clouds from LiDAR (L) and Pseudo-LiDAR (PL) by
stereo depth estimation. The latter is obtained by converting pixels (u, v) with depth z to 3D points
(xu, yv, z). First, we characterize the local shapes by the directed K-nearest-neighbor (KNN) graph
in the PL point cloud (using accelerated KD-Trees (Shevtsov et al., 2007)) that connects each 3D
point to its KNN neighbors with appropriate weights . Similarly, we can project the 3D LiDAR points
onto pixel locations (u, v) and match them to corresponding 3D stereo points. W.l.o.g. assume that
we are given “ground truth” LiDAR depth for the first n points and no ground truth for the remaining
m points. We refer to the 3D stereo depth estimates as Z ∈ Rn+m and the LiDAR depths as G ∈ Rn.

5

Under review as a conference paper at ICLR 2020

Edge weights. To construct the KNN graph in 3D we ignore the LiDAR information on the first
n points and only use their predicted stereo depth in Z. Let Ni denote the set of neighbors of
the ith point. Further, let W ∈ R(n+m)×(n+m) denote the weight matrix, where Wij denotes the
edge-weight between points i and j. Inspired by prior work in manifold learning (Roweis & Saul,
2000; Weinberger et al., 2005) we choose the weights to be the coefficients that reconstruct the depth
of any point from the depths of its neighbors inNi. We can solve for these weights with the following
constrained quadratic optimization problem:

W = argminW ‖Z −WZ‖22, s.t. W1 = 1 and Wij = 0 if j /∈ Ni. (7)

Here 1 ∈ Rn+m denotes the all-ones vector. As long as we pick k > 3 and the points are in general
position there are infinitely many solutions that satisfy Z =WZ, and we pick the solution with the
minimum L2 norm (obtained with slight L2 regularization).

Depth Correction. Let us denote the corrected depth values as Z ′ ∈ Rn+m, with Z ′ = [Z ′L;Z
′
PL]

and Z ′L ∈ Rn and Z ′PL ∈ Rm. For the n points with LiDAR measurements we update the depth to
the (ground truth) values Z ′L = G. We then solve for Z ′PL given G and the weighted KNN graph
encoded in W . Concretely, we update the remaining depths Z ′PL such that the depth of any point i
can still be be reconstructed with high fidelity as a weighted sum of its KNN neighbors’ depths using
the learned weights W ; i.e. if point i : 1 ≤ i ≤ n is moved to its new depth Gi, then its neighbors in
Ni must also be corrected such that Gi ≈

∑
j∈Ni

WijZ
′
j . Further, the neighbors’ neighbors must be

corrected and the depth of the few n points propagates across the entire graph. We can solve for the
final Z ′ directly with another quadratic optimization:

Z ′ = argminZ′ ‖Z ′ −WZ ′‖2, s.t. Z ′1:n = G. (8)

To illustrate the correction process, imagine the simplest case where the depth of only a single point
(n = 1) is updated to G1 = Z1 + δ. A new optimal depth for Equation 8 is to move all the remaining
points similarly, i.e. Z ′ = Z + 1δ: as Z =WZ and W1 = 1 we must have W (Z + 1δ) = Z + 1δ.
In the setting with n > 1, the least-squares loss ensures a soft diffusion between the different LiDAR
depth estimates. Both optimization problems in Equation 7 and Equation 8 can be solved exactly and
efficiently with sparse matrix solvers. We summarize the procedure as an algorithm in the appendix.
From the view of graph-based manifold learning, our GDC algorithm is reminiscent of locally linear
embeddings (Roweis & Saul, 2000) with landmarks to guide the final solution (Weinberger et al.,
2005). Figure 1 illustrates beautifully how the initial 3D point cloud from SDN (purple) of a car in
the KITTI dataset is corrected with a few sparse LiDAR measurements (yellow). The resulting points
(blue) are right inside the ground-truth box and clearly show the contour of the car. Figure 4 shows
the additional improvement from the GDC (blue) over the pure SDN depth estimates. The error
(calculated only on non-landmark pixels) is corrected over the entire image where many regions have
no LiDAR measurements. For objects such as cars the improvements through GDC are far more
pronounced, as these typically are touched by the four LiDAR beams and can be corrected effectively.

5 EXPERIMENTS

5.1 SETUP

We refer to our combined method (SDN and GDC) for 3D object detection as PSEUDO-LIDAR++
(PL++ in short). To analyze the contribution of each component, we evaluate SDN and GDC
independently and jointly across several settings. For GDC we set k = 10 and consider adding signal
from a (simulated) 4-beam LiDAR, unless stated otherwise.

Dataset, Metrics, and Baselines. We evaluate on the KITTI dataset (Geiger et al., 2013; 2012),
which contains 7,481 and 7,518 images for training and testing. We follow (Chen et al., 2015) to
separate the 7,481 images into 3,712 for training and 3,769 validation. For each (left) image, KITTI
provides the corresponding right image, the 64-beam Velodyne LiDAR point cloud, the camera
calibration matrices, and the bounding boxes. We focus on 3D object detection and bird’s-eye-view
(BEV) localization and report results on the validation set. Specifically, we focus on the “car”
category, following Chen et al. (2017) and Xu et al. (2018). We report average precision (AP) with
IoU (Intersection over Union) thresholds at 0.5 and 0.7. We denote AP for the 3D and BEV tasks
by AP3D and APBEV. KITTI defines the easy, moderate, and hard settings, in which objects with 2D
box heights smaller than or occlusion/truncation levels larger than certain thresholds are disregarded.

6

Under review as a conference paper at ICLR 2020

Table 1: 3D object detection results on KITTI validation. We report APBEV / AP3D (in %) of the car
category, corresponding to average precision of the bird’s-eye view and 3D object detection. We arrange methods
according to the input signals: M for monocular images, S for stereo images, L for 64-beam LiDAR, and L# for
sparse 4-beam LiDAR. PL stands for PSEUDO-LIDAR. Our PSEUDO-LIDAR ++ (PL++) with enhanced depth
estimation — SDN and GDC— are in blue. Methods with 64-beam LiDAR are in gray. Best viewed in color.

IoU = 0.5 IoU = 0.7
Detection algo Input Easy Moderate Hard Easy Moderate Hard

3DOP S 55.0 / 46.0 41.3 / 34.6 34.6 / 30.1 12.6 / 6.6 9.5 / 5.1 7.6 / 4.1
MLF-STEREO S - 53.7 / 47.4 - - 19.5 / 9.8 -
S-RCNN S 87.1 / 85.8 74.1 / 66.3 58.9 / 57.2 68.5 / 54.1 48.3 / 36.7 41.5 / 31.1
PL: AVOD S 89.0 / 88.5 77.5 / 76.4 68.7 / 61.2 74.9 / 61.9 56.8 / 45.3 49.0 / 39.0
PL: PIXOR? S 89.0 / - 75.2 / - 67.3 / - 73.9 / - 54.0 / - 46.9 / -
PL: P-RCNN S 88.4 / 88.0 76.6 / 73.7 69.0 / 67.8 73.4 / 62.3 56.0 / 44.9 52.7 / 41.6
PL++: AVOD S 89.4 / 89.0 79.0 / 77.8 70.1 / 69.1 77.0 / 63.2 63.7 / 46.8 56.0 / 39.8
PL++: PIXOR? S 89.9 / - 78.4 / - 74.7 / - 79.7 / - 61.1 / - 54.5 / -
PL++: P-RCNN S 89.8 / 89.7 83.8 / 78.6 77.5 / 75.1 82.0 / 67.9 64.0 / 50.1 57.3 / 45.3
PL++: AVOD L# + S 90.2 / 90.1 87.7 / 86.9 79.8 / 79.2 86.8 / 70.7 76.6 / 56.2 68.7 / 53.4
PL++: PIXOR? L# + S 95.1 / - 85.1 / - 78.3 / - 84.0 / - 71.0 / - 65.2 / -
PL++: P-RCNN L# + S 90.3 / 90.3 87.7 / 86.9 84.6 / 84.2 88.2 / 75.1 76.9 / 63.8 73.4 / 57.4
AVOD L + M 90.5 / 90.5 89.4 / 89.2 88.5 / 88.2 89.4 / 82.8 86.5 / 73.5 79.3 / 67.1
PIXOR? L + M 94.2 / - 86.7 / - 86.1 / - 85.2 / - 81.2 / - 76.1 / -
P-RCNN L 97.3 / 97.3 89.9 / 89.8 89.4 / 89.3 90.2 / 89.2 87.9 / 78.9 85.5 / 77.9

We compare to four stereo-based detectors: PSEUDO-LIDAR (PL in short) (Wang et al., 2019),
3DOP (Chen et al., 2015), S-RCNN (Li et al., 2019b), and MLF-STEREO (Xu & Chen, 2018).

Stereo depth network (SDN). We use PSMNET (Chang & Chen, 2018) as the backbone for our
stereo depth estimation network (SDN). We follow Wang et al. (2019) to pre-train SDN on the
synthetic Scene Flow dataset (Mayer et al., 2016) and fine-tune it on the 3,712 training images of
KITTI. We obtain the depth ground truth by projecting the corresponding LiDAR points onto images.
We also train a PSMNET in the same way for comparison, which minimizes disparity error.

3D object detection. We apply three algorithms: AVOD (Ku et al., 2018), PIXOR (Yang et al.,
2018b), and P-RCNN (Shi et al., 2019). All utilize information from LiDAR and/or monocular
images. We use the released implementations of AVOD (specifically, AVOD-FPN) and P-RCNN.
We implement PIXOR ourselves with a slight modification to include visual information (denoted
as PIXOR?). We train all models on the 3,712 training data from scratch by replacing the LiDAR
points with pseudo-LiDAR data generated from stereo depth estimation. See the appendix for details.

Sparser LiDAR. We simulate sparser LiDAR signal with fewer beams by first projecting the 64-beam
LiDAR points onto a 2D plane of horizontal and vertical angles. We quantize the vertical angles into
64 levels with an interval of 0.4◦, which is close to the SPEC of the 64-beam LiDAR. We keep points
fallen into a subset of beams to mimic the sparser signal. See the appendix for details.

5.2 EXPERIMENTAL RESULTS

Results on the KITTI val set. We summarize the main results on KITTI object detection in Table 1.
Several important trends can be observed: 1) Our PL++ with enhanced depth estimations by SDN
and GDC yields consistent improvement over PL across all settings; 2) PL++ with GDC refinement
of 4-beam LiDAR (Input: L# + S) performs significantly better than PL++ with only stereo inputs
(Input: S); 3) PL experiences a substantial drop in accuracy from IoU at 0.5 to 0.7 for the hard setting.
This suggests that while PL detects faraway objects, it mislocalizes them, likely placing them at the
wrong depth. This causes the object to be considered a missed detection at higher overlap thresholds.
Interestingly, here is where we experience the largest gain — from PL: P-RCNN (APBEV = 52.7)
to PL++: P-RCNN (APBEV = 73.4) with input as L# + S. Note that the majority of the gain comes
from GDC, as PL++ with the stereo-only version only improving the score to 57.3 APBEV. 4) The
gap between PL++ and LiDAR is at most 13% APBEV, even at the hard setting under IoU at 0.7. 5)
For IoU at 0.5, with the aid of only 4 LiDAR beams, PL++ achieves results comparable to models
with 64-beam LiDAR signals.

Results on the KITTI test set. Table 2 summarizes results on the car category on the KITTI test set.
We see a similar gap between our methods and LiDAR as on the validation set, suggesting that our
improvement is not particular to the validation data. Our approach without LiDAR refinement (pure
SDN) is placed at the top position among all the image-based algorithms on the KITTI leaderboard.

7

Under review as a conference paper at ICLR 2020

Table 2: Results on the car category on the test set.
We compare PL++ (blue) and 64-beam LiDAR (gray),
using P-RCNN, and report APBEV / AP3D at IoU=0.7.

Input signal Easy Moderate Hard
PL++ (SDN) 75.5 / 60.4 57.2 / 44.6 53.4 / 38.5
PL++ (SDN +GDC) 83.8 / 68.5 73.5 / 54.7 66.5 / 51.2
LiDAR 89.5 / 85.9 85.7 / 75.8 79.1 / 68.3

Table 3: Ablation study on depth estimation. We
report APBEV / AP3D (in %) of the car category at
IoU= 0.7 on KITTI validation. DL: depth loss.

Stereo depth Easy Moderate Hard
PSMNET 73.4 / 62.3 56.0 / 44.9 52.7 / 41.6
PSMNET + DL 80.1 / 65.5 61.9 / 46.8 56.0 / 43.0
SDN 82.0 / 67.9 64.0 / 50.1 57.3 / 45.3

Table 4: Ablation study on leveraging sparse Li-
DAR. We report APBEV / AP3D (in %) of the car cate-
gory at IoU= 0.7 on KITTI validation. L#: 4-beam
LiDAR signal alone. SDN + L#: pseudo-LiDAR with
depths of landmark pixels replaced by 4-beam LiDAR.
The best result of each column is in bold font.

Stereo depth Easy Moderate Hard
SDN 82.0 / 67.9 64.0 / 50.1 57.3 / 45.3
L# 73.2 / 56.1 71.3 / 53.1 70.5 / 51.5
SDN + L# 86.3 / 72.0 73.0 / 56.1 67.4 / 54.1
SDN + GDC 88.2 / 75.1 76.9 / 63.8 73.4 / 57.4

Table 5: Results of pedestrians (top) and cy-
clists (bottom) on KITTI validation. We apply F-
POINTNET Qi et al. (2018) and report APBEV / AP3D
(in %) at IoU= 0.5, following Wang et al. (2019).

Stereo depth Easy Moderate Hard
PSMNET 41.3 / 33.8 34.9 / 27.4 30.1 / 24.0
SDN 48.7 / 40.9 40.4 / 32.9 34.9 / 28.8
SDN + GDC 63.7 / 53.6 53.8 / 44.4 46.8 / 38.1
PSMNET 47.6 / 41.3 29.9 / 25.2 27.0 / 24.9
SDN 49.3 / 44.6 30.4 / 28.7 28.6 / 26.4
SDN + GDC 65.7 / 60.8 45.8 / 40.8 42.8 / 38.0

In the following, we conduct a series of experiments to analyze the performance gain by our
approaches and discuss several key observations. We mainly experiment with P-RCNN: we find that
the results with AVOD and PIXOR? follow similar trends and thus include them in the appendix.

Depth loss and depth cost volume. To turn a disparity network (e.g., PSMNET) into SDN, there
are two changes: 1) change the disparity loss into the depth loss; 2) change the disparity cost volume
into the depth cost volume. In Table 3, we uncover the effect of these two changes separately. On the
APBEV/AP3D (moderate) metric, the depth loss gives us a 6%/2% improvement and the depth cost
volume brings a gain of another 2− 3 percentage points.

Impact of sparse LiDAR beams. We leverage 4-beam LiDAR to correct stereo depth using GDC.
However, it is possible that gains in 3D object detection come entirely from the new LiDAR sensor and
that the stereo estimates are immaterial. In Table 4, we study this question by comparing the detection
results against those of models using 1) sole 4-beam LiDAR point clouds and 2) pseudo-LiDAR
point clouds with depths of landmark pixels replaced by 4-beam LiDAR: i.e., in depth correction, we
only correct depths of the landmark pixels without propagation. It can be seen that 4-beam LiDAR
itself performs fairly well on locating faraway objects but cannot capture nearby objects precisely,
while simply replacing pseudo-LiDAR with LiDAR at the landmark pixels prevents the model from
detecting faraway object accurately. In contrast, our proposed GDC method effectively combines the
merits of the two signals, achieving superior performance than using them alone.

Pedestrian and cyclist detection. For a fair comparison to (Wang et al., 2019), we apply F-
POINTNET (Qi et al., 2018) for detecting pedestrians and cyclists. Table 5 shows the results:
our methods significantly boosts the performance.

Additional results, analyses, and discussions. We provide results of PSEUDO-LIDAR ++ with
fewer LiDAR beams, comparisons to depth completion, analysis on depth quality and detection
accuracy, run time, failure cases, and qualitative results in the appendix. With simple optimizations,
GDC runs in 90 ms/frame using a single GPU (7.7 ms for KD-tree construction and search).

6 CONCLUSION

In this paper we made two contributions to improve the 3D object detection in autonomous vehicles
without expensive LiDAR. First, we identify the disparity estimation as a main source of error for
stereo-based systems and propose a novel approach to learn depth directly end-to-end instead of
through disparity estimates. Second, we advocate that one should not use expensive LiDAR sensors to
learn the local structure and depth of objects. Instead one can use commodity stereo cameras for the
former and a cheap sparse LiDAR to correct the systematic bias in the resulting depth estimates. We
provide a novel graph propagation algorithm that integrates the two data modalities and propagates
the sparse yet accurate depth estimates using two sparse matrix solvers. The resulting system, Pseudo-
LiDAR++, performs almost on par with 64-beam LiDAR systems for $75,000 but only requires 4
beams and two commodity cameras, which could be obtained with a total cost of less than $1,000.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Céline Teulière, and Thierry Chateau. Deep
manta: A coarse-to-fine many-task network for joint 2d and 3d vehicle analysis from monocular
image. In CVPR, 2017.

Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In CVPR, 2018.

Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G Berneshawi, Huimin Ma, Sanja Fidler, and
Raquel Urtasun. 3d object proposals for accurate object class detection. In NIPS, 2015.

Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel Urtasun. Monocu-
lar 3d object detection for autonomous driving. In CVPR, 2016.

Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network for
autonomous driving. In CVPR, 2017.

Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma, Sanja Fidler, and Raquel Urtasun. 3d object
proposals using stereo imagery for accurate object class detection. IEEE transactions on pattern
analysis and machine intelligence, 40(5):1259–1272, 2018.

Xinjing Cheng, Peng Wang, and Ruigang Yang. Depth estimation via affinity learned with convolu-
tional spatial propagation network. In ECCV, 2018.

Xinxin Du, Marcelo H Ang Jr, Sertac Karaman, and Daniela Rus. A general pipeline for 3d detection
of vehicles. In ICRA, 2018.

Martin Engelcke, Dushyant Rao, Dominic Zeng Wang, Chi Hay Tong, and Ingmar Posner. Vote3deep:
Fast object detection in 3d point clouds using efficient convolutional neural networks. In ICRA,
2017.

Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao. Deep ordinal
regression network for monocular depth estimation. In CVPR, pp. 2002–2011, 2018.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In CVPR, 2012.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monocular depth estimation
with left-right consistency. In CVPR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.

Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven Waslander. Joint 3d proposal
generation and object detection from view aggregation. In IROS, 2018.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpil-
lars: Fast encoders for object detection from point clouds. In CVPR, 2019.

Bo Li. 3d fully convolutional network for vehicle detection in point cloud. In IROS, 2017.

Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from 3d lidar using fully convolutional network.
In Robotics: Science and Systems, 2016.

Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and Xiaogang Wang. Gs3d: An efficient 3d object
detection framework for autonomous driving. In CVPR, 2019a.

Peiliang Li, Xiaozhi Chen, and Shaojie Shen. Stereo r-cnn based 3d object detection for autonomous
driving. In CVPR, 2019b.

9

Under review as a conference paper at ICLR 2020

Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. Deep continuous fusion for multi-sensor
3d object detection. In ECCV, 2018.

Tsung-Yi Lin, Piotr Dollár, Ross B Girshick, Kaiming He, Bharath Hariharan, and Serge J Belongie.
Feature pyramid networks for object detection. In CVPR, volume 1, pp. 4, 2017.

Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac Karaman. Self-supervised sparse-to-
dense: self-supervised depth completion from lidar and monocular camera. In ICRA, 2019.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and
Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene
flow estimation. In CVPR, 2016.

Gregory P Meyer, Jake Charland, Darshan Hegde, Ankit Laddha, and Carlos Vallespi-Gonzalez.
Sensor fusion for joint 3d object detection and semantic segmentation. arXiv preprint
arXiv:1904.11466, 2019a.

Gregory P Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, and Carl K Wellington.
Lasernet: An efficient probabilistic 3d object detector for autonomous driving. In CVPR, 2019b.

Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Košecká. 3d bounding box estimation
using deep learning and geometry. In CVPR, 2017.

Cuong Cao Pham and Jae Wook Jeon. Robust object proposals re-ranking for object detection in au-
tonomous driving using convolutional neural networks. Signal Processing: Image Communication,
53:110–122, 2017.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In CVPR, 2017a.

Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum pointnets for 3d object
detection from rgb-d data. In CVPR, 2018.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In NIPS, 2017b.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NIPS, 2015.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
science, 2000.

Maxim Shevtsov, Alexei Soupikov, and Alexander Kapustin. Highly parallel fast kd-tree construction
for interactive ray tracing of dynamic scenes. In Computer Graphics Forum, volume 26, pp.
395–404. Wiley Online Library, 2007.

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal generation and
detection from point cloud. In CVPR, 2019.

Paden Tomasello, Sammy Sidhu, Anting Shen, Matthew W Moskewicz, Nobie Redmon, Gataryi
Joshi, Romi Phadte, Paras Jain, and Forrest Iandola. Dscnet: Replicating lidar point clouds with
deep sensor cloning. arXiv preprint arXiv:1811.07070, 2018.

Tsun-Hsuan Wang, Fu-En Wang, Juan-Ting Lin, Yi-Hsuan Tsai, Wei-Chen Chiu, and Min Sun. Plug-
and-play: Improve depth estimation via sparse data propagation. arXiv preprint arXiv:1812.08350,
2018a.

Yan Wang, Zihang Lai, Gao Huang, Brian H Wang, Laurens van der Maaten, Mark Campbell, and
Kilian Q Weinberger. Anytime stereo image depth estimation on mobile devices. arXiv preprint
arXiv:1810.11408, 2018b.

Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, and Kilian Q.
Weinberger. Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for
autonomous driving. In CVPR, 2019.

10

Under review as a conference paper at ICLR 2020

Kilian Q. Weinberger, Benjamin Packer, and Lawrence K. Saul. Nonlinear dimensionality reduction
by semidefinite programming and kernel matrix factorization. In AISTATS, 2005.

Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese. Data-driven 3d voxel patterns for object
category recognition. In CVPR, 2015.

Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese. Subcategory-aware convolutional
neural networks for object proposals and detection. In WACV, 2017.

Zhu Xiaojin and Ghahramani Zoubin. Learning from labeled and unlabeled data with label propaga-
tion. Tech. Rep., Technical Report CMU-CALD-02–107, Carnegie Mellon University, 2002.

Bin Xu and Zhenzhong Chen. Multi-level fusion based 3d object detection from monocular images.
In CVPR, 2018.

Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfusion: Deep sensor fusion for 3d bounding
box estimation. In CVPR, 2018.

Koichiro Yamaguchi, David McAllester, and Raquel Urtasun. Efficient joint segmentation, occlusion
labeling, stereo and flow estimation. In ECCV, 2014.

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors, 18
(10):3337, 2018.

Bin Yang, Ming Liang, and Raquel Urtasun. Hdnet: Exploiting hd maps for 3d object detection. In
Conference on Robot Learning, pp. 146–155, 2018a.

Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object detection from point clouds.
In CVPR, 2018b.

Yanchao Yang, Alex Wong, and Stefano Soatto. Dense depth posterior (ddp) from single image and
sparse range. In CVPR, 2019.

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
In CVPR, 2018.

11

Under review as a conference paper at ICLR 2020

Appendix
We provide details omitted in the main text.

• Appendix A: details on constructing the depth cost volume (section 3 of the main paper).

• Appendix B: detailed implementation of the GDC algorithm (section 4 of the main paper).

• Appendix C: additional details of experimental setups (subsection 5.1 of the main paper).

• Appendix D: additional results, analyses, and discussions (subsection 5.2 of the main paper).

A DEPTH COST VOLUME

With Equation 2, we know where each grid (u, v, z) in Cdepth corresponds to in Cdisp (may not be
on a grid). We can then obtain features for each grid in Cdepth (i.e., Cdepth(u, v, z, :)) by bilinear

interpolation over features on grids of Cdisp around the non-grid location (i.e.,
(
u, v,

fU × b
z

)
). We

applied the “grid_sample” function in PyTorch for bilinear interpolation.

We use PSMNET (Chang & Chen, 2018) as the backbone for our stereo depth estimation network
(SDN). The only change is to construct the depth cost volume before performing 3D convolutions.

B GRAPH-BASED DEPTH CORRECTION (GDC) ALGORITHM

Here we present the GDC algorithm in detail (see algorithm 1). The two steps described in the
main paper can be easily turned into two (sparse) linear systems and then solved by using Lagrange
multipliers. For the first step, we solve a problem that is slightly modified from that described in the
main paper (for more accurate reconstruction). For the second step, we use the Conjugate Gradient
(CG) to iteratively solve the sparse linear system.

Algorithm 1: Graph-based depth correction (GDC). “;” stands for column-wise concatenation.

Input: Stereo depth map Z ∈ R(n+m)×1, the corresponding pseudo-LiDAR (PL) point cloud
P ∈ R(n+m)×3, and LiDAR depths G ∈ Rn×1 on the first the n pixels.

Output: Corrected depth map Z ′ ∈ R(n+m)×1

function GDC(Z,P,G,K)
Solve: W = argminW∈R(n+m)×(n+m) ‖W‖2

s.t. Z −W · Z = 0,
Wij = 0 if j /∈ Ni (i.e., the set of neighbors of the ith point) according to P ,∑

j Wij = 1 for ∀i = 1, . . . , n+m.
Solve: Z ′PL = argminZ′PL∈Rm×1 ‖[G;Z ′PL]−W [G;Z ′PL]‖2
return [G;Z ′PL]

end

C EXPERIMENTAL SETUP

C.1 SPARSE LIDAR GENERATION

In this section, we explain how we generate sparser LiDAR with fewer beams from a 64-beam LiDAR
point cloud from KITTI dataset in detail. For every point (xi, yi, zi) ∈ R3 of the point cloud in one
scene (in LiDAR coordinate system (x: front, y: left, z: up, and (0, 0, 0) is the location of the LiDAR
sensor)), we compute the elevation angle θi to the LiDAR sensor as

θi = arg cos

(√
x2i + y2i√

x2i + y2i + z2i

)
.

12

Under review as a conference paper at ICLR 2020

We order the points by their elevation angles and slice them into separate lines by step 0.4◦, starting
from −23.6◦ (close to the Velodyne 64-beam LiDAR SPEC). We select LiDAR points whose
elevation angles fall within [−2.4◦,−2.0◦) ∪ [−0.8◦,−0.4◦) to be the 2-beam LiDAR signal, and
similarly [−2.4◦,−2.0◦)∪ [−1.6◦,−1.2◦)∪ [−0.8◦,−0.4◦)∪ [0.0◦, 0.4◦) to be the 4-beam LiDAR
signal. We choose them in such a way that consecutive lines has a 0.8◦ interval, following the SPEC
of the “cheap” 4-beam LiDAR ScaLa. We visualize these sparsified LiDAR point clouds from the
bird’s-eye view on one example scene in Figure 6.

(a) 2-beam (b) 4-beam (c) 64-beam (full)

Figure 6: Bird’s-eye views of sparsified LiDAR on an example scene. The observer is on the
bottom side looking up. We filter out points invisible from the left image. (One floor square is 10m ×
10m.)

C.2 3D OBJECT DETECTION ALGORITHMS

In this section, we provide more details about the way we train 3D object detection models on
pseudo-LiDAR point clouds. For AVOD, we use the same model as in (Wang et al., 2019). For
P-RCNN, we use the implementation provided by the authors. Since the P-RCNN model exploits
the sparse nature of LiDAR point clouds, when training it with pseudo-LiDAR input, we will first
sparsify the point clouds into 64 beams using the method described in subsection C.1. For PIXOR?,
we implement the same base model structure and data augmentation specified by Yang et al. (2018b),
but without the “decode fine-tune” step and focal loss. Inspired by the trick in (Liang et al., 2018),
we add another image feature (ResNet-18 by He et al. (2016)) branch along the LiDAR branch,
and concatenate the corresponding image features onto the LiDAR branch at each stage. We train
PIXOR? using RMSProp with momentum 0.9, learning rate 10−5 (decay by 10 after 50 and 80
epochs) for 90 epochs. The BEV evaluation results are similar to the reported results (see Table 1).

D ADDITIONAL RESULTS, ANALYSES, AND DISCUSSIONS

D.1 ABLATION STUDY

In Table 6 and Table 7 we provide more experimental results aligned with experiments in subsec-
tion 5.2 of the main paper. We conduct the same experiments on two other models, AVOD and
PIXOR?, and observe similar trends of improvements brought by learning with the depth loss (from
PSMNET to PSMNET +DL), constructing the depth cost volume (from PSMNET +DL to SDN), and
applying GDC to correct the bias in stereo depth estimation (comparing SDN +GDC with SDN).

We note that, in Table 7, results of AVOD (or PIXOR?) with SDN + L# are worse than those with L#
at the moderate and hard settings. This observation is different from that in Table 4, where P-RCNN
with SDN + L# outperforms P-RCNN with L# in 5 out of 6 comparisons. We hypothesize that this
is because P-RCNN takes sparsified inputs (see subsection C.2) while AVOD and PIXOR? take
dense inputs. In the later case, the four replaced LiDAR beams in SDN + L# will be dominated by
the dense stereo depths so that SDN + L# is worse than L#.

13

Under review as a conference paper at ICLR 2020

D.2 USING FEWER LIDAR BEAMS

In PL++ (i.e., SDN + GDC), we use 4-beam LiDAR to correct the predicted point cloud. In Table 8,
we investigate using fewer (and also potentially cheaper) LiDAR beams for depth correction. We
observe that even with 2 beams, GDC can already manage to combine the two signals and yield a
better performance than using 2-beam LiDAR or pseudo-LiDAR alone.

Table 6: Ablation study on stereo depth estimation. We report APBEV / AP3D (in %) of the car
category at IoU= 0.7 on the KITTI validation set. DL stands for depth loss.

Depth Estimation PIXOR? AVOD
Easy Moderate Hard Easy Moderate Hard

PSMNET 73.9 / - 54.0 / - 46.9 / - 74.9 / 61.9 56.8 / 45.3 49.0 / 39.0
PSMNET + DL 75.8 / - 56.2 / - 51.9 / - 75.7 / 60.5 57.1 / 44.8 49.2 / 38.4
SDN 79.7 / - 61.1 / - 54.5 / - 77.0 / 63.2 63.7 / 46.8 56.0 / 39.8

Table 7: Ablation study on leveraging sparse LiDAR. We report APBEV / AP3D (in %) of the car
category at IoU= 0.7 on the KITTI validation set. L# stands for 4-beam LiDAR signal. SDN +L#
means we replace the depth of a portion of pseudo-LiDAR points (i.e., landmark pixels) by L#.

Depth Estimation PIXOR? AVOD
Easy Moderate Hard Easy Moderate Hard

SDN 79.7 / - 61.1 / - 54.5 / - 77.0 / 63.2 63.7 / 46.8 56.0 / 39.8
L# 72.0 / - 64.7 / - 63.6 / - 77.0 / 62.1 68.8 / 54.7 67.1 / 53.0
SDN + L# 75.6 / - 59.4 / - 53.2 / - 84.1 / 66.0 67.0 / 53.1 58.8 / 46.4
SDN + GDC 84.0 / - 71.0 / - 65.2 / - 86.8 / 70.7 76.6 / 56.2 68.7 / 53.4

Table 8: Ablation study on the sparsity of LiDAR. We report APBEV / AP3D (in %) of the car
category at IoU= 0.7 on the KITTI validation set. L# stands for using sparse LiDAR signal alone.
The number in brackets indicates the number of beams in use.

Depth Estimation P-RCNN PIXOR?

Easy Moderate Hard Easy Moderate Hard
SDN 82.0 / 67.9 64.0 / 50.1 57.3 / 45.3 79.7 / - 61.1 / - 54.5 / -
L# (2) 69.2 / 46.3 62.8 / 41.9 61.3 / 40.0 66.8 / - 55.5 / - 53.3 / -
L# (4) 73.2 / 56.1 71.3 / 53.1 70.5 / 51.5 72.0 / - 64.7 / - 63.6 / -
SDN + GDC (2) 87.2 / 73.3 72.0 / 56.6 67.1 / 54.1 82.0 / - 65.3 / - 61.7 / -
SDN + GDC (4) 88.2 / 75.1 76.9 / 63.8 73.4 / 57.4 84.0 / - 71.0 / - 65.2 / -

D.3 DEPTH CORRECTION VS. DEPTH COMPLETION

We compare our GDC algorithm for depth correction to depth completion algorithms, which aim
to “densify” LiDAR data beyond the beam lines (Wang et al., 2018a; Tomasello et al., 2018; Ma
et al., 2019; Yang et al., 2019; Cheng et al., 2018). We note that most depth completion approaches
take as input a 64-beam LiDAR and a single image, while our focus is on fusing a much sparser
4-beam LiDAR and stereo depths. As such, the two problems are not commensurate. Also, our
GDC algorithm is a general, simple, inference-time approach that requires no training, unlike prior
learning-based approaches to depth completion.

Here we empirically compare to PNP (Wang et al., 2018a), a recently proposed depth completion
algorithm compatible with any (even stereo) depth estimation network, similar to GDC. We use
SDN for initial depth estimation, and evaluate GDC and PNP by randomly selecting a fraction of
LiDAR points as provided ground truths and calculating the median absolute depth error on the
remaining LiDAR points. As shown in Figure 7, GDC outperforms PNP by a large margin. Table 9
shows a further comparison to PNP on 3D object detection. We apply PNP and GDC respectively to
correct the depth estimates obtained from SDN, train a P-RCNN or PIXOR? using the resulting
pseudo-LiDAR points on the KITTI training set, and compare the detection results on the KITTI
validation set. In either case, SDN + GDC outperforms SDN + PNP by a notable margin.

14

Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.0
fraction of ground-truth LiDAR points used

0.025

0.050

0.075

0.100

0.125

0.150

m
ed

ia
n

er
ro

r i
n

a
sc

en
e GDC

PnP

Figure 7: Comparison of GDC and PNP for depth correction. We report the mean absolute error
on the KITTI validation set. See text for details.

Table 9: Comparison of GDC and PNP for 3D object detection. We report APBEV / AP3D (in %)
of the car category at IoU= 0.7 on the KITTI validation set, using SDN + PNP or SDN + GDC for
depth estimation and P-RCNN or PIXOR? for detection.

Input signal P-RCNN PIXOR?

Easy Moderate Hard Easy Moderate Hard
SDN + PNP 86.3 / 72.1 73.3 / 58.9 67.2 / 54.2 79.1 / - 64.2 / - 54.0 / -
SDN + GDC 88.2 / 75.1 76.9 / 63.8 73.4 / 57.4 84.0 / - 71.0 / - 65.2 / -

D.4 RUN TIME

With the following optimizations for implementation,

1. Sub-sampling pseudo-LiDAR points: keeping at most one point within a cubic of size 0.1m3

2. Limiting the pseudo-LiDAR points for depth correction: keeping only those whose elevation
angles are within [−3.0◦, 0.4◦) (the range of 4-beam LiDAR plus 0.6◦; see subsection C.1
for details)

3. After performing GDC for depth correction, combining the corrected pseudo-LiDAR points
with those outsides the elevation angles of [−3.0◦, 0.4◦)

GDC runs in 90 ms/frame using a single GPU (7.7ms for KD-tree construction and search, 46.5ms
for solving W , and 26.9ms for solving Z ′PL) with negligible performance difference (see Table 10).
For consistency, all results reported in the main paper are based on the naive implementation. Further
speedups can be achieved by CUDA programming for GPUs.

D.5 STEREO DEPTH VS. DETECTION

We quantitatively evaluate the stereo depths in Figure 4 of the main text (numerical values are listed
in Table 11). We divide pixels into beams according to their truth depths, and evaluate on pixels not
on the 4-line LiDAR. The improvement of SDN (+ GDC) over PSMNET (denoted as Disparity Net)
becomes larger as we consider pixels farther away. Table 12 further demonstrates the relationship
between depth quality and detection accuracy: SDN (+ GDC) significantly outperforms PSMNET
for detecting faraway cars. We note that, for very faraway cars (i.e., 50-70 m), the number of training

Table 10: Comparison of 3D object detection using the naive and optimized implementation of
GDC. We report APBEV / AP3D (in %) of the car category at IoU= 0.7 on the KITTI validation set,
using P-RCNN for detection.

Easy Moderate Hard
Naive 88.2 / 75.1 76.9 / 63.8 73.4 / 57.4
Optimized 87.6 / 75.0 76.3 / 63.4 73.1 / 57.0

15

Under review as a conference paper at ICLR 2020

Table 11: Median depth estimation error over various depth ranges. Here are the numerical
values of Figure 4.

Signal range (m)
0-10 10-20 20-30 30-40 40-50 50-60 60-70

PSMNet (Disparity Net) 0.04 0.11 0.36 0.83 1.24 1.98 2.43
SDN 0.07 0.12 0.30 0.60 0.89 1.31 1.73
SDN + GDC 0.07 0.12 0.27 0.51 0.74 1.03 1.53

Table 12: 3D object detection at various depth ranges. We compare different input signals. We
report APBEV / AP3D (in %) of the car category at IoU= 0.7 on the KITTI validation set, using
P-RCNN for detection. In the last two rows we show the number of car objects in KITTI object train
and validation sets within different ranges.

Input signal 0-30 m 30-50 m 50-70 m
PSMNET 65.6 / 54.0 15.8 / 6.9 0.0 / 0.0
SDN 68.6 / 56.7 27.4 / 11.3 0.7 / 0.0
SDN + GDC 84.7 / 67.8 49.9 / 31.5 2.5 / 1.0
LIDAR 88.5 / 84.0 69.9 / 51.5 8.9 / 3.4
OBJECTS-TRAIN 6903 3768 76
OBJECTS-VAL 7379 3542 39

object instances are extremely small, which suggests that the very poor performance might partially
cause by over-fitting.

D.6 FAILURE CASES AND WEAKNESS

Figure 8: IoU vs. APBEV on KITTI valida-
tion set on the car category (moderate).

There is still a gap between our approach and LiDAR
for faraway and truncated/occluded objects (see Ta-
ble 12 and Table 13). Stereo methods (SDN and
PSMNET) degrade drastically in the hard setting in
Table 13, likely due to poor depth estimates at edges
or boundaries. We further analyze APBEV at differ-
ent IoU in Figure 8. For low IoU (0.2-0.5), SDN
(+GDC) is on par with LiDAR, but the gap increases
significantly at high IoU thresholds. This suggests
that the predominant gap between our approach and
LiDAR is because of mislocalization, perhaps due to
residual inaccuracies in depth.

D.7 QUALITATIVE RESULTS

In Figure 9 and Figure 10, we show detection results using P-RCNN (with confidence > 0.95) with
different input signals on two randomly chosen scenes in the KITTI object validation set. Specifically,
we show the results from the frontal-view images and the bird’s-eye view (BEV) point clouds. In the
BEV map, the observer is on the left-hand side looking to the right. It can be seen that the point clouds
generated by PSEUDO-LIDAR ++ (SDN alone or SDN +GDC) align better with LiDAR than those

Table 13: 3D object detection at various degrees of truncation and occlusion. We follow KITTI
but do not consider MIN_HEIGHT in defining the settings. That is, the settings are defined solely
according to truncation and occlusion. We compare different input signals. We report APBEV / AP3D
(in %) of the car category at IoU= 0.7 on the KITTI validation set, using P-RCNN for detection.

Input signal Easy Moderate Hard
PSMNET 59.2 / 45.3 56.0 / 44.9 52.7 / 41.5
SDN 65.2 / 52.0 63.9 / 50.5 57.4 / 45.6
SDN + GDC 76.8 / 62.9 76.9 / 63.8 73.4 / 57.4
LIDAR 83.5 / 70.7 85.7 / 74.2 85.6 / 74.3

16

Under review as a conference paper at ICLR 2020

generated by PSEUDO-LIDAR (PSMNET). For nearby objects (i.e., bounding boxes close to the left
in the BEV map), we see that P-RCNN with any point cloud performs fairly well in localization.
However, for faraway objects (i.e., bounding boxes close to the right), PSEUDO-LIDAR with depth
estimated from PSMNET predicts objects (red boxes) deviated from the ground truths (green boxes).
Moreover, the noisy PSMNET points also leads to several false positives or negatives. In contrast, the
detected boxes by our PSEUDO-LIDAR ++, either with SDN alone or with SDN +GDC, align pretty
well with the ground truth boxes, justifying our targeted improvement in estimating faraway depths.
In Figure 10, we see one failure case for both PSEUDO-LIDAR and PSEUDO-LIDAR ++: the most
faraway car is missed, while LiDAR signal can still detect it, suggesting that for very faraway objects
stereo-based methods may still have limitation.

LiDAR Pseudo-LiDAR

Pseudo-LiDAR++ (SDN) Pseudo-LiDAR++ (SDN + GDC)

Figure 9: Qualitative Comparison. We show the detection results on a KITTI validation scene by
P-RCNN with different input point clouds. We visualize them from both frontal-view images and
bird’s-eye view (BEV) point maps. Ground-truth boxes are in green and predicted bounding boxes
are in red. The observer is at the left-hand side of the BEV map looking to the right. In other words,
ground truth boxes on the right are more faraway (i.e. deeper) from the observer, and hence hard to
localize. Best viewed in color.

17

Under review as a conference paper at ICLR 2020

LiDAR Pseudo-LiDAR

Pseudo-LiDAR++ (SDN) Pseudo-LiDAR++ (SDN + GDC)

Figure 10: Qualitative Comparison - another example. The same setup as in Figure 9

18

	Introduction
	Background
	Stereo Depth Network (SDN)
	Depth Correction
	Experiments
	Setup
	Experimental results

	Conclusion
	Depth Cost Volume
	Graph-based Depth Correction (GDC) Algorithm
	Experimental Setup
	Sparse LiDAR generation
	3D object detection algorithms

	Additional Results, Analyses, and Discussions
	Ablation study
	Using fewer LiDAR beams
	Depth correction vs. depth completion
	Run time
	Stereo depth vs. detection
	Failure cases and weakness
	Qualitative results

