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ABSTRACT

Loss functions play a crucial role in deep metric learning thus a variety of them
have been proposed. Some supervise the learning process by pairwise or triplet-
wise similarity constraints while others take the advantage of structured similarity
information among multiple data points. In this work, we approach deep metric
learning from a novel perspective. We propose instance cross entropy (ICE) which
measures the difference between an estimated instance-level matching distribution
and its ground-truth one. ICE has three main appealing properties. Firstly, sim-
ilar to categorical cross entropy (CCE), ICE has clear probabilistic interpretation
and exploits structured semantic similarity information for learning supervision.
Secondly, ICE is scalable to infinite training data as it learns on mini-batches it-
eratively and is independent of the training set size. Thirdly, motivated by our
relative weight analysis, seamless sample reweighting is incorporated. It rescales
samples’ gradients to control the differentiation degree over training examples
instead of truncating them by sample mining. In addition to its simplicity and
intuitiveness, extensive experiments on three real-world benchmarks demonstrate
the superiority of ICE.

1 INTRODUCTION

Deep metric learning (DML) aims to learn a non-linear embedding function (a.k.a. distance met-
ric) such that the semantic similarities over samples are well captured in the feature space Tadmor
et al. (2016); Sohn (2016). Due to its fundamental function of learning discriminative representa-
tions, DML has diverse applications, such as image retrieval Song et al. (2016), clustering Song
et al. (2017), verification Schroff et al. (2015), few-shot learning Vinyals et al. (2016) and zero-shot
learning Bucher et al. (2016).

A key to DML is to design an effective and efficient loss function for supervising the learning pro-
cess, thus significant efforts have been made Chopra et al. (2005); Schroff et al. (2015); Sohn (2016);
Song et al. (2016; 2017); Law et al. (2017); Wu et al. (2017). Some loss functions learn the em-
bedding function from pairwise or triplet-wise relationship constraints Chopra et al. (2005); Schroff
et al. (2015); Tadmor et al. (2016). However, they are known to not only suffer from an increasing
number of non-informative samples during training, but also incur considering only several instances
per loss computation. Therefore, informative sample mining strategies are proposed Schroff et al.
(2015); Wu et al. (2017); Wang et al. (2019b). Recently, several methods consider semantic relations
among multiple examples to exploit their similarity structure Sohn (2016); Song et al. (2016; 2017);
Law et al. (2017). Consequently, these structured losses achieve better performance than pairwise
and triple-wise approaches.

In this paper, we tackle the DML problem from a novel perspective. Specifically, we propose a novel
loss function inspired by CCE. CCE is well-known in classification problems owing to the fact
that it has an intuitive probabilistic interpretation and achieves great performance, e.g., ImageNet
classification Russakovsky et al. (2015). However, since CCE learns a decision function which
predicts the class label of an input, it learns class-level centres for reference Zhang et al. (2018);
Wang et al. (2017a). Therefore, CCE is not scalable to infinite classes and cannot generalise well
when it is directly applied to DML Law et al. (2017).

With scalability and structured information in mind, we introduce instance cross entropy (ICE)
for DML. It learns an embedding function by minimising the cross entropy between a predicted
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instance-level matching distribution and its corresponding ground-truth. In comparison with CCE,
given a query, CCE aims to maximise its matching probability with the class-level context vector
(weight vector) of its ground-truth class, whereas ICE targets at maximising its matching probability
with it similar instances. As ICE does not learn class-level context vectors, it is scalable to infinite
training classes, which is an intrinsic demand of DML. Similar to Sohn (2016); Song et al. (2016;
2017); Law et al. (2017); Goldberger et al. (2005); Wu et al. (2018), ICE is a structured loss as it also
considers all other instances in the mini-batch of a given query. We illustrate ICE with comparison
to other structured losses in Figure 1.

A common challenge of instance-based losses is that many training examples become trivial as
model improves. Therefore, we integrate seamless sample reweighting into ICE, which func-
tions similarly with various sample mining schemes Sohn (2016); Schroff et al. (2015); Shi et al.
(2016); Yuan et al. (2017); Wu et al. (2017). Existing mining methods require either separate time-
consuming process, e.g., class mining Sohn (2016), or distance thresholds for data pruning Schroff
et al. (2015); Shi et al. (2016); Yuan et al. (2017); Wu et al. (2017). Instead, our reweighting scheme
works without explicit data truncation and mining. It is motivated by the relative weight analysis
between two examples. The current common practice of DML is to learn an angular embedding
space by projecting all features to an unit hypersphere surface Song et al. (2017); Law et al. (2017);
Movshovitz-Attias et al. (2017). We identify the challenge that without sample mining, informa-
tive training examples cannot be differentiated and emphasised properly because the relative weight
between two samples is strictly bounded. We address it by sample reweighting, which rescales
samples’s gradient to control the differentiation degree among them.

Finally, for intraclass compactness and interclass separability, most methods Schroff et al. (2015);
Song et al. (2016); Tadmor et al. (2016); Wu et al. (2017) use distance thresholds to decrease in-
traclass variances and increase interclass distances. In contrast, we achieve the target from a per-
spective of instance-level matching probability. Without any distance margin constraint, ICE makes
no assumptions about the boundaries between different classes. Therefore, ICE is easier to apply in
applications where we have no prior knowledge about intraclass variances.

Our contributions are summarised: (1) We approach DML from a novel perspective by taking in the
key idea of matching probability in CCE. We introduce ICE which is scalable to an infinite number
of training classes and exploits structured information for learning supervision. (2) A seamless
sample reweighting scheme is derived for ICE to address the challenge of learning an embedding
subspace by projecting all features to an unit hypersphere surface. (3) We show the superiority of
ICE by comparing with state-of-the-art methods on three real-world datasets.

2 RELATED WORK

2.1 STRUCTURED LOSSES BY QUERY VERSUS CLASS CENTRES

Heated-up, NormFace, TADAM, DRPR, Prototypical Networks, Proxy-NCA. These methods
calculate the similarities between a query and class centres (a.k.a. proxies or prototypes) instead of
other instances Zhang et al. (2018); Wang et al. (2017a); Oreshkin et al. (2018); Law et al. (2019);
Snell et al. (2017); Movshovitz-Attias et al. (2017). In Heated-up and NormFace, the class centres
are learned parameters of a fully connected layer, which is similar to Center Loss Wen et al. (2016).
While in TADAM, DRPR, and Prototypical Networks, a class centre is the mean over all embeddings
of a class. By comparing a sample with other examples other than class centres, more informative
instances can contribute more in ICE.

2.2 STRUCTURED LOSSES BY QUERY VERSUS INSTANCES

NCA Goldberger et al. (2005), S-NCA Wu et al. (2018). NCA learns similarity relationships be-
tween instances. Since original NCA learns the whole training data and its time complexity is
quadratically proportional to the scale of training data, S-NCA is proposed recently with linear time
complexity with respect to the training data size. Instead, ICE is scalable to infinite training data
by iterative learning on randomly sampled small-scale instances matching tasks. S-NCA and NCA
share the same learning objective. However, they treat the event of all similar instance being cor-
rectly recognised as a whole by a sum accumulator. Instead, we maximise the probability of every
similar sample being correctly identified individually. Therefore, ICE’s optimisation task is harder,
leading to better generalisation.
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(a) CCE, Heated-up Zhang et al. (2018), Norm-
Face Wang et al. (2017a): Query versus learned
class centres (solid yellow shapes). All T classes
in the training set are considered, e.g., triangle.

(b) TADAM Oreshkin et al. (2018), DRPR Law et al.
(2019), Prototypical Networks Snell et al. (2017):
Query versus class means (dashed yellow shapes).
Only classes in the mini-batch are considered.

(c) N-pair-mc Sohn (2016): Query versus
one instance per class.

(d) NCA Goldberger et al. (2005) and S-NCA Wu
et al. (2018) : Query versus other instances. Posi-
tives are summed as the neighbourhood.

(e) Our ICE: Query versus other instances. Every positive is optimised individually.

Figure 1: Illustration of ICE and related losses: query versus class centres/means in (a,b) while
versus instances in (c-e). In a mini-batch, we show two classes, i.e., circle and rectangle, with 3
examples per class except N-pair-mc which requires 2 samples per class. The blue circle is a query
(anchor). The predicted class-level or instance-level matching probabilities are obtained by a sim-
ilarity metric and softmax normalisation. The cross entropy minimisation is different for different
losses. Our proposal is inspired by CCE and NCA.

N-pair-mc Sohn (2016). The aim of N-pair-mc is to identify one positive example from N − 1
negative examples of N − 1 classes (one negative example per class). In other words, only one
positive and one negative instance per class are considered per loss computation by simulating CCE
exactly. Instead, ICE exploits all negative examples to benefit from richer information. When
constructing mini-batches, N-pair-mc requires expensive offline class mining and samples 2 images
per class. According to Sohn (2016) N-pair-mc is superior to NCA, while ICE outperforms N-pair-
mc.

Hyperbolic Nickel & Kiela (2018). It aims to preserve the similarity structures among instances as
well. However, it learns a hyperbolic embedding space where the distance depends only on norm
of embeddings. Instead, we learn an angular space where the similarity depends only on the angle
between embeddings. Besides, Hyperbolic requires a separate sampling of semantic subtrees when
the dataset is large.

2.3 SAMPLE MINING AND WEIGHTING

Mining informative examples or emphasising on them are popular strategies in DML: 1) Mining
non-trivial samples during training is crucial for faster convergence and better performance. There-
fore, sample mining is widely studied in the literature. In pairwise or triplet-wise approaches Schroff
et al. (2015); Wu et al. (2017); Huang et al. (2016); Yuan et al. (2017), data pairs with higher losses
are emphasized during gradient backpropagation. As for structured losses, Lifted Struct Song et al.
(2016) also focuses on harder examples. Furthermore, Sohn (2016) and Suh et al. (2019) propose
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to mine hard negative classes to construct informative input mini-batches. Proxy-NCA Movshovitz-
Attias et al. (2017) addresses the sampling problem by learning class proxies. 2) Assigning higher
weights to informative examples is another effective scheme Wang et al. (2019a;c). Beyond, there
are some other novel perspectives to address sample mining or weighting, e.g., hardness-aware ex-
amples generation Zheng et al. (2019) and divide-and-conquer of the embedding space Sanakoyeu
et al. (2019).

Our proposed ICE has a similarity scaling factor which helps to emphasise more on informative
examples. Moreover, as described in Schroff et al. (2015), very hard negative pairs are likely to be
outliers and it is safer to mine semi-hard ones. In ICE, the similarity scaling factor is flexible in
that it controls the emphasis degree on harder samples. Therefore, a proper similarity scaling factor
can help mine informative examples and alleviate the disturbance of outliers simultaneously. What
makes ours different is that we do not heuristically design the mining or weighting scheme. Instead,
it is built-in and we simply scale it as demonstrated in Section 3.4.

2.4 DISCUSSION

We remark that Prototypical Networks, Matching Networks Vinyals et al. (2016) and NCA are also
scalable and do not require distance thresholds. Therefore, they are illustrated and differentiated in
Figure 1. Matching Networks are designed specifically for one-shot learning. Similarly, Triantafil-
lou et al. (2017) design mAP-SSVM and mAP-DLM for few-shot learning, which directly optimise
the retrieval performance mAP when multiple positives exist. FastAP Cakir et al. (2019) is similar to
Triantafillou et al. (2017) and optimises the ranked-based average precision. Instead, ICE processes
one positive at a time. Beyond, the setting of few-shot learning is different from deep metric learn-
ing: Each mini-batch is a complete subtask and contains a support set as training data and a query
set as validation data in few-shot learning. Few-shot learning applies episodic training in practice.

Remarkably, TADAM formulates instances versus class centres and also has a metric scaling pa-
rameter for adjusting the impact of different class centres. Contrastively, ICE adjusts the influence
of other instances. Furthermore, ours is not exactly distance metric scaling since we simply apply
naive cosine similarity as the distance metric at the testing stage. That is why we interpret it as a
weighting scheme during training.

3 INSTANCE CROSS ENTROPY

Notation. X = {(xi, yi)}Ni=1 = {{xc
i}

Nc
i=1}Cc=1 is an input mini-batch, where xi ∈ Rh×w×3 and

yi ∈ {1, ..., C} represent i-th image and the corresponding label, respectively; {xc
i}

Nc
i=1 is a set ofNc

images belonging to c-th class, ∀c,Nc ≥ 2. The number of classes C is generally much smaller than
the total number of classes T in the training set (C � T ). Note that T is allowed to be extremely
large in DML. Given a sufficient number of different mini-batches, our goal is to learn an embedding
function f that captures the semantic similarities among samples in the feature space. We represent
deep embeddings of X as {{f ci = f(xc

i )}
Nc
i=1}Cc=1. Given a query, ‘positives’ and ‘negatives’ refer

to samples of the same class and different classes, respectively.

3.1 REVISITING CATEGORICAL CROSS ENTROPY

CCE is widely used in a variety of tasks, especially classification problems. As demonstrated in Liu
et al. (2016), a deep classifier consists of two joint components: deep feature learning and linear
classifier learning. The feature learning module is a transformation (i.e., embedding function f
) composed of convolutional and non-linear activation layers. The classifier learning module has
one neural layer, which learns T class-level context vectors such that any image has the highest
compatibility (logit) with its ground-truth class context vector:

p(wyi
|xi) =

exp(f>i wyi
)∑T

k=1 exp(f>i wk)
and LCCE(X; f,W) = −

∑N

i=1
log p(wyi

|xi), (1)

where fi = f(xi) ∈ Rd is a d-dimensional vector, p(wyi
|xi) is the probability (softmax normalised

logit) of xi matching wyi
, W = {wk ∈ Rd}Tk=1 is the learned parameters of the classifier. During

training, the goal is to maximise the joint probability of all instances being correctly classified.
The identical form is to minimise the negative log-likelihood, i.e., LCCE(X; f,W). Therefore, the
learning objective of CCE is:
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arg max
f,W

∏N

i=1
p(wyi

|xi) = arg min
f,W

LCCE(X; f,W). (2)

3.2 INSTANCE CROSS ENTROPY

In contrast to CCE, ICE is a loss for measuring instance matching quality (lower ICE means higher
quality) and does not need class-level context vectors. We remark that an anchor may have multiple
positives, which are isolated in separate matching distributions. There is a matching distribution for
every anchor-positive pair versus their negatives as displayed in Figure 1e.

Let f ca be a random query, we compute its similarities with the remaining points using dot product.
We define the probability of the given anchor xc

a matching one of its positives xc
i (i 6= a) as follows:

p(xc
i |xc

a) =
exp(f ca

>f ci )

exp(f ca
>f ci ) +

∑
o 6=c

∑
j exp(f ca

>foj )
, (3)

where f ca
>f ci is the similarity between xc

a and xc
i in the embedding space,

∑
o6=c

∑
j exp(f ca

>foj )
is the sum of similarities between xc

a and its all negatives. Similarly, when the positive is xc
i , the

probability of one negative point xo
j(o 6= c) matching the anchor is:

p(xo
j |xc

a,x
c
i ) =

exp(f ca
>foj )

exp(f ca
>f ci ) +

∑
o6=c

∑
j exp(f ca

>foj )
. (4)

To maximise p(xc
i |xc

a) and minimise p(xo
j |xc

a,x
c
i ) simultaneously, we minimise the Kullback-

Leibler divergence Kullback & Leibler (1951) between the predicted and ground-truth distributions,
which is equivalent to minimise their cross entropy. Since the ground-truth distribution is one-hot
encoded, the cross-entropy is − log p(xc

i |xc
a). The distribution dimension is 1 (positive) plus the

number of negatives in the mini-batch as shown in Figure 1e.

To be more general, for the given anchor xc
a, there may exist multiple matching points whenNc > 2,

i.e., |{xc
i}i 6=a| = Nc − 1 > 1. In this case, we predict one matching distribution per positive point.

A case of two positives matching a given query is described in Figure 1e. Our goal is to maximise
the joint probability of all positive instances being correctly identified, i.e., pxc

a
=

∏
i 6=a p(x

c
i |xc

a).

In terms of mini-batch, each image in X serves as the anchor iteratively and we aim to maximise the
joint probability of all queries {{pxc

a
}Nc
a=1}Cc=1. Equivalently, we can achieve this by minimising the

sum of all negative log-likelihoods. Therefore, our proposed ICE on X is as follows:

LICE(X; f) = −
∑C

c=1

∑Nc

a=1
log pxc

a
= −

∑C

c=1

∑Nc

a=1

∑
i 6=a

log p(xc
i |xc

a). (5)

3.3 REGULARISATION BY L2 FEATURE NORMALISATION

Following the common practice in existing DML methods, we apply L2-normalisation to feature
embeddings before the inner product. Therefore, the inner product denotes the cosine similarity.

The similarity between two feature vectors is determined by their norms and the angle between
them. Without L2 normalisation, the feature norm can be very large, making the model training
unstable and difficult. With L2 normalisation, all features are projected to a unit hypersphere sur-
face. Consequently, the semantic similarity score is merely determined by the direction of learned
representations. Therefore, L2 normalisation can be regarded as a regulariser during training1. Note
that the principle is quite different from recent hyperspherical learning methods Liu et al. (2017a);
Wang et al. (2018b;a); Liu et al. (2017b; 2018b;a). They enforce the learned weight parameters to
a unit hypersphere surface and diversify their angles. In contrast, feature normalisation is output
regularisation and invariant to the parametrisation of the underlying neural network Pereyra et al.
(2017). In summary, our learning objective is:

arg max
f

∏C

c=1

∏Nc

a=1
pxc

a
= arg min

f
LICE(X; f) s.t. ∀a, c, ||f ca||2 = 1. (6)

1The training without L2 feature normalisation leads to the norm of features becoming very large easily and
the dot product becoming INF.
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3.4 SAMPLE REWEIGHTING OF ICE

Intrinsic sample weighting. We find that ICE emphasises more on harder samples from the perspec-
tive of gradient magnitude. We demonstrate this by deriving the partial derivatives of LICE(X; f)
with respect to positive and negative examples.

Given the query xc
a, the partial derivative of its any positive instance is derived by the chain rule:

∂LICE(X; f)

∂f ci
= −

f ca ·
∑

o 6=c

∑
j exp(f ca

>foj )

exp(f ca
>f ci ) +

∑
o6=c

∑
j exp(f ca

>foj )
= −f ca · (1− p(xc

i |xc
a)). (7)

Since ||f ca||2 = 1, w(xc
i ;x

c
a)

= ||∂LICE(X;f)
∂fci

||2 = (1 − p(xc
i |xc

a)) can be viewed as the weight of
f ci when the anchor is xc

a. Thus, ICE focuses more on harder positive samples, whose p(xc
i |xc

a) is
lower.

Similarly, the partial derivative of its any negative sample is:

∂LICE(X; f)

∂foj
=

∑
i 6=a

f ca · exp(f ca
>foj )

exp(f ca
>f ci ) +

∑
o 6=c

∑
j exp(f ca

>foj )
= f ca ·

∑
i6=a

p(xo
j |xc

a,x
c
i ), (8)

where p(xo
j |xc

a,x
c
i ) is the matching probability between xo

j and xc
a given that the ground-truth ex-

ample is xc
i . The weight of xo

j w.r.t. xc
a is: w(xo

j ;x
c
a)

= ||∂LICE(X;f)
∂foj

||2 =
∑

i 6=a p(x
o
j |xc

a,x
c
i ).

Clearly, the harder negative samples own higher matching probabilities and weights.

Relative weight analysis. In general, the relative weight Tabachnick et al. (2007) is more notable
as the exact weight will be rescaled during training, e.g., linear post-processing by multiplying the
learning rate. Therefore, we analyse the relative weight between two positive points of the same
anchor (i 6= k 6= a):

w(xc
i ;x

c
a)

w(xc
k;x

c
a)

=
1− p(xc

i |xc
a)

1− p(xc
k|xc

a)
=

exp(f ca
>f ck) +

∑
o6=c

∑
j exp(f ca

>foj )

exp(f ca
>f ci ) +

∑
o6=c

∑
j exp(f ca

>foj )
. (9)

Similarly, the relative weight between two negative points of the same anchor (o 6= c, l 6= c) is:

w(xo
j ;x

c
a)

w(xl
k;x

c
a)

=

∑
i 6=a p(x

o
j |xc

a,x
c
i )∑

i 6=a p(x
l
k|xc

a,x
c
i )

=
exp(f ca

>foj )

exp(f ca
>f lk)

. (10)

Note that the positive relative weight in Eq. (9) is only decided by f ca
>f ci and f ca

>f ck while the
negative relative weight in Eq. (10) is only determined by f ca

>foj and f ca
>f lk. The relative weight is

merely determined by the dot product, which is in the range of [−1, 1] and strictly bounded.

Non-linear scaling for controlling the relative weight. Inspired by Hinton et al. (2015), we intro-
duce a scaling parameter to modify the absolute weight non-linearly:

ŵ(xc
i ;x

c
a)

=

∑
o6=c

∑
j exp(s · f ca

>foj )

exp(s · f ca
>f ci ) +

∑
o 6=c

∑
j exp(s · f ca

>foj )
= 1− p̂(xc

i |xc
a), (11)

ŵ(xo
j ;x

c
a)

=
∑

i6=a

exp(s · f ca
>foj )

exp(s · f ca
>f ci ) +

∑
o6=c

∑
j exp(s · f ca

>foj )
=

∑
i6=a

p̂(xo
j |xc

a,x
c
i ), (12)

where s ≥ 1 is the scaling parameter. In contrast to p andw, p̂ and ŵ represent the rescaled matching
probability and partial derivative weight, respectively. We remark that we scale the absolute weight
non-linearly, which is an indirect way of controlling the relative weight. We do not modify the
relative weight directly and Eq. (9) and Eq. (10) are only for explaining why we need non-linear
scaling.

Our objective is to maximise an anchor’s matching probability with its any positive instance com-
peting against its negative set. Therefore, we normalise the rescaled weights based on each anchor:

w̄(xc
i ;x

c
a)

=
1

N
·

ŵ(xc
i ;x

c
a)∑

i 6=a ŵ(xc
i ;x

c
a)

+
∑

o 6=c

∑
j ŵ(xo

j ;x
c
a)

=
1

2N
· 1− p̂(xc

i |xc
a)∑

i 6=a(1− p̂(xc
i |xc

a))
, (13)
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Algorithm 1 Learn by minimising ICE stochastically

Batch setting: C classes, Nc images from c-th class, batch size N =
∑C

c=1Nc.
Hyper-setting: The scaling parameter s and number of iterations τ .
Input: Initialised embedding function f , iteration counter iter = 0.
Output: Updated f .
for iter < τ do
iter = iter + 1.
Sample one mini-batch randomly X = {{xc

i}
Nc
i=1}Cc=1.

Step 1: Feedforward X into f to obtain feature representations {{f ci }
Nc
i=1}Cc=1.

Step 2: Compute the similarities between an anchor and the remaining instances. Every exam-
ple serves as the anchor iteratively.
for f ca ∈ {{f ci }

Nc
i=1}Cc=1 do

for f ci ∈ {f ci }i 6=a do
Compute p(xc

i |xc
a) using Eq. (3). // We do not need to compute Eq. (4).

end for
end for
Compute LICE(X; f) using Eq. (5).
Step 3: Gradient back-propagation to update the parameters of f using Eq. (15).

end for

w̄(xo
j ;x

c
a)

=
1

N
·

ŵ(xo
j ;x

c
a)∑

i6=a ŵ(xc
i ;x

c
a)

+
∑

o 6=c

∑
j ŵ(xo

j ;x
c
a)

=
1

2N
·

∑
i6=a p̂(x

o
j |xc

a,x
c
i )∑

i 6=a(1− p̂(xc
i |xc

a))
. (14)

Note that the denominator in Eq. (13) and (14) is the weight sum of positives and negatives w.r.t. xc
a

. Although there are much more negatives than positives, the negative set and positive set contribute
equally as a whole, as indicated by 1/2. N =

∑C
c=1Nc is the total number of instances in X. We

select each instance as the anchor iteratively and treat all anchors equally, as indicated by 1/N .

It is worth noting that during back-propagation, the magnitudes of partial derivatives in Eq. (7) and
Eq. (8), i.e., w(xc

i ;x
c
a)

and w(xc
i ;x

c
a)

, are replaced by w̄(xc
i ;x

c
a)

and w̄(xc
i ;x

c
a)

respectively. The direction
of each individual partial derivative is unchanged. However, since weights are rescaled non-linearly,
the final partial derivative of each sample is changed to a better weighted combination of multiple
partial derivatives. In short, final partial derivatives of LICE(X; f) w.r.t. positives and negatives
are:

∂LICE(X; f)

∂f ci
= −f ca · w̄(xc

i ;x
c
a)

and
∂LICE(X; f)

∂foj
= f ca · w̄(xo

j ;x
c
a)
. (15)

3.5 A CASE STUDY AND INTUITIVE EXPLANATION OF ICE

To make it more clear and intuitive for understanding, we now analyse a naive case of ICE, where
there are two samples per class in every mini-batch, i.e., ∀c,Nc = 2, |{xc

i}i 6=a| = Nc − 1 = 1. In
this case, for each anchor (query), there is only one positive among the remaining data points. As a
result, the weighting schemes in Eq. (13) for positives and Eq. (14) for negatives can be simplified:

w̄(xc
i ;x

c
a)

=
1

2N
· 1− p̂(xc

i |xc
a)∑

i 6=a(1− p̂(xc
i |xc

a))
=

1

N
· 1

2
, (16)

w̄(xo
j ;x

c
a)

=
1

2N
·

∑
i 6=a p̂(x

o
j |xc

a,x
c
i )∑

i 6=a(1− p̂(xc
i |xc

a))
=

1

N
· 1

2
·
p̂(xo

j |xc
a,x

c
i )

1− p̂(xc
i |xc

a)
. (17)

Firstly, we have N anchors that are treated equally as indicated by 1/N . Secondly, for each anchor,
we aim to recognise its positive example correctly. However, there is a sample imbalance problem
because each anchor has only one positive and many negatives. ICE addresses it by treating the
positive set (single point) and negative set (multiple points) equally, i.e., 1/2 in Eq. (16) and Eq. (17)
2. Finally, as there are many negative samples, we aim to focus more on informative ones, i.e., harder
negative instances with higher matching probabilities with a given anchor. This is achieved by our

2The weight sum of negatives:
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=
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Table 1: A summary of three fine-grained datasets.
Training and test classes are disjoint. ‘#’ refers to the
number of each item. There are only 5.3 images per
class on average in SOP.

Datasets CARS196 CUB-200-2011 SOP

Context Cars Birds Products
#Total classes 196 200 22,634
#Total images 16,185 11,788 120,053
#Training classes 98 100 11,318
#Training images 8,054 5,864 59,551
#Test classes 98 100 11,316
#Test images 8,131 5,924 60,502

Table 2: The results of different
reweighting parameters s on SOP in
terms of Recall@K (%). There are 90
classes and 2 images per class in a mini-
batch, i.e., batch size is 180.

Reweighting R@1 R@10 R@100

s = 1 42.0 58.1 74.1
s = 16 71.0 85.6 93.8
s = 32 73.6 87.5 94.7
s = 48 76.9 89.7 95.5
s = 64 77.3 90.0 95.6
s = 80 75.4 88.7 94.9

rescaled probability p̂, which is a non-linear transformation of the original probability p. The non-
linear transformation can help control the relative weight between two negative points.

The weighting scheme shares the same principle as the popular temperature-based categorical cross
entropy Hinton et al. (2015); Oreshkin et al. (2018). The key is that we should consider not only
focusing on harder examples, but also the emphasis degree.

3.6 COMPLEXITY ANALYSIS

Algorithm 1 summarises the learning process with ICE. As presented there, the input data format of
ICE is the same as CCE, i.e., images and their corresponding labels. In contrast to other methods
which require rigid input formats Schroff et al. (2015); Sohn (2016), e.g., triplets and n-pair tuplets,
ICE is much more flexible. We iteratively select one image as the anchor. For each anchor, we
aim to maximise its matching probabilities with its positive samples against its negative examples.
Therefore, the computational complexity over one mini-batch is O(N2), being the same as recent
online metric leaning approaches Song et al. (2016); Wang et al. (2019b). Note that in FaceNet
Schroff et al. (2015) and N -pair-mc Sohn (2016), expensive sample mining and class mining are
applied, respectively.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS AND EVALUATION SETTINGS

For data augmentation and preprocessing, we follow Song et al. (2016; 2017). In detail, we first
resize the input images to 256 × 256 and then crop it at 227 × 227. We use random cropping and
horizontal mirroring for data augmentation during training. To fairly compare with the results re-
ported in Song et al. (2017), we use a centre cropping without horizontal flipping in the test phase.
For the embedding size, we set it to 512 on all datasets following Sohn (2016); Law et al. (2017);
Wang et al. (2019a). To compare fairly with Song et al. (2017); Law et al. (2017); Movshovitz-
Attias et al. (2017), we choose GoogLeNet V2 (with batch normalisation) Ioffe & Szegedy (2015)
as the backbone architecture initialised by the publicly available pretrained model on ImageNet Rus-
sakovsky et al. (2015). We simply change the original 1000-neuron fully connected layers followed
by softmax normalisation and CCE to 512-neuron fully connected layers followed by the proposed
ICE. For faster convergence, we randomly initialise the new layers and optimise them with 10 times
larger learning rate than the others as in Song et al. (2016).

We use the Caffe framework Jia et al. (2014) to implement our algorithm. The source code and
trained models will be available soon.

Datasets. Following the evaluation protocol in Song et al. (2016; 2017), we test our proposed
method on three popular fine-grained datasets including CARS196 Krause et al. (2013), CUB-200-
2011 Wah et al. (2011) and SOP Song et al. (2016). A summary of the datasets is given in Table 1.
We also keep the same train/test splits. We remark that to test the generalisation and transfer capa-
bility of the learned deep metric, the training and test classes are disjoint.

Evaluation protocol. We evaluate the learned representations on the image retrieval task in terms
of Recall@K performance Song et al. (2016). Given a query, its K nearest neighbours are retrieved
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Table 3: Comparison with the state-of-the-art methods on CARS196, CUB-200-2011 and SOP in
terms of Recall@K (%). All the compared methods use GoogLeNet V2 as the backbone architec-
ture. ‘–’ means the results which are not reported in the original paper. The best results in the first
block using single embedding are bolded.

CARS196 CUB-200-2011 SOP

K 1 2 4 8 1 2 4 8 1 10 100

Without fine-tuning 35.6 47.3 59.4 72.2 40.1 53.2 66.0 76.6 43.7 60.8 76.5
Fine-tuned with CCE 48.8 58.5 71.0 78.4 46.0 58.0 69.3 78.3 51.7 69.8 85.3
Triplet Semihard 51.5 63.8 73.5 82.4 42.6 55.0 66.4 77.2 66.7 82.4 91.9
Lifted Struct 53.0 65.7 76.0 84.3 43.6 56.6 68.6 79.6 62.5 80.8 91.9
N-pair-mc 53.9 66.8 77.8 86.4 45.4 58.4 69.5 79.5 66.4 83.2 93.0
Struct Clust 58.1 70.6 80.3 87.8 48.2 61.4 71.8 81.9 67.0 83.7 93.2
Spectral Clust 73.1 82.2 89.0 93.0 53.2 66.1 76.7 85.3 67.6 83.7 93.3
Proxy NCA 73.2 82.4 86.4 88.7 49.2 61.9 67.9 72.4 73.7 – –
RLL 74.0 83.6 90.1 94.1 57.4 69.7 79.2 86.9 76.1 89.1 95.4
ICE 77.0 85.3 91.3 94.8 58.3 69.5 79.4 86.7 77.3 90.0 95.6

RLL-(L,M,H) 82.1 89.3 93.7 96.7 61.3 72.7 82.7 89.4 79.8 91.3 96.3
ICE-(L, M, H) 82.8 89.5 93.7 96.4 61.4 73.2 82.5 89.2 80.1 91.8 96.6

from the database. Its retrieval score is one if there is an image of the same class in the K nearest
neighbours and zero otherwise. Recall@K is the average score of all queries.

Training settings. All the experiments are run on a single PC equipped with Tesla V100 GPU with
32GB RAM. For optimisation, we use the stochastic gradient descent (SGD) with a weight decay
of 1e−5 and a momentum of 0.8. The base learning rate is set as 1e−3. The training converges
at 20k iterations on SOP while 4k iterations on CARS196 and CUB-200-2011. As for the hyper-
parameters, we study their impacts in Sec. 4.3 and supplementary material. The mini-batch size
is 60 for small datasets CARS196 and CUB-200-2011 while 180 for the large benchmark SOP.
Additionally, we set C = 6, Nc = 10 on CARS196 and CUB-200-2011 while C = 90, Nc = 2 on
SOP. The design reasons are: 1) SOP has only 5.3 images per class on average. ThereforeNc cannot
be very large; 2) It helps to simulate the global structure of deep embeddings, where the database is
large and only a few matching instances exist.

The analysis of batch content, batch size and embedding size is presented in the supplementary
material.

4.2 QUANTITATIVE RESULTS

Remarks. For a fair comparison, we remark that the methods group Ustinova & Lempitsky (2016);
Harwood et al. (2017); Wang et al. (2017b); Duan et al. (2018); Lin et al. (2018); Suh et al. (2019);
Zheng et al. (2019) using GoogLeNet V1 Szegedy et al. (2015) and another group Wu et al. (2017);
Cakir et al. (2019); Sanakoyeu et al. (2019) using ResNet-50 He et al. (2016) are not benchmarked.
Besides, ensemble models Yuan et al. (2017); Opitz et al. (2017); Kim et al. (2018); Xuan et al.
(2018) are not considered. HTL Ge et al. (2018) also uses GoogLeNet V2, but it constructs a
hierarchical similarity tree over the whole training set and updates the tree every epoch, thus being
highly unscalable and expensive in terms of both computation and memory. That is why HTL
achieves better performance on small datasets but performs worse than ours on the large dataset
SOP. Finally, there are some other orthogonal deep metric learning research topics that are worth
studying together in the future, e.g., a robust distance metric Yuan et al. (2019) and metric learning
with continuous labels Kim et al. (2019). In GoogLeNet V2, there are three fully connected layers of
different depth. We refer them based on their depth: L for the low-level layer (inception-3c/output),
M for the mid-level layer (inception-4e/output) and H for the high-level layer (inception5b/output).
By default, we use only ‘H’. We also report the results of their combination (L, M, H) for reference
following RLL Wang et al. (2019a).

Competitors. All the compared baselines, Triplet Semihard Schroff et al. (2015), Lifted Struct
Song et al. (2016), N -pair-mc Sohn (2016), Struct Clust Song et al. (2017), Spectral Clust Law
et al. (2017), Proxy-NCA Movshovitz-Attias et al. (2017), RLL Wang et al. (2019a) and our ICE are

9



Under review as a conference paper at ICLR 2020

trained and evaluated using the same settings: (1) GoogLeNet V2 serves as the backbone network;
(2) All models are initialised with the same pretrained model on ImageNet; (3) All apply the same
data augmentation during training and use a centre-cropped image during testing. The results of
some baselines Schroff et al. (2015); Song et al. (2016); Sohn (2016) are from Song et al. (2017),
which means they are reimplemented there for a fair comparison. In addition, the results of vanilla
GoogLeNet V2 pretrained on ImageNet without fine-tuning and with fine-tuning via minimising
CCE are reported in Law et al. (2017), which can be regarded as the most basic baselines. Among
these baselines, Proxy NCA is not scalable as class-level proxies are learned during training. Struct
Clust and Spectral Clust are clustering-motivated methods which explicitly aim to optimise the clus-
tering quality. We highlight that clustering performance Normalised Mutual Information (NMI)
Schütze et al. (2008) is not a good assessment for SOP Law et al. (2017) because SOP have a large
number of classes but only 5.3 images per class on average. Therefore, we only report and compare
Recall@K performance.

Results. Table 3 compares the results of our ICE and those of the state-of-the-art DML losses. ICE
achieves the best Recall@1 performance on all benchmarks. We observe that only RLL achieves
comparable performance in a few terms. However, RLL is more complex since it has three hyper-
parameters in total: one weight scaling parameter and two distance margins for positives and nega-
tives, respectively. In addition, its perspective is different since it processes the positive set together
similarly with Triantafillou et al. (2017); Wang et al. (2019c). We note that Wang et al. (2019c) is
also complex in designing weighting schemes and contains four control hyper-parameters. However,
our Recall@1 on SOP is 77.3%, which is only 0.9% lower than 78.2% of Wang et al. (2019c). It is
also worth mentioning that among these approaches, except fine-tuned models with CCE, only our
method has a clear probability interpretation and aims to maximise the joint instance-level matching
probability. As observed, apart from being unscalable, CCE’s performance is much worse than the
state-of-the-art methods. Therefore, ICE can be regarded as a successful exploration of softmax re-
gression for learning deep representations in DML. The t-SNE visualisation Van Der Maaten (2014)
of learned embeddings are available in the supplementary material.

4.3 ANALYSIS OF SAMPLE REWEIGHTING IN ICE

We empirically study the impact of the weight scaling parameter s, which is the only hyper-
parameter of ICE. It functions similarly with the popular sample mining or example weighting
Wang et al. (2019a;b;c) widely applied in the baselines in Table 3. Generally, different s corre-
sponds to different emphasis degree on difficult examples. When s is larger, more difficult instances
are assigned with relatively higher weights.

In general, small datasets are more sensitive to minor changes of hyper-settings and much easier to
overfit. Therefore, the experiments are conducted on the large dataset SOP. The results are shown in
Table 2. Note that when s is too small, e.g., s = 1, we observe that the training does not converge,
which demonstrates the necessity of weighting/mining samples. The most significant observation is
that focusing on difficult samples is better but the emphasis degree should be properly controlled.
When s increases from 16 to 64, the performance grows gradually. However, when s = 80, we
observe the performance drops a lot. That may be because extremely hard samples, e.g., outliers,
are emphasised when s is too large.

5 CONCLUSION

In this paper, we propose a novel instance-level softmax regression framework, named instance
cross entropy, for deep metric learning. Firstly, the proposed ICE has clear probability interpretation
and exploits structured semantic similarity information among multiple instances. Secondly, ICE is
scalable to infinite number of classes, which is required by DML. Thirdly, ICE has only one weight
scaling hyper-parameter, which works as mining informative examples and can be easily selected
via cross-validation. Finally, distance thresholds are not applied to achieve intraclass compactness
and interclass separability. This indicates that ICE makes no assumptions about intraclass variances
and the boundaries between different classes. Therefore ICE owns general applicability.
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Supplementary Material for
Instance Cross Entropy for Deep Metric Learning

A MORE ABLATION STUDIES

A.1 BATCH CONTENT

We evaluate the impact of batch content which consists of C classes and k images per class, i.e.,
∀c,Nc = k. The batch size N = C × k is set to 180. In our experiments, we change the number
of classes C from 36 to 90, and the number of images k from 2 to 5, while keeping the batch size
unchanged. Table 4 shows the results on SOP dataset. We observe that when there are more classes
in the mini-batch, the performance is better. We conjecture that as the number of classes increases,
the mini-batch training becomes more difficult and helps the model to generalise better.

Table 4: The impact of batch content C × k on SOP in terms of Recall@K (%). The batch size is
N = 180 and the scaling parameter is s = 64.

N = 180, s = 64 R@1 R@10 R@100

C × k = 90× 2 77.3 90.0 95.6
C × k = 60× 3 75.2 88.7 95.2
C × k = 45× 4 74.9 88.7 95.3
C × k = 36× 5 74.6 88.7 95.4

A.2 BATCH SIZE

To explore different batch size N , we fix k = 2 and only change C. In this case, N = C × 2.
Table 5 shows that as the number of classes increases, the performance grows. In detail, when the
number of classes increases from 50 to 90, the performance raises from 74.4% to 77.3% accordingly.
One reason may be that as the number of classes increases, it fits the global structure of the test set
better, where there are a large number of classes but only a few positive examples. In addition, the
increasing difficulty of mini-batch training can help the model to generalise better.

Table 5: The results of different batch size N on SOP in terms of Recall@K (%). While changing
C, we fix k = 2 and s = 64. Therefore, N = C × 2.

k = 2, s = 64 R@1 R@10 R@100

N = 180 77.3 90.0 95.6
N = 160 75.4 88.8 95.1
N = 140 75.1 88.7 95.2
N = 120 75.1 88.6 95.2
N = 100 74.4 88.2 95.1

A.3 EMBEDDING SIZE

The dimension of feature representations is an important factor in many DML methods. We conduct
experiments on SOP to see the influence of different embedding size. The results are presented in
Table 6. We observe that when the embedding size is very small, e.g., 64, the performance is much
worse. The performance increases gradually as the embedding size grows.

B T-SNE VISUALISATION

The t-SNE visualisation Van Der Maaten (2014) of learned embeddings is available in the Figure 2,
3, 4.
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Table 6: The results of different embedding size on SOP in terms of Recall@K (%). In all experi-
ments: s = 64, C = 90, k = 2. N = C × k = 90× 2.

180 = 90× 2, s = 64 R@1 R@10 R@100

64 72.6 87.1 94.0
128 74.3 87.9 94.5
256 75.2 88.6 94.8
512 77.3 90.0 95.6

Figure 2: t-SNE visualisation Van Der Maaten (2014) on SOP test set. Best viewed on a monitor
when zoomed in.
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Figure 3: t-SNE visualisation Van Der Maaten (2014) on CUB-200-2011 test set. Best viewed on a
monitor when zoomed in.
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Figure 4: t-SNE visualisation Van Der Maaten (2014) on CARS196 test set. Best viewed on a
monitor when zoomed in.
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