
Under review as a conference paper at ICLR 2020

TRAINING DEEP NETWORKS WITH STOCHASTIC GRA-
DIENT NORMALIZED BY LAYERWISE ADAPTIVE SEC-
OND MOMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose NovoGrad, an adaptive stochastic gradient descent method with layer-
wise gradient normalization and decoupled weight decay. In our experiments on
neural networks for image classification, speech recognition, machine translation,
and language modeling, it performs on par or better than well-tuned SGD with mo-
mentum, Adam, and AdamW. Additionally, NovoGrad (1) is robust to the choice
of learning rate and weight initialization, (2) works well in a large batch setting,
and (3) has half the memory footprint of Adam.

1 INTRODUCTION

The most popular algorithms for training Neural Networks (NNs) are Stochastic Gradient Descent
(SGD) with momentum (Polyak, 1964; Sutskever et al., 2013) and Adam (Kingma & Ba, 2015).
SGD with momentum is the preferred algorithm for computer vision, while Adam is the most com-
monly used for natural language processing (NLP) and speech problems. Compared to SGD, Adam
is perceived as safer and more robust to weight initialization and learning rate. However, Adam has
certain drawbacks. First, as noted in the original paper (Kingma & Ba, 2015), the second moment
can vanish or explode, especially during the initial phase of training. To alleviate this problem, a
learning rate (LR) warmup (Goyal et al., 2017) is typically used. Adam often leads to solutions that
generalize worse than SGD (Wilson et al., 2017), and to improve Adam regularization, Loshchilov
& Hutter (2019) proposed AdamW with decoupled weight decay.

Our motivation for this work was to find an algorithm which: (1) performs equally well for im-
age classification, speech recognition, machine translation, and language modeling, (2) is robust to
learning rate and weight initialization, (3) has strong regularization properties. We start with Adam,
and then (1) replace the element-wise second moment with the layer-wise moment, (2) compute the
first moment using gradients normalized by layer-wise second moment, (3) and decouple weight de-
cay (similar to AdamW) from normalized gradients. The resulting algorithm, NovoGrad, combines
SGD’s and Adam’s strengths. We applied NovoGrad to a variety of large scale problems — image
classification, neural machine translation, language modeling, and speech recognition — and found
that in all cases, it performs as well or better than Adam/AdamW and SGD with momentum.

2 RELATED WORK

NovoGrad belongs to the family of Stochastic Normalized Gradient Descent (SNGD) optimiz-
ers (Hazan et al., 2015; Nesterov, 1984). SNGD uses only the direction of the stochastic gradient
to update the weights, and the step size does not depend on the magnitude of that gradient. Hazan
et al. (2015) proved that the direction of the gradient was sufficient for convergence. Ignoring the
gradient magnitude makes SNGD robust to vanishing and exploding gradients.

SNGD with layer-wise gradient normalization was introduced by Singh et al. (2015). The method
scales up small gradients, while keeping large gradients unchanged:

ĝlt = glt · (1 + log(1 +
1

||glt||
))

1

Under review as a conference paper at ICLR 2020

where glt is the gradient for the layer l at step t. A similar approach was proposed by Yu et al.
(2018), who used layer-wise gradient normalization for SGD and Adam to alleviate vanishing and
exploding gradients. They divide the stochastic gradient glt by its norm ||glt||:

ĝlt =
glt
||glt||

NovoGrad is also closely related to the Normalized Direction-preserving Adam (ND-Adam),
proposed by Zhang et al. (2017). For each layer, ND-Adam first removes the projection of gradient
glt on the layer’s weights wl

t:

ḡlt = glt − (glt,w
l
t) ·wl

t

Then, ḡlt is used to compute Adam 1st and 2nd (scalar) moments:

ml
t = β1 ·ml

t−1 + (1− β1) · ḡlt
vlt = β2 · vlt−1 + (1− β2) · ||ḡlt||2

Similar to Adam, the weights are updated with the 1st moment re-scaled by the 2nd moment:

w̄l
t+1 = wl

t − λt ·
ml
t√

vlt + ε

Adaptive methods like Adam generalize worse than SGD with momentum as was shown in
Wilson et al. (2017). For example, Keskar & Socher (2017) proposed to use Adam during the initial
stage only and then switch to SGD. Luo et al. (2019) suggested to improve Adam regularization
by limiting the factor 1√

vt
to a certain range: limiting from above helps to decrease the training

loss while limiting from below helps to generalize better. Loshchilov & Hutter (2019) showed that
Adam’s weak regularization is due to the fact that the 2nd moment normalization effectively turns
off L2-regularization. They proposed AdamW, which decouples the weight decay d ·wt from the
gradient and uses it directly in the weight update:

wt+1 = wt − λt · (
mt√
vt + ε

+ d ·wt)

Adam needs to store the 2nd moment, and this doubles the optimizer memory compared to SGD with
momentum. This affects large models like GPT-2 (Radford et al., 2019) with 1.5 billion parameters.
Shazeer & Stern (2018) proposed the AdaFactor algorithm, which replaced the full 2nd moment
with moving averages of the row and column sums of the squared gradients. For a layer defined by
an n ×m matrix, this would reduce memory from O(n ×m) to O(n + m). NovoGrad consumes
the same amount of memory as SGD with momentum.

3 ALGORITHM

NovoGrad is based on 3 ideas: (1) layer-wise 2nd moments instead of 2nd moment per each parame-
ter, (2) gradients normalization with layer-wise 2nd moments, (3) decoupled weight decay.

Let glt be the stochastic gradient for layer l at step t. NovoGrad first computes the layer-wise 2nd

moment vlt using the norm ||glt||:1

vlt = β2 · vlt−1 + (1− β2) · ||glt||2 (1)

where 0 ≤ β2 ≤ 1. We use much smaller β2 than in Adam, usually in the range [0.2, 0.5].2

The moment vlt is used to normalize the gradient glt before calculating the first moment ml
t. Sim-

ilarly to AdamW, we decouple weight decay d · wt from the stochastic gradient, but we add it to
normalized gradient before computing moment ml

t:

ml
t = β1 ·ml

t−1 + (
glt√
vlt + ε

+ d ·wt) (2)

1We use L2-norm ||gl
t|| to compute vlt. It would be interesting to see how L1 or L∞ norms perform.

2If β2 = 0, then vlt = ||gl
t||2, and NovoGrad becomes layer-wise NGD with decoupled weight decay.

2

Under review as a conference paper at ICLR 2020

Algorithm 1 NovoGrad
Parameters: Initial learning rate λ0, moments β1, β2, weight decay d, number of steps T
Weight initialization: t = 0, Initialize w0.
Moment initialization: t = 1, for each layer l set vl1 = ||gl1||2;ml

1 =
gl
1√
vl1

+ d ·wl
0.

while t ≤ T do
λt ← LearningRateUpdate(λ0, t, T) (compute the global learning rate)
for each layer l do
glt ← ∇lL(wt)
vlt ← β2 · vlt−1 + (1− β2) · ||glt||2

ml
t ← β1 ·ml

t−1 + (
gl
t√
vlt+ε

+ d ·wl
t)

wl
t+1 ← wl

t − λt ·ml
t

end for
end while

where 0 < β1 < 1 is the momentum, typically in the same range as in SGD or Adam [0.9 − 0.95].
The first moment can be also computed via an exponential moving average in Adam-like style:

ml
t = β1 ·ml

t−1 + (1− β1) · (glt√
vlt + ε

+ d ·wl
t)

Finally, weights are updated the same way as in SGD with momentum.

Similar to Adam, one can construct a counter-example for NovoGrad in the stochastic convex opti-
mization settings (Wilson et al., 2017). However, the “AMS-Grad” fix (Reddi et al., 2018) for Adam
can also be applied in this case to guarantee NovoGrad convergence:

vlt = β2 · vlt−1 + (1− β2) · ||glt||2

v̂lt = max(v̂lt−1, v
l
t)

ml
t = β1 ·mt−1 + (

glt√
v̂lt + ε

+ d ·wl
t)

4 EXPERIMENTS WITH DEEP LINEAR NETWORKS

Following (Andrew M. Saxe & Ganguli, 2013; Ian J. Goodfellow & Saxe, 2015) we will use Novo-
Grad to train linear model composed of two linear layers w1, w2 without any non-linearity. The
model y = (w1 ·w2) ·x should output 1 when x = 1. This model is linear with respect to the inputs,
but it is non-linear with respect to the weights, since they are factorized into the product of layers’
weights. Training the model is equivalent to the minimization of the loss L(w1, w2) = (w1 ·w2−1)2

(Ian J. Goodfellow & Saxe, 2015). The loss is not convex, and its minima are located on the hy-
perbola w1w2 = 1 (see Figure 1). Minima close to the points (−1,−1) and (1, 1) are good “flat”
minima which generalize well. Minima close to the axes are “sharp” minima (Keskar et al., 2016).

We trained the model with SGD with momentum, Adam, AdamW, and NovoGrad, using the same
fixed learning rate,3 weight decay, and weights initialization. The model was trained for 500 steps.
Figure 2 shows the training trajectory and the zoomed-out area near the final point. All algorithms
behave in a similar way: first the trajectory goes to the curve w2 = 1/w1, and then follows the
hyperbola towards (1, 1) or (−1,−1). During the first phase, training loss decreases, and during the
second phase, generalization improves. SGD converges nicely toward (1, 1) but its trajectory is still
slightly off of the optimal solution. Adam oscillates wildly around hyperbola w2 = 1/w1, while
AdamW behaves much better since weight decay decoupling significantly reduces oscillations.

NovoGrad is the most stable out of four algorithms. It exhibits better generalization and closely
follows the minima curve because normalized gradients prevent trajectory from going far from it.
We also found that NovoGrad is more robust than other algorithms to the choice of learning rate,
weight decay, and weight initialization (see for details Appendix A).

3We will use the gradient averaging for SGD first moment as in Adam: mt = β ·mt−1 + (1 − β) · gt to
use the same LR for all optimizers.

3

Under review as a conference paper at ICLR 2020

Figure 1: 2D-contour plot of surface y = (w1 · w2 − 1)2 of linear model with two layers. The loss
functions has many global minima are located on hyperbola w2 = 1/w1. Solutions near (−1, 1) and
(1, 1) are good ”flat” minima, and solutions near axes are ”sharp” minima.

Figure 2: Deep Linear Network with two layers: training with SGD, Adam, and NovoGrad

4

Under review as a conference paper at ICLR 2020

5 EXPERIMENTS WITH LARGE DNNS

We train four deep models: ResNet-50 (He et al., 2016) — for ImageNet classification, Transformer-
big (Vaswani et al., 2017) — for WMT 2014 translation, Jasper (Li et al., 2019) — for LibriSpeech
speech recognition, and Transformer-XL (Dai et al., 2019) — for WikiText-103 word-level language
modeling, with NovoGrad, SGD with momentum, and Adam/AdamW.4 Each model was trained on
a single DGX-1 machine with 8 NVIDIA V100 GPUs with gradient accumulation used for large
batch training. In all the experiments, NovoGrad performed on par or better than other algorithms.

5.1 IMAGE CLASSIFICATION

We used ResNet-50 v2 (He et al., 2016) for ImageNet classification task (Russakovsky et al., 2015).
We trained this model with three optimizers: SGD with momentum (SGD), AdamW, and NovoGrad.
All models have been trained with the batch size of 1024 for 100 epochs. We used quadratic LR
decay for SGD with momentum and cosine decay (Loshchilov & Hutter, 2016) for AdamW and
NovoGrad. We could not find any training recipe for ResNet-50 with AdamW, so we report the best
accuracy we achieved after extensive hyper-parameter search. We used only standard data augmen-
tation methods: re-size, flip, random crop, and did not employ any additional training tricks (He
et al., 2018). The single-crop validation accuracy for each algorithm is reported in Table 1.

Table 1: ImageNet classification — ResNet-50 v2, batch 1024, top-1 and top-5 accuracy(%).

Optimizer LR policy Init LR Weight decay Epochs top-1,% top-5,%

SGD poly (2) 0.400 0.0001
100 76.38 93.08
200 76.33 92.96

AdamW cosine 0.002 0.120
100 76.36 93.01
200 76.48 92.94

NovoGrad cosine 0.007 0.002
100 76.94 93.41
200 77.74 93.70
300 77.65 93.62

NovoGrad outperformed both AdamW and SGD with the top-1 accuracy of 76.94% after 100
epochs. SGD and Adam accuracy remained under 76.5% if we trained for 200 epochs instead,
while NovoGrad accuracy improved to 77.74%. NovoGrad demonstrated powerful regularization
capabilities: training for 100 additional epochs kept top-1=77.65% without overfitting. Note that
this is ”vanilla” ResNet-50, without sophisticated data augmentation or model tweaking.

5.1.1 LARGE BATCH TRAINING FOR IMAGE CLASSIFICATION

Hazan et al. (2015) showed that large batch size is beneficial for SNGD convergence, which moti-
vated us to explore NovoGrad for large batch training. We trained ResNet-50 v2 with batch sizes
of 8K and 32K. To compare with the previous methods, we train the model for 90 epochs using
cosine LR decay. To emulate a large batch, we used a mini-batch of 128 per GPU and accumulated
gradients from several mini-batches before each weight update.

Table 2: Large batch training with NovoGrad — ImageNet, ResNet-50 v2, 90 epochs, accuracy(%).

Batch Init LR Weight decay Top-1,% Top-5,%
1K 0.070 0.002 76.86 93.31
8K 0.016 0.006 76.64 93.14

32K 0.026 0.010 75.78 92.54

To establish the baseline for NovoGrad training with batch 32K we first used the method similar
to proposed in Goyal et al. (2017): scaling the learning rate linearly with the batch size and using

4Training was done in OpenSeq2Seq (Kuchaiev et al., 2018): https://github.com/NVIDIA/
OpenSeq2Seq/blob/master/example_configs/image2label/resnet-50-v2-mp.py.

5

https://github.com/NVIDIA/OpenSeq2Seq/blob/master/example_configs/image2label/resnet-50-v2-mp.py
https://github.com/NVIDIA/OpenSeq2Seq/blob/master/example_configs/image2label/resnet-50-v2-mp.py

Under review as a conference paper at ICLR 2020

LR warmup. This method gives top-1=75.09% and top-5=92.27%. We found that we get much
better results when we increase both the learning rate λ and the weight decay d to improve the
regularization (see Table 2).

For comparison, we took 3 methods, which (1) use fixed batch size during training and (2) do not
modify the original model. All 3 methods employ SGD with momentum. The first method (Goyal
et al. (2017)) scales LR linearly with batch size and uses the LR warmup to stabilize the initial
training phase. The second method (You et al. (2018)) combines warmup with Layer-wise Adaptive
Rate Scaling (LARS) (You et al., 2017). The last method (Codreanu et al. (2017)) uses warmup
and dynamic weight decay (WD). NovoGrad outperformed all other methods without using any
additional techniques like LR warmup (Goyal et al., 2017), dynamic weight decay, special batch
normalization initialization, etc. Using warm-up (500 steps) we slightly improved top1 accuracy to
75.99% and top5 to 92.72%.

Table 3: Large batch training comparison — ImageNet, ResNet-50v 2, top-1 accuracy(%) .

Optimizer Reference Bag of Tricks Epochs B=8K B=32K
SGD Goyal et al. (2017) warmup 90 76.26 72.45
SGD You et al. (2018) warmup, LARS 90 75.30 75.40
SGD Codreanu et al. (2017) warmup, multi-step WD 100 76.60 75.31

NovoGrad — 90 76.64 75.78
warmup 90 — 75.99

5.2 SPEECH RECOGNITION

We conducted experiments with Jasper-10x5 (Li et al. (2019)), a very deep convolutional neural
acoustic model, on the LibriSpeech speech recognition task (Panayotov et al., 2015). Jasper was
trained with SGD with momentum (SGD), Adam and NovoGrad for 400 epochs with a batch of 256,
polynomial LR decay, and Layerwise Adaptive Rate Clipping (LARC).5 We found that NovoGrad
yields lower Word Error Rates (WER) comparing to SGD, especially for the long runs. The model
and training parameters are described in Li et al. (2019).

Table 4: Speech recognition — Jasper-10x5, LibriSpeech, 400 epochs, WER (%).

Optimizer Dev Test
clean other clean other

Adam 13.20 31.71 13.36 32.71
SGD 3.91 12.77 3.98 12.79

NovoGrad 3.64 11.89 3.86 11.95

5.2.1 LARGE BATCH TRAINING FOR ASR

We trained Jasper10x5 with batch sizes of 512, 4K, 8K, 16K and 32K on LibriSpeech. In all cases,
we trained the model for 400 epochs. For batch size up to 8K we scaled LR linearly with the batch
size and used LR warmup. To scale batch to 16K and 32K we also increased weight decay (see
Table 5). The batch 16K leads to WER comparable to the baseline. Batch 32K has higher WER
due to the smaller number of training steps (9 weights updates per epoch). Figure 3 shows WER on
dev-clean during training for different batch sizes.

5.3 LANGUAGE MODELING

We trained Transformer-XL (Dai et al., 2019), the state-of-the-art LM architecture on the word-
level WikiText–103 (Merity et al., 2016) benchmark. For all the experiments we used a 16-layer

5https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py.

6

https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py

Under review as a conference paper at ICLR 2020

Table 5: Large batch training with NovoGrad — Jasper-10x5, LibriSpeech, 400 epochs, WER (%).

Batch Init LR Warmup Weight decay Dev Test
clean other clean other

512 0.015 - 0.001 3.58 11.30 3.85 11.29
4K 0.03 0.05 0.001 3.66 11.67 3.92 11.68
8K 0.06 0.05 0.001 3.69 11.76 3.96 11.75
16K 0.06 0.05 0.003 3.67 11.03 3.94 11.19
32K 0.06 0.08 0.004 4.01 11.73 4.14 11.89

Figure 3: ASR, large batch training. Jasper-10x5 trained with NovoGrad on LibriSpeech.

model with 191M parameters (dmodel = 512, dff = 2048, h = 8, Pdrop = 0.15). All other hyper-
parameters were taken from the original Transformer-XL paper, the source code was based on a
publicly available implementation.6 Each configuration was trained for 12 billion tokens which is
approximately 117 epochs and 366K training iterations. Figure 4 shows that NovoGrad exhibits a
much smaller gap between training and validation perplexity compared to Adam, which results in
better performance on the test set. Longer training for 20B tokens does not lead to overfitting as the
resulting validation and test perplexities improve even further.

Table 6: LM. Transformer-XL trained on WikiText-103 with batch size 256, sequence length 512.

Optimizer Tokens Init LR Weight decay Val PPL Test PPL
Adam 12B 0.00025 - 23.84 25.40

AdamW 12B 0.00025 0.001 23.64 25.06

NovoGrad 12B 0.01 0 20.53 21.26
20B 0.01 0 19.89 20.65

6https://github.com/cybertronai/transformer-xl

7

https://github.com/cybertronai/transformer-xl

Under review as a conference paper at ICLR 2020

Figure 4: LM. Transformer-XL trained with Adam and NovoGrad on WikiText-103.

5.4 NEURAL MACHINE TRANSLATION

We trained Transformer (Vaswani et al., 2017) on WMT 2014 English-to-German benchmark. For
all the experiments, we used a 12-layer Transformer-big model with 185M parameters (dmodel =
1024, dff = 4096, h = 16) with the vocabulary of 8192 tokens based on joint source-target byte-
pair-encodings (Sennrich et al., 2015). For Adam and AdamW we used dropout of Pdrop = 0.3 and
for NovoGrad we used Pdrop = 0.2. We trained all algorithms with mixed-precision (Micikevicius
et al., 2017) for 100K steps (approximately 150 epochs) with a 4K steps warmup on batches of up
to 490K source and target tokens obtained via gradient accummulation (Ott et al., 2018) with cosine
learning rate annealing. We did not use checkpoint averaging, all the results are reported for the last
checkpoint in the corresponding run.

Table 7: WMT’14 English-to-German translation, Transformer-big, batch 490K tokens, 150 epochs,
no checkpoint averaging. Tokenized BLEU and detokenized SacreBLEU on WMT’14 (newstest14).

Optimizer Init LR Weight decay SacreBLEU TokenBLEU
Adam 0.0006 - 28.26 28.71

AdamW 0.0006 0.005 28.24 28.72

NovoGrad 0.04 0.0001 28.80 29.35

6 CONCLUSION

We propose NovoGrad – an adaptive SGD method with gradients normalized by the layer-wise
second moment and with decoupled weight decay. We tested NovoGrad on deep models for image
classification, speech recognition, translation, and language modeling. In all experiments, NovoGrad
performed equally or better than SGD and Adam/AdamW. NovoGrad is more robust to the initial
learning rate and weight initialization than other methods. For example, NovoGrad works well
without LR warm-up, while other methods require it. NovoGrad performs exceptionally well for
large batch training, e.g. it outperforms other methods for ResNet-50 for all batches up to 32K. In
addition, NovoGrad requires half the memory compared to Adam.

8

Under review as a conference paper at ICLR 2020

REFERENCES

James L. McClelland Andrew M. Saxe and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural network. In ICLR, 2013.

Valeriu Codreanu, Damian Podareanu, and Vikram Saletore. Scale out for large minibatch sgd:
Residual network training on imagenet-1k with improved accuracy and reduced time to train.
arXiv:1711.04291, 2017.

Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V Le, and Rus-
lan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context.
arXiv:1901.02860, 2019.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training ima-
genet in 1 hour. arXiv:1706.02677, 2017.

E. Hazan, K. Levy, and S. Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex optimiza-
tion. In NIPS, pp. 15851593, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. arXiv:11603.05027, 2016.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for
image classification with convolutional neural networks. arXiv:1812.00187, 2018.

Oriol Vinyals Ian J. Goodfellow and Andrew M. Saxe. Qualitatively characterizing neural network
optimization problems. In ICLR, 2015.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to SGD. arXiv:1712.07628, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv:11609.04836, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vitaly Lavrukhin, Carl Case, and Paulius Micike-
vicius. Openseq2seq: extensible toolkit for distributed and mixed precision training of sequence-
to-sequence models. arXiv:1805.10387, 2018.

J. Li, V. Lavrukhin, B. Ginsburg, R. Leary, O. Kuchaiev, J. M. Cohen, H. Nguyen, and R. T. Gaddei.
Jasper: An end-to-end convolutional neural acoustic model. arXiv:1904.03288, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. ICLR,
2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. In ICLR, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv:1609.07843, 2016.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David Garcı́a,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. ICLR, 2017.

Y. E. Nesterov. Minimization methods for nonsmooth convex and quasiconvex functions. Matekon,
29:519531, 1984.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation.
arXiv preprint arXiv:1806.00187, 2018.

9

Under review as a conference paper at ICLR 2020

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In ICASSP, pp. 5206–5210. IEEE, 2015.

B.T Polyak. Some methods of speeding up the convergence of iteration methods. In USSR Compu-
tational Mathematics and Mathematical Physics, 1964.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

Sashank J. Reddi, Stayen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
ICLR, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv:1508.07909, 2015.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
arXiv:1804.04235, 2018.

Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-specific
adaptive learning rates for deep networks. In ICML, 2015.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initializa-
tion and momentum in deep learning. In ICML, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv: 1706.03762, 2017.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In NIPS, 2017.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
arXiv:1708.03888, 2017.

Yang You, Zhao Zhang, Cho-Jui Hsieh, and James Demmel. 100-epoch imagenet training with
alexnet in 24 minutes. arXiv:1709.05011, 2018.

Adams Wei Yu, Qihang Lin, Ruslan Salakhutdinov, and Jaime Carbonell. Block-normalized gradient
method: An empirical study for training deep neural network. arXiv:1707.04822, 2018.

Zijun Zhang, Lin Ma, Zongpeng Li, and Chuan Wu. Normalized direction-preserving adam.
arXiv:1709.04546, 2017.

10

Under review as a conference paper at ICLR 2020

A TRAINING OF DEEP LINEAR NETWORKS

Following (Andrew M. Saxe & Ganguli, 2013; Ian J. Goodfellow & Saxe, 2015) we will use Novo-
Grad to train linear NN model composed of two linear layers w1, w2 without any non-linearity. The
model y = (w1 ·w2) ·x should output 1 when x = 1. The model is linear function of the inputs, but
it is non-linear function of the weights, since they are factorized into the product of layers’ weights.
Training the model is equivalent to the minimization of the loss L(w1, w2) = (w1 · w2 − 1)2. The
loss is not convex, and its minima are located on the curve: w1w2 = 1. Minima close to the points
(−1,−1) and (1, 1) are good “flat” minima which generalize well. Minima close to axes are “sharp”
minima with bad generalization (see (Keskar et al., 2016)). The 2D-contour plot of the loss function
shown on Figure 5.

Figure 5: 2D-contour plot of surface y = (w1 · w2 − 1)2 of linear model with two layers. The loss
functions has many global minima located on hyperbola w2 = 1/w1. Solutions near (−1,−1) and
(1, 1) are good ”flat” minima, and solutions near axes are ”sharp” minima.

We will study how the behavior of each algorithm depends on learning rate, weight decay and
initialization. We will train the model with each optimizer for 500 steps using the same learning
rate, weight decay, and weights initialization. To use the same learning rate for all optimizers, we
will use the “gradient averaging” for NovoGrad. We will also use the version of SGD with “gradient
averaging” (similar to Adam): mt = β ·mt−1 +(1−β) ·gt. For fixed learning rate this SGD version
is equivalent to the regular SGD with momentum.

Training trajectories for the baseline (fixed learning rate 0.2, weight decay 0.1, and β1 = 0.95, β2 =
0.5.) are shown on the Figure 6. All algorithms first go to the curve w2 = 1/w1, and then slide
along hyperbola towards (1, 1) or (−1,−1). SGD is slightly off with respect to the optimal solution.
Adam oscillates wildly around line w2 = 1/w1. AdamW behaves better since weight decay decou-
pling significantly reduces osculations. NovoGrad is the most stable out of four algorithms, it also
shows much better generalization than other algorithms and converges to (1, 1) closely following
the minima curve.

Next, we increased learning rate from 0.2 to 1.0 while keeping weight decay equal to 0.1. Training
trajectories are shown on the Figure 7: SGD and Adam diverge. Only AdamW and NovoGrad
converge.

Similarly, when we increased weight decay from 0.1 to 0.5 while keeping learning rate 0.2, all
algorithms except NovoGrad diverge, while NovoGrad demonstrates high robustness to the weight
decay choice (see Figure 8).

Finally, we started training from different initial point. SGD and NovoGrad are most robust with
respect to the initialization, while AdamW diverge (see Figure 9).

11

Under review as a conference paper at ICLR 2020

Figure 6: DLN training – baseline: learning rate 0.2, weight decay 0.1.

Figure 7: DLN training – increased learning rate 0.2→ 1.0: SGD and Adam diverges, AdamW and
NovoGrad converge.

To summarize our experiments with linear neural network: NovoGrad is more robust than other
algorithms to the choice of learning rate, weight decay, and weight initialization.

12

Under review as a conference paper at ICLR 2020

Figure 8: DLN training – increased weight decay 0.1 → 0.5: All algorithms except NovoGrad
diverge.

Figure 9: DLN training – ”bad” initialization: AdamW diverges.

13

	Introduction
	Related work
	Algorithm
	Experiments with deep linear networks
	Experiments with large DNNs
	Image classification
	Large batch training for image classification

	Speech recognition
	Large batch training for ASR

	Language modeling
	Neural machine translation

	Conclusion
	Training of deep linear networks

