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ABSTRACT

Learning meaningful graphs from data plays important roles in many data mining
and machine learning tasks, such as data representation and analysis, dimension
reduction, data clustering, and visualization, etc. In this work, we present a scalable
spectral approach to graph learning from data. By limiting the precision matrix to
be a graph Laplacian, our approach aims to estimate ultra-sparse weighted graphs
and has a clear connection with the prior graphical Lasso method. By interleaving
nearly-linear time spectral graph sparsification, coarsening and embedding proce-
dures, ultra-sparse yet spectrally-stable graphs can be iteratively constructed in
a highly-scalable manner. Compared with prior graph learning approaches that
do not scale to large problems, our approach is highly-scalable for constructing
graphs that can immediately lead to substantially improved computing efficiency
and solution quality for a variety of data mining and machine learning applications,
such as spectral clustering (SC), and t-Distributed Stochastic Neighbor Embedding
(t-SNE).

1 INTRODUCTION

Graph construction is playing increasingly important roles in many machine learning and data mining
applications. For example, a key step of many existing machine learning methods requires converting
potentially high-dimensional data sets into graph representations: it is a common practice to represent
each (high-dimensional) data point as a node, and assign each edge a weight to encode the similarity
between the two nodes (data points). The constructed graphs can be efficiently leveraged to represent
the underlying structure of a data set or the relationship between data points (Jebara et al., 2009;
Maier et al., 2009; Liu et al., 2018). However, how to learn meaningful graphs from large data set at
scale still remains a challenging problem.

In the past decades, considerable effort has been devoted to the development of graph construction
methods. For example, constructing k-nearest-neighbor (kNN) graphs requires each node to be
connected with its top-k nearest neighbors, while in construction of the ε-neighborhood graphs all the
neighbors within the range of distance ε will be connected; to improve the capability of kNN graph
in handling multi-scale data, (Zelnik-Manor & Perona, 2005) introduced a self-tuning technique to
adjust the local scaling parameter for similarity measurement; to find meaningful similarity measures
between nodes, (Bach & Jordan, 2006) propose to learn the similarities from feature vectors in a
supervised setting; (Zhu et al., 2014) adopted an information-theoretic definition of data similarity
to capture subtle similarity information; (Jebara & Shchogolev, 2006) proposed to remove spurious
edges from kNN graph via b-matching; (Pavan & Pelillo, 2007) introduced a method for removing
noisy edges by selecting the maximum cliques; (Premachandran & Kakarala, 2013) proposed to
leverage collected consensus information form various neighborhoods to improve the robustness of
the kNN graph; (Nie et al., 2014) proposed to learn the adjacency graph by adaptively assigning
neighbors. However, the aforementioned nearest-neighbor (NN) based graph construction methods
can only capture local manifold information and may not be able to truthfully reveal the global
structure of a given data set (Nie et al., 2016; Liu et al., 2018; Guo, 2015), which can result in over
complicated (with too many edges) or sometimes misleading graph representations. For example,
choosing different numbers of nearest neighbors for constructing kNN graphs may lead to drastically
different classification performance in spectral clustering tasks (Chen et al., 2018).

Several recent graph learning methods based on Laplacian estimation are based on emerging graph
signal processing (GSP) and have shown very promising results (Dong et al., 2016; Egilmez et al.,
2017). For example, (Egilmez et al., 2017) proposed to address the graph learning problem by
maximizing a posterior estimation of Gaussian Markov Random Field (GMRF) and restricting the
precision matrix to be a graph Laplacian, while an l1-regularization term is used to promote graph
sparsity; (Rabbat, 2017) provides an error analysis for inferring sparse graphs from smooth signals.
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However, even the state-of-the-art Laplacian estimation methods for graph learning do not scale
well for large data set due to their extremely high algorithm complexity. For example, solving the
optimization problem for Laplacian estimation in (Dong et al., 2015; 2016; Kalofolias, 2016; Egilmez
et al., 2017; Dong et al., 2018) requires O(N2) time complexity per iteration for N data entities and
nontrivial parameters tuning for controlling graph sparsity which limits their applications to only very
small data sets (e. g. with up to a few thousands of data points).

In this work, we introduce a spectral method for learning ultra-sparse yet spectrally-robust graphs at
scale. There is a clear connection between our approach and the GSP-based Laplacian estimation
methods (Dong et al., 2015; 2016; Kalofolias, 2016; Egilmez et al., 2017; Dong et al., 2018), as
well as the classical graphical Lasso framework (Friedman et al., 2008). Specifically, by treating
p-dimensional data points as p graph signals, our approach aims to learn a graph Laplacian by
maximizing its first few eigenvalues as well as the smoothness of graph signals across edges,
subject to a graph sparsity constraint. By iteratively interleaving recent scalable spectral graph
sparsification, coarsening and embedding procedures (Feng, 2016; 2017; Zhao et al., 2018), our graph
learning approach enjoys a nearly-linear runtime and space complexity. We show through extensive
experiments that our approach can learn high-quality graphs without sacrificing the sparsity: the
learned graphs can be immediately leveraged to significantly improve the efficiency and accuracy of
spectral clustering tasks; we also show how to use such graphs to significantly improve the runtime of
the well-known t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithms (Maaten & Hinton,
2008; Van Der Maaten, 2014).

2 BACKGROUND OF GRAPH LEARNING VIA LAPLACIAN ESTIMATION

Given M observations on N data entities stored in a data matrix X ∈ RN×M , each column of X can
be considered as a signal on a graph. The recent graph learning method (Dong et al., 2016) aims to
estimate a graph Laplacian from X while achieving following desired characteristics:

1) Smoothness of signals on the graph. The graph signals corresponding to the real-world data
should be sufficiently smooth on the learned graph structure: the signal values will only change
gradually across connected neighboring nodes. The smoothness of a signal x over a graph G can be
measured by the following Laplacian quadratic form

xTLGx =
∑

(p,q)∈E

wp,q(x (p)− x (q))
2
, (1)

where LG = DG −WG denotes the Laplacian matrix of graph G with DG and WG denoting the
degree and the weighted adjacency matrices of G. wp,q denotes the weight for edge (p, q), while
x(p) and x(q) denote the graph signal values on nodes p and q. The smaller value of quadratic form
indicates the smoother signals across the graph. It is also possible to quantify the smoothness (Q) of
a set of signals X over graph G using the following matrix trace (Kalofolias, 2016):

Q(X,LG) = Tr(XTLGX), (2)

where Tr denotes the matrix trace. Defining Z ∈ RN×N to be the pairwise distance matrix for the
N data entities, where each entry encodes the l2 distance between data vectors p and q:

Z(p, q) = zdatap,q = ‖xp − xq‖22. (3)

We can rewrite the trace as follows:

Tr(XTLGX) =
1

2
Tr(WGZ) =

1

2
‖WG ◦ Z‖1,1, (4)

where ‖‖1,1 denotes the element-wise matrix norm, and ◦ is the Hadamard product (Kalofolias,
2016).

2) Sparsity of the estimated graph (Laplacian). Graph sparsity is another critical consideration in
graph learning. One of the most important motivations of learning a graph is to use it for downstream
data mining or machine learning tasks. Therefore, desired graph learning algorithms should allow
better capturing and understanding the global structure (manifold) of the data set, while producing
sufficiently sparse graphs that can be easily stored and efficiently manipulated in the downstream
algorithms, such as graph clustering, partitioning, dimension reduction, data visualization, etc. To this
end, the graphical Lasso algorithm (Friedman et al., 2008) has been proposed to learn the structure in
an undirected Gaussian graphical model using l1 regularization to control the sparsity of the precision
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matrix. Given a sample covariance matrix S and a regularization parameter R, graphical Lasso
maximizes the following objective function:

log det(Θ)− Tr(ΘS)−R‖Θ‖1, (5)

over all non-negative definite precision matrices Θ. The first two terms together can be interpreted
as the log-likelihood under a GMRF. R‖Θ‖1 is the sparsity promoting regularization term. This
model tries to learn the graph structure by maximizing the penalized log-likelihood. However, the
log-determinant problems are very computationally expensive.

The emerging GSP-based methods infer the graph by adopting the criterion of signal smoothness.
Recent methods enforce the sparsity and smoothness of signals by formulating the problem as the
following optimization problem (Kalofolias, 2016; Dong et al., 2015; 2016; Egilmez et al., 2017):

min
W∈W

‖W ◦ Z‖1,1 + S(W ), (6)

whereW denotes the set of valid adjacency matrices. It is obvious that the first term enforces the
smoothness of the observed signals on the learned graph, while the second term is for imposing
sparsity of the inferred graph. In recent years, different forms of S(W ) have been proposed. For
example, the following form has been introduced in (Dong et al., 2016)

S(W ) = c‖W · 1‖2 + c‖W‖2F , (7)

whereas (Kalofolias, 2016) proposed the form as follows

S(W ) = c1T log(W · 1) + d‖W‖2F . (8)

(Dong et al., 2019) has shown that the optimization problem (6) can be considered as a generalization
of the graphical Lasso model when the precision matrix is chosen to be a graph Laplacian. The
smoothness property associated with a multivariate Gaussian distribution is also behind the idea of
graphical Lasso (Egilmez et al., 2017).

Although the aforementioned formulations are theoretically sound and can assure the quality of
the learned graph structure, their extremely high complexities do not allow for learning large-
scale graphs involving hundred thousands or even millions of nodes. For example, solving the
optimization problem in (6) can be very expensive for large data sets; the state-of-the-art methods
have a O(N2) time complexity per iteration for N data entities (Dong et al., 2015; 2016; Kalofolias,
2016). Furthermore, these methods usually require nontrivial parameters tuning for controlling graph
sparsity.

3 GRASPEL: A SPECTRAL APPROACH TO GRAPH LEARNING FROM DATA

3.1 PROBLEM FORMULATION

At high level, our approach for graph learning gains insight from recent GSP-based Laplacian
estimation methods (Dong et al., 2019), aiming to solve the following optimization problem that is
similar to the graphical Lasso problem (Friedman et al., 2008):

maximize:L∈L log det(L)− αTr(XTLX)− β‖L‖1, (9)

where L denotes the set of valid Laplacian matrices. It can be shown that the three terms in (9) are
corresponding to log det(Θ), Tr(ΘS) and R‖Θ‖1 in (5), respectively. When the precision matrix
Θ is restricted to be a graph Laplacian, and each column vector in the original data matrix X is
treated as a graph signal vector, there is a close connection between our formulation and the graphical
Lasso problem. Since graph Laplacians are symmetric and positive definite (PSD) matrices (or
M matrices) with non-positive off-diagonal entries, this formulation will lead to the estimation of
attractive GMRFs (Dong et al., 2019).

3.2 OVERVIEW OF OUR APPROACH

To achieve good efficiency in graph learning that may involve millions of nodes, instead of solving (9)
directly, we propose a spectral approach for solving (9) implicitly. We define the spectrally-critical
edges to be the ones that can most effectively perturb the graph spectral properties, such as the
first few Laplacian eigenvalues and eigenvectors. Our approach aims to iteratively add the most
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Figure 1: The overview of the proposed GRASPEL framework.

spectrally-critical edges into the latest graph until no such edges can be found, which consists of the
following key steps as illustrated in Figure 1:

Step (1): Initial graph construction. We start with constructing an approximate kNN graph where
each edge weight encodes the similarity (e.g. Gaussian kernel or cosine similarity) of two nodes (data
entities); next, we convert the kNN graph into an ultra-sparse nearest-neighbor (uNN) graph with
O(N logN) edges by leveraging a nearly-linear-time spectral sparsification algorithm (Feng, 2017).

Step (2): Spectral graph embedding. We apply a spectral embedding procedure to the current
graph so that each node will be associated with a low-dimensional embedding vector (e.g. vs for
node S in Figure 1), where the embedding dimension (number of eigenvectors) can be determined
based on the largest gaps of the first few (e.g. 100) Laplacian eigenvalues (Peng et al., 2015).

Step (3): Spectrally-critical edge identification. We quickly check the embedding distortion for
each candidate edge (node pair) defined as η = zemb

zdata , where zemb (zdata) denotes the distance
in the embedding (data) vector space. The edges with the largest η are considered as the most
spectrally-critical edges and will be added into the latest graph.

Step (4): Spectral stability checking. We will return the final graph once the overall embedding
distortion becomes sufficiently small or stable 1 after repeating the Steps (2)-(3) multiple times for
adding new edges.

We note that the spectral graph reduction (coarsening) algorithm and the multilevel Laplacian
eigensolver proposed in (Zhao et al., 2018) have been leveraged for achieving nearly-linear runtime
scalability in Steps (2)-(3). More detailed descriptions can be found in the following sections.

3.2.1 INITIAL GRAPH CONSTRUCTION

As aforementioned, (approximate) kNN graphs can be used to construct the initial graphs in Step (1),
since they can be created in O(N logN) time (Muja & Lowe, 2009), while being able to approximate
the local data proximity (Roweis & Saul, 2000). However, traditional kNN graphs have the following
drawbacks: a) the kNN graphs with large k (the number of nearest neighbors) has the tendency of
increasing the cut-ratio (Qian et al., 2012); b) the optimal k value is usually problem dependent and
can be very difficult to find. In this work, we will start creating an approximate kNN graph with a
relatively small k value (e.g. k = 5), and strive to significantly improve the graph quality by adding
extra spectrally-critical edges through implicitly solving the proposed optimization problem in (9). In
the last, a spectral sparsification algorithm (GRASS) 2 has been applied to further simplify the kNN
graph into one with only O(N logN) edges (Feng, 2017).

1If the first few Laplacian eigenvalues do not change much over iterations of adding extra edges, the graph
spectra is considered stable or robust since adding more edges does not significantly perturb the key (smallest)
eigenvalues.

2GRASS can be downloaded at https://sites.google.com/mtu.edu/zhuofeng-graphspar
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3.2.2 SPECTRAL GRAPH EMBEDDING

Spectral graph embedding directly leverages the first few nontrivial eigenvectors for mapping nodes
onto low-dimensional space (Belkin & Niyogi, 2003). The eigenvalue decomposition of Laplacian
matrix is usually the computational bottleneck in spectral graph embedding, especially for large
graphs (Shi & Malik, 2000; Von Luxburg, 2007; Chen et al., 2011). To achieve good scalability,
we exploit multilevel spectrally-reduced graphs that allow for much faster eigenvector (eigenvalue)
computations without loss of accuracy (Zhao et al., 2018). Specifically, the multilevel method first
spectrally coarsens the fine-level graph into much smaller ones with preservation of key spectral
properties, and then map the eigenvectors obtained on the coarse-level graphs back to the fine-level
graph; multilevel eigenvector refinements (smoothing) and orthogonalization steps also can be applied
to further improve the approximation accuracy (Zhao et al., 2018).

3.2.3 SPECTRALLY-CRITICAL EDGE IDENTIFICATION

Once Laplacian eigenvectors are available for the current graph, we can identify spectrally-critical
edges by looking at each candidate edge’s embedding distortion (spectral criticality). To this end,
we exploit the following first-order spectral perturbation analysis to quantitatively evaluate each
candidate edge’s impact on the first few eigenvalues. Denote the edge weight by wp,q and the
Laplacian eigenvector corresponding to the eigenvalue λi by ui. We define ep ∈ Rn to be a
standard basis vector with all zero entries except for the p-th being 1, and ep,q = ep − eq. The
following theorem will allow us to identify the most spectrally-critical edges using first few Laplacian
eigenvectors.

Theorem 1 The spectral criticality cp,q or embedding distortion ηp,q of a candidate edge (p, q) on

the Laplacian eigenvalue λi can be properly estimated by cp,q = wp,q

(
uTi ep,q

)2 ∝ ηp,q =
zemb
p,q

zdata
p,q

.

Proof: See the appendix.

Edge identification with Fiedler vectors. The idea for identifying spectrally-critical edges is to
sort nodes according to the Fiedler vector. Only the nodes with large embedding distances will be
examined as candidate edges. Therefore, we are able to limit the search within the candidate edge
connections between the top and bottom few nodes in 1D sorted node vector. Only the candidate
edges with the top spectral criticality or embedding distortion values will be added into the latest
graph. We also avoid adding redundant edges into the graph by checking their spectral embedding
results: if two candidate edges have similar spectral embedding results, only one of them will be
added. This scheme has also been briefly described in Algorithm 1 in Appendix.

Edge identification with multiple eigenvectors. With k eigenvectors for spectral embedding, we
can first project the graph nodes onto a k-dimensional space and perform spectral clustering to
group the nodes into k clusters. Next, we only have to examine the candidate edges that connect
nodes between two distant clusters in the embedding space, and sort them based on their embedding
distortions. To further reduce the computation cost, we first perform spectral graph coarsening
and then search for high-distortion candidate edges on the coarse-level graph. Once a small set of
top spectrally-critical edges are identified, we will find their corresponding candidate edges in the
fine-level graph. Since each coarse-level candidate edge may correspond to multiple candidate edges
in the fine-level graph, we will sort them based on their embedding distortions, and only add the ones
with largest distortions into the latest graph. The algorithm for spectrally-critical edge identification
using multiple eigenvectors has been briefly described in Algorithm 2 in Appendix.

3.2.4 SPECTRAL STABILITY CHECKING

Our method employs an iterative procedure to repeatedly add new edges into the graph and thereby
improving the approximation quality of the graph. Specifically, at each iteration new spectrally-
critical edges are identified and added to the current graph; we will terminate the iterations when
the graph spectra becomes stable: that is when the first few eigenvalues and eigenvectors are no
longer changing. Alternatively, we can check if the embedding distortion still keeps improving; if
not, the iterations can be terminated, indicating that no edges can be found to significantly perturb
the eigenvectors/eigenvalues. In practice, we found that the number of spectrally-critical edges
decreases rapidly within very few iterations. In this work, we introduce the following scheme for
checking the spectral stability of each graph learning iteration: 1) in each iteration, we compute
and record the several smallest eigenvalues of the latest graph Laplacian according to the largest
gap between eigenvalues Peng et al. (2015): for example, the first (smallest nonzero) k eigenvalues
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Figure 2: Variation ratio of bottom eigenvalues with increasing number of iterations.

that are critical for spectral clustering tasks will stored; 2) we check whether a sufficiently stable
spectra has been reached for graph learning by comparing them with the eigenvalues computed in the
previous iteration: if the change is significant, more iterations are needed. To this end, we record the
first k Laplacian eigenvalues computed in the previous (current) iteration into vector vp (vp+1), and
calculate the spectral variation ratio by:

ratiovar =
‖(vp − vp+1)‖
‖(vp)‖

. (10)

A greater spectral variation ratio indicates less stable eigenvalues within the latest graph, and thus
justifies another iteration for adding more "spectrally-critical" edges into the graph. The spectral
stability checking results for the USPS data set (see Appendix for details) has been shown in Figure
2.

3.2.5 A SCHEME FOR EIGENVALUE STABILITY CHECKING.

4 EXPERIMENTS

In this section, several experiments have been conducted to evaluate the performance of the proposed
graph learning method for a variety of public domain data sets.

4.1 GRAPH LEARNING FOR SPECTRAL CLUSTERING

As shown in Algorithm 3 in Appendix, the the classical spectral clustering (SC) algorithm first
constructs a graph where each edge weight encodes similarities between different data points (entities);
then SC calculates the eigenvectors of the graph Laplacian matrix and embeds data points into low-
dimensional space (Belkin & Niyogi, 2003); in the last, k-means algorithms are used to partition
the data points into multiple clusters. The performance of spectral clustering strongly depends on
the quality of the underlying graph (Guo, 2015). Compared with conventional graph construction
(learning) methods (e.g. kNN graphs) may not be effective for handling many complex real-world
data sets, and can lead to rather low clustering performance (Nie et al., 2009). In this section, we
apply the proposed spectral methods for graph construction, and show the learned graphs can lead to
drastically improved efficiency and accuracy in SC tasks. The detailed description of our evaluation
metrics, data sets and experiment setup has been provided in Appendix.

Table 1 shows the ACC and NMI results of spectral clustering with graphs constructed by different
methods. Graph construction time are also reported in Table 1. The very high computational cost and
memory usage of recent graph learning methods, such as GL-SigRep (Dong et al., 2016), GL-Logdet
(Dong et al., 2016) and GLSC (Egilmez et al., 2017) do not allow for data sets with more than a few
thousands of entities, thus can not be applied for real-world SC tasks.

We can see that the proposed GRASPEL method leads to significant improvement in the performance
of SC: GRASPEL beats all the competitors in the aspect of ACC on all data sets; GRASPEL achieves
more than 20% accuracy gain on USPS and 10% accuracy gain on COIL20 over the second best
method; for MNIST our method also achieves nearly 10% accuracy gain over the standard kNN
graph and more than 6X speedup in graph construction time; we note that several graph construction
methods are not applicable to some of our data sets due to the very high computational (memory)
cost. The superior performance of our method is due to the following reasons:
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1) in traditional kNN graphs, all the nodes have same neighborhood degrees; as a result, the clustering
may strongly favor balanced cut so that some cuts can improperly occur in high-density regions of the
graph. In contrast, our method only includes the edges that have largest impact to the graph spectral
properties, resulting in ultra-sparse (tree-like) graphs with much lower node degrees. Consequently,
the resultant cuts will always occur in proper regions of the graph, which enables to handle even
unbalanced data.

2) Our approach is less susceptible to noise in similarity calculations, since our method only connects
two nodes according to the edge spectral criticality. Based on matrix perturbation theory (Stewart &
Sun, 1990), eigenvectors corresponding to small eigenvalues are more affected by noise in similarities,
which can cause problems when the number of desired clusters is not small (Hennig et al., 2015).
Although consensus kNN method attempts to use consensus information from kNN graph for
discarding noisy edges, the improvement is limited. This is probably due to the fact that it is hard to
extract useful consensus information from a given kNN graph when the neighborhood size is small;
when large amount of potential noisy edges exist in the graph, the capability of consensus information
from a given kNN in circumventing noise can be very limited. The random forest-based (RF-Bi)
method leads to degraded performance of spectral clustering on all the four data sets. The potential
cause is that the features learned from clustering trees may not be accurate and reliable, especially for
high-dimensional data sets.

Table 1: Spectral Clustering Results

ACC(%)/ NMI/ time(seconds)
Data Set standard KNN ConskNN GRASPEL(Fiedler) GRASPEL(Multi)
COIL-20 78.80/ 0.86/ 0.36 79.86/ 0.86/ 2.12 90.27/ 0.96/ 0.40 85.39/ 0.88/ 0.85
PenDigits 81.12/ 0.80/ 1.25 84.17/ 0.81/ 105.92 85.96/ 0.80/ 4.51 84.12/ 0.80/6.55

USPS 68.22/ 0.77/ 2.66 72.54/ 0.78/ 396.83 92.59/ 0.87/ 5.19 90.22/ 0.85/ 8.06
MNIST 71.95/ 0.72/ 242.38 - 81.67/ 0.75/ 59.27 79.05/ 0.74/ 75.38

- indicates that the method is not capable for handling data sets of this scale.

4.2 RESULTS FOR GRAPH RECOVERY

We also quantitatively evaluate graph recovery performance of the proposed method and compare
with recent Laplacian-estimation based graph learning methods, by comparing the graphs learned
from observations to the ground-truth graphs. Four widely adopted evaluation metrics in information
retrieval are used: Precision, Recall, F-measure and Normalized Mutual Information (Dong et al.,
2016). The Precision measures the percentage of correct edges (the edges that are present in the
ground-truth graph) in the learned graph. The Recall measures the percentage of the edges in the
ground-truth graph that are also in the learned graph. F-measure measures the overall quality by
taking both Precision and Recall into account. The results in Table 2 demonstrate the effectiveness
of the proposed method in learning graphs that are always very close to the ground-truth graphs.
Compared with other graph learning methods that can only handle up to a few hundreds or thousands
of data entities, our approach has much better (nearly-linear runtime and space) scalability and thus
will be more efficient for handling large data sets.

Table 2: Graph Recovery Results

The Gaussian graph The ER graph
Algorithm F-measure Precision Recall NMI F-measure Precision Recall NMI
GL-SigRep 0.8310 0.8120 0.8826 0.5272 0.7243 0.6912 0.8389 0.3600
GL-LogDet 0.8178 0.8193 0.8521 0.4701 0.7378 0.6983 0.8030 0.4012

GLSC 0.7203 0.6901 0.9000 0.3208 0.6609 0.5427 0.8224 0.3379
GRASPEL 0.8499 0.8394 0.8812 0.5397 0.7256 0.6990 0.8132 0.3607

4.3 APPLICATIONS IN T-SNE

The t-Distributed Stochastic Neighbor Embedding (t-SNE) has become the most popular visualization
tool for many high-dimensional data analytic tasks (Maaten & Hinton, 2008; Linderman & Steiner-
berger, 2017). However, its high computational cost ( O(N2) where N is the number of data points in
the data set) limits its applicability to large scale problems. (Zhao et al., 2018) proposed a multilevel

7



Under review as a conference paper at ICLR 2020

t-SNE algorithm to reduce the computational burden by leveraging spectral graph coarsening as a
pre-processing step such that a much smaller set of representative data points can be selected for
t-SNE visualization. However, to perform spectral graph coarsening, a graph encoding the manifold
of the data set has to be constructed first, which can also be very time consuming. In this paper, we
apply the proposed spectral graph learning method to accelerate multilevel t-SNE algorithm according
to (Zhao et al., 2018).

Fig 3 and Figs 4 show the visualization and runtime results of the standard t-SNE and the multilevel
t-SNE algorithm based on the graph constructed by the proposed method. Our method truthfully
shows the 10 clusters for both data sets. The runtime for the multi-level t-SNE method includes both
the graph construction time and t-SNE time. It can be seen that the run time for visualizing the data
sets can be dramatically reduced (12.8X and 7X for MNIST and USPS respectively) without loss of
visualization quality.

Figure 3: USPS visualization results.

Figure 4: MNIST visualization results.

5 CONCLUSION

In this work, we present a scalable spectral approach to graph learning from data. By limiting the
precision matrix to be a graph Laplacian, our approach aims to estimate ultra-sparse weighted graphs
and has a clear connection with the prior graphical Lasso method. Compared with prior graph learning
approaches that do not scale to large problems, our approach is highly-scalable for constructing
graphs that can immediately lead to substantially improved computing efficiency and solution quality
for a variety of data mining and machine learning applications, such as spectral clustering (SC), and
t-Distributed Stochastic Neighbor Embedding (t-SNE).
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.1 PROOF OF THEOREM 1

Let LP denote the Laplacian matrix of an undirected graph P , and ui denote the i-th eigenvector of
LP corresponding to the i-th eigenvalue λi that satisfies:

Lpui = λiui, (11)
then we have the following eigenvalue perturbation analysis:

(LP + δLP ) (ui + δui) = (λi + δλi) (ui + δui) , (12)

where a perturbation δLP that includes a new edge connection is applied to LP , resulting in perturbed
eigenvalues and eigenvectors λi + δλi and ui + δui for i = 1, ..., n, respectively.

Keeping only the first-order terms leads to:
LP δui + δLPui = λiδui + δλiui. (13)

Write δui in terms of the original eigenvectors ui for for i = 1, ..., n:

δui =

n∑
i=1

αiui. (14)

Substituting (14) into (13) leads to:

LP

n∑
i=1

αiui + δLPui = λi

n∑
i=1

αiui + δλiui. (15)

Multiplying uTi to both sides of (15) results in:

uTi LP

n∑
i=1

αiui + uTi δLPui = λiu
T
i

n∑
i=1

αiui + δλiu
T
i ui. (16)

Since ui for for i = 1, ..., n are unit-length, mutually-orthogonal eigenvectors, we have:

uTi LP

n∑
i=1

αiui = αiu
T
i LPui, λiu

T
i

n∑
i=1

αiui = αiu
T
i λiui. (17)

Substituting (11) into (17), we have:

αiu
T
i LPui = αiu

T
i λiui. (18)

According to (17), we have:

uTi LP

n∑
i=1

αiui = λiu
T
i

n∑
i=1

αiui. (19)

Substituting (19) into (16) leads to:

uTi δLPui = δλiu
T
i ui = δλi. (20)

Then the eigenvalue perturbation due to δLP is given by:

δλi = wp,q

(
uTi ep,q

)2
. (21)

If each edge weight wp,q encodes the similarity of data vectors xp and xq at nodes p and q, it can
be shown that wp,q ∝ 1

zdata , where zdata denotes the distance between xp and xq; on the other

hand,
(
uTi ep,q

)2 ∝ zemb. Therefore, as long as we can find an edge with large wp,q

(
uTi ep,q

)2
or

ηp,q =
zemb
p,q

zdata
p,q

, including this edge into the current graph will significantly perturb the Laplacian
eigenvalue λi and eigenvector ui.
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.2 ALGORITHMS

Algorithm 1 Spectrally-critical edge identification with Fiedler vectors
Input: a data set D with n data points x1, ...xn ∈ Rd, window size η, edge selection ratio ζ.
Output: updated graph.

1: Construct an initial graph Gi as in (Chen et al., 2011).
2: Initialize: Terminate=0;
3: while Terminate==0 do
4: Embed Gi with the Fiedler vector and sort the data points (nodes).
5: Evaluate the embedding distortions of candidate edges connected between the top π and bottom π sorted

nodes.
6: Select top ζ N edges based on the evaluation result and add them to Gi.
7: Check the spectral stability and update Terminate.
8: end while

Algorithm 2 Spectrally-critical edge identification with multiple eigenvectors
Input: r selected edges in reduced graph, original graph Gorig , desired number of edges to be added in this
iteration l .
Output: updated graph.

1: for each selected edges in reduced graph do
2: for each of its two nodes do
3: Find its corresponding set of nodes in Gorig

4: end for
5: Form the edge set Eorig between the two set of nodes
6: if |Eorig| ≤ l

r
then

7: Add all edges ∈ Eorig to the graph Gorig

8: else
9: for each edge ∈ Eorig do

10: Evaluate it
11: end for
12: Sort edge ∈ Eorig based on the evaluation results and add the top l

r
ones to the graph Gorig

13: end if
14: end for

Algorithm 3 Spectral Clustering Algorithm
Input: A graph G = (V,E,w) and the number of clusters k.
Output: Clusters C1...Ck.

1: Compute the adjacency matrix AG, and diagonal matrix DG;
2: Obtain the unnormalized Laplacian matrix LG=DG-AG;
3: Compute the eigenvectors u1,...uk that correspond to the bottom k nonzero eigenvalues of LG;
4: Construct U ∈ Rn×k, with k eigenvectors of LG stored as columns;
5: Perform k-means algorithm to partition the rows of U into k clusters and return the result.

.3 DATA SETS DESCRIPTION

COIL20: A data set contains 1, 440 gray-scale images of 20 objects, and each object on a turntable
has 72 normalized gray-scale images taken from different degrees. The image size is 32x 32 pixels.

PenDigits: A data set consists of 7,494 images of handwritten digits from 44 writers, using the
sampled coordination information. Each digit is represented by 16 attributes.

USPS: A data set includes 9, 298 scanned hand-written digits on the envelops from U.S. Postal
Service with 256 attributes.

MNIST: A data set consists of 70,000 images of handwritten digits. Each image has
28-by-28 pixels in size. This database can be found from Prof.Yann LeCun’s website
(http://yann.lecun.com/exdb/mnist/).
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.4 COMPARED ALGORITHMS

Standard kNN : the most widely used affinity graph construction method. Each node is connected
to its k nearest neighbors.

Consensus of kNN (cons-kNN) (Premachandran & Kakarala, 2013) : adopts the state-of-the-art
neighborhood selection methods to construct the affinity graphs. It selects strong neighborhoods to
improve the robustness of the graph by using the consensus information from different neighborhoods
in a given kNN graph.

Random forest-based Method (RF-Bi)(Pei et al., 2013; Zhu et al., 2014): constructs affinity graphs
by exploiting discriminative features during the stage of training the clustering forests.

GL-SigRep (Dong et al., 2016): construct a graph from signals that are assumed to be smooth with
respect to the corresponding graph.

GL-LogDet (Dong et al., 2016): encodes the information about the partial correlations between the
variables without the constraint to form a valid Laplacian.

Graph Learning under structural constraints(GLSC) (Egilmez et al., 2017): formulated the
problem as to maximum a posterior estimation of GaussianMarkov Random Field (GMRF) when the
precision matrix is chosen to be a graph Laplacian.

.5 EVALUATION METRIC

1)

ACC =

n∑
j=1

δ(yi,map(ci))

n
, (22)

where n is the number of samples in the data set, yi is the ground-truth label provided by the data sets,
and ci is clustering result obtained from the algorithm. δ(x, y) is a delta function defined as: δ(x, y)=1
for x = y, and δ(x, y)=0, otherwise. map(•) is a permutation function that maps each cluster index
ci to a ground truth label, which can be realized using the Hungarian algorithm (Papadimitrou &
Steiglitz, 1982). ACC measures the agreement between the clustering results generated by clustering
algorithms and the ground-truth labels. A higher value of ACC indicates better clustering quality.

2)

For two random variables P and Q, normalized mutual information is defined as (Strehl & Ghosh,
2002):

NMI =
I(P,Q)√
H(P )H(Q)

, (23)

where I(P,Q) denotes the mutual information between P and Q, while H(P ) and H(Q) are
entropies of P and Q. In practice, the NMI metric can be calculated as follows (Strehl & Ghosh,
2002):

NMI =

k∑
i=1

k∑
j=1

ni,j log(
n·ni,j

ni·nj
)√

(
k∑

i=1

nilog ni

n )(
k∑

j=1

nj log
nj

n )

, (24)

where n is the number of data points in the data set, k is the number of clusters, ni is the number of
data points in cluster Ci according to the clustering result generated by algorithm, nj is the number
of data points in class Cj according to the ground truth labels provided by the data set, and ni,j is the
number of data points in cluster Ci according to the clustering result as well as in class Cj according
to the ground truth labels. The NMI value is in the range of [0, 1], while a higher NMI value indicates
a better matching between the algorithm generated result and ground truth result.
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