
Under review as a conference paper at ICLR 2020

TRAINING NEURAL NETWORKS
FOR AND BY INTERPOLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In modern supervised learning, many deep neural networks are able to interpolate
the data: the empirical loss can be driven to near zero on all samples simultaneously.
In this work, we explicitly exploit this interpolation property for the design of a
new optimization algorithm for deep learning. Specifically, we use it to compute an
adaptive learning-rate in closed form at each iteration. This results in the Adaptive
Learning-rates for Interpolation with Gradients (ALI-G) algorithm. ALI-G retains
the main advantage of SGD which is a low computational cost per iteration. But
unlike SGD, the learning-rate of ALI-G uses a single constant hyper-parameter
and does not require a decay schedule, which makes it considerably easier to tune.
We provide convergence guarantees of ALI-G in the stochastic convex setting.
Notably, all our convergence results tackle the realistic case where the interpolation
property is satisfied up to some tolerance. We provide experiments on a variety of
architectures and tasks: (i) learning a differentiable neural computer; (ii) training
a wide residual network on the SVHN data set; (iii) training a Bi-LSTM on the
SNLI data set; and (iv) training wide residual networks and densely connected
networks on the CIFAR data sets. ALI-G produces state-of-the-art results among
adaptive methods, and even yields comparable performance with SGD, which
requires manually tuned learning-rate schedules. Furthermore, ALI-G is simple to
implement in any standard deep learning framework and can be used as a drop-in
replacement in existing code.

1 INTRODUCTION

Training a deep neural network is a challenging optimization problem: it involves minimizing the
average of many high-dimensional non-convex functions. In practice, the main algorithms of choice
are Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) and adaptive gradient methods
such as AdaGrad (Duchi et al., 2011) or Adam (Kingma & Ba, 2015). In recent work, the ability to
interpolate – i.e. to achieve near zero loss on all training samples simultaneously – has been used to
show convergence of SGD (Ma et al., 2018, Vaswani et al., 2019a, Zhou et al., 2019). This property is
usually satisfied in supervised deep learning because of the empirical success of over-parameterized
architectures. However, while the convergence analyses provide a better theoretical understanding of
SGD, they do not help improve its practical behavior.

In this work, we open a different line of enquiry, namely: can the interpolation property be used
to design a robust and efficient optimization algorithm for deep learning? In order to answer this
question, we begin by giving the following two desiderata of an optimization algorithm for deep
learning: (i) an inexpensive computational cost per iteration (typically a call to a stochastic first-order
oracle); and (ii) adaptive learning-rates that do not require a manually designed schedule.

We present ALI-G (Adaptive Learning-rates for Interpolation with Gradients), an algorithm that
takes advantage of interpolation by design and satisfies both properties mentioned above. Key to the
ALI-G algorithm are the following two ideas. First, an adaptive learning-rate can be computed for
the non-stochastic gradient direction when the minimum value of the objective function is known
(Polyak, 1969, Shor, 1985, Brännlund, 1995, Nedić & Bertsekas, 2001a;b). And second, one such
minimum value is usually approximately known for interpolating models: for instance, it is close
to zero for a model trained with the cross-entropy loss. By carefully combining these two ideas,

1

Under review as a conference paper at ICLR 2020

we create a stochastic algorithm that provably converges fast in the convex setting and that obtains
state-of-the-art results with neural networks.

Procedurally, ALI-G is close to many existing algorithms, such as Deep Frank-Wolfe (Berrada et al.,
2019), APROX (Asi & Duchi, 2019) and L4 (Rolinek & Martius, 2018). And yet uniquely, thanks to
its careful design and analysis, ALI-G enables accurate optimization of a wide class of deep neural
networks using only a single hyper-parameter that does not need to be decayed. This makes ALI-G
well-suited to the deep learning setting, where hyper-parameter tuning is widely regarded as an
onerous and time consuming task. Since ALI-G is easy to implement in any deep learning framework,
we believe that it can prove to be a practical and reliable optimization tool for deep learning.

Contributions. We summarize the contributions of this work as follows:
- We design an optimization algorithm that uses a single hyper-parameter for its learning-rate and
does need any decaying schedule. In contrast, the closely related APROX (Asi & Duchi, 2019) and
L4 (Rolinek & Martius, 2018) use respectively two and four hyper-parameters for their learning-rate.
- We provide convergence rates of ALI-G in various stochastic convex settings. Importantly, our
theoretical results take into account the error in the estimate of the minimum objective value. To
the best of our knowledge, our work is the first to establish convergence rates for interpolation with
approximate estimates.
- We demonstrate state-of-the-art results for ALI-G on learning a differentiable neural computer;
training variants of residual networks on the SVHN and CIFAR data sets; and training a Bi-LSTM on
the Stanford Natural Language Inference data set.

2 THE ALGORITHM

2.1 PROBLEM SETTING

Loss Function. We consider a supervised learning task where the model is parameterized by
w ∈ Rp. Usually, the objective function can be expressed as an expectation over z ∈ Z , a random
variable indexing the samples of the training set:

f(w) , Ez∈Z [`z(w)], (1)
where each `z is the loss function associated with the sample z. We assume that each `z is non-
negative, which is the case for the large majority of loss functions used in machine learning. For
instance, suppose that the model is a deep neural network with weights w performing classification.
Then for each sample z, `z(w) can represent the cross-entropy loss, which is always non-negative.
Other non-negative loss functions include the structured or multi-class hinge loss, and the L1 or L2

loss functions for regression.

Regularization. It is often desirable to employ a regularization function φ in order to promote
generalization. In this work, we incorporate such regularization as a constraint on the feasible domain:
Ω = {w ∈ Rp : φ(w) ≤ r} for some value of r. In the deep learning setting, this will allow us
to assume that the objective function can be driven close to zero without unrealistic assumptions
about the regularization. Our framework can handle any constraint set Ω on which Euclidean
projections are computationally efficient. This includes the feasible set induced by L2 regularization:
Ω =

{
w ∈ Rp : ‖w‖22 ≤ r

}
, for which the projection is given by a simple rescaling of w. Finally,

note that if we do not wish to use any regularization, we define Ω = Rp and the corresponding
projection is the identity.

Problem Formulation. The learning task can be expressed as the problem (P) of finding a feasible
vector of parameters w? ∈ Ω that minimizes f :

w? ∈ arg min
w∈Ω

f(w). (P)

Also note that f? refers to the minimum value of f over Ω: f? , minw∈Ω f(w).

2.2 THE POLYAK STEP-SIZE

Setting. We assume that f? is known and we use non-stochastic updates: at each iteration, the full
objective f and its derivative are evaluated. We denote by ∇f(w) the first-order derivative of f at w

2

Under review as a conference paper at ICLR 2020

(e.g. ∇f(w) can be a sub-gradient or the gradient). In addition, ‖ · ‖ is the standard Euclidean norm
in Rp, and ΠΩ(w) is the Euclidean projection of the vector w ∈ Rp on the set Ω.

Polyak Step-Size. At time-step t, using the Polyak step-size (Polyak, 1969, Shor, 1985, Brännlund,
1995, Nedić & Bertsekas, 2001a;b) yields the following update:

wt+1 = ΠΩ (wt − γt∇f(wt)) , where γt ,
f(wt)− f?
‖∇f(wt)‖2

, (2)

where we loosely define 0
0 = 0 for simplicity purposes.

wt w?wt+1

f?

Loss function f
Linearization at wt

Minimum f?

Figure 1: Illustration of the Polyak step-size
in 1D. In this case, and further assuming
that f? = 0, the algorithm coincides with the
Newton-Raphson method for finding roots of
a function.

Interpretation. It can be shown that wt+1 lies on
the intersection between the linearization of f at wt

and the horizontal plane z = f? (see Figure 1, more
details in Proposition 2 in the supplementary material).
Note that since f? is the minimum of f , the Polyak
step-size γt is necessarily non-negative.

Limitations. Equation (2) has two major short-
comings that prevent its applicability in a machine
learning setting. First, each update requires a full eval-
uation of f and its derivative. Stochastic extensions
have been proposed in Nedić & Bertsekas (2001a;b),
but they still require frequent evaluations of f . This is
expensive in the large data setting, and even computa-
tionally infeasible when using massive data augmen-
tation. Second, when applying this method to the non-convex setting of deep neural networks, the
method sometimes fails to converge.

Therefore we would like to design an extension of the Polyak step-size that (i) is inexpensive to
compute in a stochastic setting (e.g. with a computational cost that is independent of the total number
of training samples), and (ii) converges in practice when used with deep neural networks. The next
section introduces the ALI-G algorithm, which achieves these two goals in the interpolation setting.

2.3 THE ALI-G ALGORITHM

We assume that we are in an interpolation setting: the model is assumed to be able to drive the loss
function to near zero on all samples simultaneously.

Algorithm. The main steps of the ALI-G algorithm are provided in Algorithm 1. ALI-G iterates
over three operations until convergence. First, it computes a stochastic approximation of the learning
objective and its derivative (line 3). Second, it computes a step-size decay parameter γt based on the
stochastic information (line 4). Third, it updates the parameters by moving in the negative derivative
direction by an amount specified by the step-size and projecting the resulting vector on to the feasible
region (line 5).

Algorithm 1 The ALI-G algorithm

Require: maximal learning-rate η, initial feasible w0 ∈ Ω, small constant δ > 0
1: t = 0
2: while not converged do
3: Get `zt(wt), ∇`zt(wt) with zt drawn i.i.d.
4: γt = min

{
`zt (wt)

‖∇`zt (wt)‖2+δ , η
}

5: wt+1 = ΠΩ (wt − γt∇`zt(wt))
6: t = t+ 1
7: end while

Comparison with the Polyak Step-Size. There are three main differences to the update in equation
(2). First, each update only uses the loss `zt and its derivative rather than the full objective f and its

3

Under review as a conference paper at ICLR 2020

derivative. Second, the learning-rate γt is clipped to η, the maximal learning-rate hyper-parameter. We
emphasize that η remains constant throughout the iterations, therefore it is a single hyper-parameter
and does not need a schedule like SGD learning-rate. Third, the minimum f? has been replaced by
the lower-bound of 0. All these modifications will be justified in the next section.

The ALI-G∞ Variant. When ALI-G uses no maximal learning-rate, we refer to the algorithm as
ALI-G∞, since it is equivalent to use an infinite maximal learning-rate. Note that ALI-G∞ requires
no hyper-parameter for its step-size.

3 JUSTIFICATION AND ANALYSIS

3.1 INTERPOLATION ENABLES INEXPENSIVE STOCHASTIC UPDATES

By definition, the interpolation setting gives f? = 0, which we used in ALI-G to simplify the formula
of the learning-rate γt. More subtly, the interpolation property also allows the updates to rely on the
stochastic estimate `zt(wt) rather than the exact but expensive f(wt). Intuitively, this is possible
because in the interpolation setting, each training sample can use its own learning-rate without
harming progress on the other ones. Recall that ALI-G∞ is the variant of ALI-G that uses no maximal
learning-rate. The following result formalizes the convergence guarantee of ALI-G∞ in the stochastic
convex setting:
Theorem 1 (Convex and Lipschitz). We assume that X is a convex set, and that for every z ∈ Z , `z
is convex and C-Lipschitz. Let w? be a solution of (P), and assume that the interpolation property
is approximately satisfied: ∀z ∈ Z, `z(w?) ≤ ε, for some interpolation tolerance ε ≥ 0. Then
ALI-G∞ applied to f satisfies:

f

(
1

T + 1

T∑
t=0

wt

)
≤ ε

√(
C2

δ
+ 1

)
+
‖w0 −w?‖

√
C2 + δ√

T + 1
. (3)

We emphasize that our careful analysis explicitly shows the dependency of the convergence result on
the interpolation tolerance ε. It is reassuring to note that convergence is exact when the interpolation
property is exactly satisfied (ε = 0). In the supplementary material, we also establish convergence
rates of O(1/T) for smooth convex functions, and O(exp(−αT/8β)) for α-strongly convex and
β-smooth functions. Similar results can be proved when using a maximal learning-rate η: the
convergence speed then remains unchanged provided that η is large enough, and it is lowered when η
is small. We refer the interested reader to the supplementary for the formal results and their proofs.

3.2 A MAXIMAL LEARNING-RATE HELPS WITH NON-CONVEXITY

wt=− 3
5

wt+1=3
5

f : w 7→ w2 − |w|3

Linearizations of f

Figure 2: A simple example where
the Polyak step-size causes oscil-
lations due to non-convexity. ALI-
G converges whenever its maximal
learning-rate η is lower than 10.

The Polyak step-size may fail to converge when the objective is
non-convex, as figure 2 illustrates: in this (non-convex) setting,
gradient descent with Polyak step-size oscillates between two
symmetrical points because its step-size is too large (details in
the supplementary).

Indeed, we empirically find that non-convexity usually leads
to overestimation of the Polyak step-size. Intuitively, using a
maximal learning-rate allows ALI-G to behave like constant
step-size SGD in non-convex regions where the Polyak step-
size would be over-estimated, and to automatically use the
Polyak step-size once reaching a convex basin of convergence.

Importantly, using a maximal learning-rate can be seen as a
very natural extension of SGD when using a non-negative loss
function:
Proposition 1. [Proximal Interpretation] Suppose that Ω = Rp and let δ = 0. We consider
the update performed by SGD: wSGD

t+1 = wt − ηt∇`zt(wt); and the update performed by ALI-G:

4

Under review as a conference paper at ICLR 2020

wALI-G
t+1 = wt − γt∇`zt(wt), where γt = min

{
`zt (wt)

‖∇`zt (wt)‖2+δ , η
}

. Then we have:

wSGD
t+1 = arg min

w∈Rp

{ 1

2ηt
‖w −wt‖2 + `zt(wt) +∇`zt(wt)

>(w −wt)
}
, (4)

wALI-G
t+1 = arg min

w∈Rp

{ 1

2η
‖w −wt‖2 + max

{
`zt(wt) +∇`zt(wt)

>(w −wt), 0
}}

. (5)

In other words, at each iteration, ALI-G solves a proximal problem in closed form in a similar way to
SGD. In both cases, the loss function `zt is locally approximated by a first-order Taylor expansion at
wt. The difference is that ALI-G also exploits the fact that `zt is non-negative. This allows ALI-G to
use a constant value for η in the interpolation setting, while the learning-rate ηt of SGD needs to be
manually decayed. It is currently an open question whether ALI-G can be proved to converge in the
non-convex setting given a sufficiently small yet constant maximal learning-rate η.

4 RELATED WORK

Interpolation in Deep Learning. As mentioned in the introduction, recent works have successfully
exploited the interpolation assumption to prove convergence of SGD in the context of deep learning
(Ma et al., 2018, Vaswani et al., 2019a, Zhou et al., 2019). Such works are complementary to ours in
the sense that they provide a convergence analysis of an existing algorithm for deep learning.

Adaptive Gradient Methods. Similarly to ALI-G, adaptive gradient methods also rely on tuning
a single hyper-parameter, thereby providing a more pragmatic alternative to SGD that needs a
specification of the full learning-rate schedule. While the most popular ones are Adagrad (Duchi
et al., 2011), RMSPROP (Tieleman & Hinton, 2012), Adam (Kingma & Ba, 2015) and AMSGrad
(Reddi et al., 2018), there have been many other variants (Zeiler, 2012, Orabona & Pál, 2015, Défossez
& Bach, 2017, Levy, 2017, Mukkamala & Hein, 2017, Zheng & Kwok, 2017, Bernstein et al., 2018,
Chen & Gu, 2018, Shazeer & Stern, 2018, Zaheer et al., 2018, Chen et al., 2019, Loshchilov & Hutter,
2019, Luo et al., 2019). However, as pointed out in Wilson et al. (2017), adaptive gradient methods
tend to give poor generalization in supervised learning. In our experiments, the results provided by
ALI-G are significantly better than those obtained by the most popular adaptive gradient methods.

Adaptive Learning-Rate Algorithms. Vaswani et al. (2019b) show that one can use line search in
a stochastic setting for interpolating models while guaranteeing convergence. However, in contrast
to our work, the resulting algorithm requires more than one hyper-parameter (up to four), and the
line-search is not computed in closed form. Less closely related methods have proposed adaptive
learning-rates without using the minimum for the computation of the learning rate (Schaul et al., 2013,
Tan et al., 2016, Zhang et al., 2017, Baydin et al., 2018, Wu et al., 2018, Li & Orabona, 2019), but
they have not demonstrated competitiveness against SGD with a well-tuned hand-designed schedule.

L4 Algorithm. The L4 algorithm (Rolinek & Martius, 2018) also uses a modified version of the
Polyak step-size. However, the L4 algorithm computes an online estimate of f? rather than relying
on a fixed value. This requires three hyper-parameters, which are in practice sensitive to noise and
crucial for empirical convergence of the method. In addition, L4 does not come with convergence
guarantees. In contrast, by utilizing the interpolation property and a maximal learning-rate, our
method is able to (i) provide reliable and accurate minimization with only a single hyper-parameter,
and (ii) offer guarantees of convergence in the stochastic convex setting.

Frank-Wolfe Methods. The proximal interpretation in Proposition 1 allows us to draw additional
parallels to existing methods. In particular, the formula of the learning-rate γt may remind the reader
of the Frank-Wolfe algorithm (Frank & Wolfe, 1956) in some of its variants (Locatello et al., 2017),
or other dual methods (Lacoste-Julien et al., 2013, Shalev-Shwartz & Zhang, 2016). This is because
such methods solve in closed form the dual of problem (5), and problems in the form of (5) naturally
appear in dual coordinate ascent methods (Shalev-Shwartz & Zhang, 2016).

When no regularization is used, ALI-G and Deep Frank-Wolfe (DFW) (Berrada et al., 2019) are
procedurally identical algorithms. This is because in such a setting, one iteration of DFW also

5

Under review as a conference paper at ICLR 2020

amounts to solving (5) in closed-form – more generally, DFW is designed to train deep neural
networks by solving proximal linear support vector machine problems approximately. However,
we point out the two fundamental advantages of ALI-G over DFW: (i) ALI-G can handle arbitrary
(lower-bounded) loss functions, while DFW can only use convex piece-wise linear loss functions;
and (ii) as seen previously, ALI-G provides convergence guarantees in the convex setting.

APROX Algorithm. Asi & Duchi (2019) have recently introduced the APROX algorithm, a family
of proximal stochastic optimization algorithms for convex problems. Notably, the APROX “truncated
model” version is similar to ALI-G. However, there are four clear advantages of our work over (Asi
& Duchi, 2019) in the interpolation setting, in particular for training neural networks. First, our work
is the first to empirically demonstrate the applicability and usefulness of the algorithm on varied
modern deep learning tasks – most of our experiments use several orders of magnitude more data
and model parameters than the small-scale convex problems of (Asi & Duchi, 2019). Second, our
analysis and insights allow us to make more aggressive choices of learning rate than (Asi & Duchi,
2019). Indeed, Asi & Duchi (2019) assume that the maximal learning-rate is exponentially decaying,
even in the interpolating convex setting. In contrast, by avoiding the need for an exponential decay,
the learning-rate of ALI-G requires only one hyper-parameters instead of two for APROX. Third,
our analysis takes into account the interpolation tolerance ε ≥ 0 rather than unrealistically assuming
the perfect case ε = 0 (that would require infinite weights when using the cross-entropy loss for
instance). Fourth, our analysis proves fast convergence in function space rather than iterate space.

5 EXPERIMENTS

We empirically compare ALI-G to the optimization algorithms most commonly used in deep learning.
Our experiments span a variety of architectures and tasks: (i) learning a differentiable neural computer;
(ii) training wide residual networks on SVHN; (iii) training a Bi-LSTM on the Stanford Natural
Language Inference data set; and (iv) training wide residual networks and densely connected networks
on the CIFAR data sets. Note that the tasks of training wide residual networks on SVHN and CIFAR-
100 are part of the DeepOBS benchmark Schneider et al. (2019), which aims at standardizing
baselines for deep learning optimizers. In particular, these tasks are among the most difficult ones
of the benchmark because the SGD baseline benefits from a manual schedule for the learning rate.
Despite this, ALI-G obtains competitive performance with SGD. In addition, ALI-G is the best
performing method with a single hyper-parameter on the difficult tasks of Bi-LSTM on SNLI and
ResNet variants on CIFAR.

he code to reproduce our results will be made publicly available. In the Tensorflow (Abadi et al.,
2015) experiment, we use the official and publicly available implementation of L4

1. In the PyTorch
(Paszke et al., 2017) experiments, we use our implementation of L4, which we unit-test against the
official Tensorflow implementation. In addition, we employ the official implementation of DFW2 and
we re-use their code for the experiments on SNLI and CIFAR. All experiments are performed either
on a 12-core CPU (differentiable neural computer) or on a single GPU (SVHN, SNLI, CIFAR).

5.1 DIFFERENTIABLE NEURAL COMPUTERS

Setting. The Differentiable Neural Computer (DNC) (Graves et al., 2016) is a recurrent neural
network that aims at performing computing tasks by learning from examples rather than by executing
an explicit program. In this case, the DNC learns to repeatedly copy a fixed size string given as input.
Although this learning task is relatively simple, the complex architecture of the DNC makes it an
interesting benchmark problem for optimization algorithms.

Methods. We use the official and publicly available implementation of DNC3. We vary the initial
learning rate as powers of ten between 10−4 and 104 for each method except for L4Adam and
L4Mom. For L4Adam and L4Mom, since the main hyper-parameter α is designed to lie in (0, 1),
we vary it between 0.05 and 0.095 with a step of 0.1. The gradient norm is clipped for all methods
except for ALI-G, L4Adam and L4Mom (as recommended by Rolinek & Martius (2018)).

1https://github.com/martius-lab/l4-optimizer
2https://github.com/oval-group/dfw
3https://github.com/deepmind/dnc

6

https://github.com/martius-lab/l4-optimizer
https://github.com/oval-group/dfw
https://github.com/deepmind/dnc

Under review as a conference paper at ICLR 2020

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Main Step-Size Hyper-Parameter (α)

L4Adam

L4Mom

2e-4 3e-8 3e-8 3e-8 3e-8 3e-8 1e+2 1e+2 2e+2 1e+2

2e-5 4e-8 9e-8 2e+2 2e+2 1e+2 1e+2 2e+2 1e+2 2e+2

1e-4 1e-3 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 inf
Main Step-Size Hyper-Parameter (η)

AdaGrad

Adam

RMSProp

SGD

SGD Momentum

ALI-G

1e+1 9e+0 3e+0 2e-4 7e-4 2e+2 1e+2 1e+2 1e+2 inf

2e+0 6e-4 7e-5 5e-1 1e+2 1e+2 1e+2 2e+2 1e+2 inf

1e+1 5e-5 2e-7 1e-7 1e+2 2e+2 1e+2 1e+2 1e+2 inf

1e+1 9e+0 3e+0 8e-3 9e-4 2e+2 1e+2 1e+2 1e+2 inf

9e+0 2e+0 8e-3 5e-4 2e+0 2e+2 1e+2 1e+2 1e+2 inf

1e+1 9e+0 3e+0 8e-3 5e-4 5e-5 7e-6 8e-7 2e-7 2e-7

Figure 3: Final objective function when training a Differentiable Neural Computer for 10k steps
(lower is better). The intensity of each cell is log-proportional to the value of the objective function
(darker is better). ALI-G obtains good performance for a very large range of η (any η ≥ 0.1).

Results. We present the results in Figure 3. ALI-G provides accurate optimization for any η ≥ 0.1,
and is among the best performing methods by reaching an objective function of 2.10−7. On this task,
L4Adam and L4Mom also provide accurate and robust optimization. In contrast to ALI-G and the
L4 methods, the most commonly used algorithms such as SGD, SGD with momentum and Adam are
very sensitive to their main learning-rate hyper-parameter.

5.2 WIDE RESIDUAL NETWORKS ON SVHN

Setting. The SVHN data set contains 73k training samples, 26k testing samples and 531k additional
easier samples. From the 73k difficult training examples, we select 6k samples for validation; we use
all remaining (both difficult and easy) examples for training, for a total of 598k samples. We train a
wide residual network 16-4 following Zagoruyko & Komodakis (2016).

Method. For SGD, we use the manual schedule for the learning rate of Zagoruyko & Komodakis
(2016). For L4Adam and L4Mom, we cross-validate the main learning-rate hyper-parameter α to
be in {0.0015, 0.015, 0.15} (0.15 is the value recommended by Rolinek & Martius (2018)). For
other methods, the learning rate hyper-parameter is tuned as a power of 10. The L2 regularization
is cross-validated in {0.0001, 0.0005} for all methods but ALI-G. For ALI-G, the regularization is
expressed as a constraint on the L2-norm of the parameters, and its maximal value is set to 50. SGD,
ALI-G and BPGrad use a Nesterov momentum of 0.9. All methods use a dropout rate of 0.4.

Results. The results are presented in Table 1. On this relatively easy task, most methods achieve
about 98% test accuracy. Despite the cross-validation, L4Mom does not converge on this task. Even
though SGD benefits from a hand-designed schedule, ALI-G and other adaptive methods obtain close
performance to it.

Adagrad
Adam

AMSGrad

BPGrad
DFW

L4
Adam

L4
Mom

ALI-G
SGD

SGD
†

98.0 97.9 97.9 98.1 98.1 98.2 19.6 98.1 98.3 98.4

Table 1: Test Accuracy (%) on SVHN. In red, SGD benefits from a hand-designed schedule for its
learning-rate. In black, adaptive methods, including ALI-G, have a single hyper-parameter for their
learning-rate. SGD† refers to the performance reported by Zagoruyko & Komodakis (2016).

5.3 BI-LSTM ON SNLI

Setting. We train a Bi-LSTM of 47M parameters on the Stanford Natural Language Inference
(SNLI) data set (Bowman et al., 2015). The SNLI data set consists in 570k pairs of sentences, with
each pair labeled as entailment, neutral or contradiction. This large scale data set is commonly used
as a pre-training corpus for transfer learning to many other natural language tasks where labeled data
is scarcer (Conneau et al., 2017) – much like ImageNet is used for pre-training in computer vision.
We follow the protocol of Berrada et al. (2019); we also re-use their code and results for the baselines.

7

Under review as a conference paper at ICLR 2020

Method. For L4Adam and L4Mom, the main hyper-parameter α is cross-validated in {0.015, 0.15}
– compared to the recommended value of 0.15, this helped convergence and considerably improved
performance. The SGD algorithm benefits from a hand-designed schedule, where the learning-rate is
decreased by 5 when the validation accuracy does not improve. Other methods use adaptive learning-
rates and do not require such schedule. The value of the main hyper-parameter η is cross-validated as
a power of ten for the ALI-G algorithm and for previously reported adaptive methods. Following the
implementation by Conneau et al. (2017), no L2 regularization is used. The algorithms are evaluated
with the Cross-Entropy (CE) loss and the multi-class hinge loss (SVM), except for DFW which is
designed for SVMs only.

Loss Adagrad∗

Adam
∗

AMSGrad∗

BPGrad∗

DFW
∗

L4
Adam

L4
Mom

ALI-G
∞

ALI-G
SGD
∗

SGD
†

CE 83.8 84.5 84.2 83.6 - 83.3 83.7 84.6 84.8 84.7 84.5
SVM 84.6 85.0 85.1 84.2 85.2 82.5 83.2 84.7 85.2 85.2 -

Table 2: Test Accuracy (%) on SNLI. In red, SGD benefits from a hand-designed schedule for its
learning-rate. In black, adaptive methods have a single hyper-parameter for their learning-rate. In
blue, ALI-G∞ does not have any hyper-parameter for its learning-rate. With an SVM loss, DFW and
ALI-G are procedurally identical algorithms – but in contrast to DFW, ALI-G can also employ the
CE loss. Methods in the format X∗ re-use results from Berrada et al. (2019). SGD† is the result
from Conneau et al. (2017).

Results. We present the results in Table 2. ALI-G∞ is the only method that requires no hyper-
parameter for its learning-rate. Despite this, and the fact that SGD employs a learning-rate schedule
that has been hand designed for good validation performance, ALI-G∞ is still able to obtain results
that are competitive with SGD. Moreover, ALI-G, which requires a single hyper-parameter for the
learning-rate, outperforms all other methods for both the SVM and the CE loss functions.

5.4 WIDE RESIDUAL NETWORKS AND DENSELY CONNECTED NETWORKS ON CIFAR

Setting. We follow the methodology of Berrada et al. (2019); we also re-use their code and we
reproduce their results. We test two architectures: a Wide Residual Network (WRN) 40-4 (Zagoruyko
& Komodakis, 2016) and a bottleneck DenseNet (DN) 40-40 (Huang et al., 2017). We use 45k
samples for training and 5k for validation. The images are centered and normalized per channel. We
apply standard data augmentation with random horizontal flipping and random crops. AMSGrad
was selected in Berrada et al. (2019) because it was the best adaptive method on similar tasks,
outperforming in particular Adam and Adagrad. In addition to the baselines from Berrada et al.
(2019), we also provide the performance of L4Adam, L4Mom, AdamW (Loshchilov & Hutter, 2019)
and Yogi (Zaheer et al., 2018).

Method. All optimization methods employ the cross-entropy loss, except for the DFW algorithm,
which is designed to use an SVM loss. For DN and WRN respectively, SGD uses the manual
learning rate schedules from Huang et al. (2017) and Zagoruyko & Komodakis (2016). Following
Berrada et al. (2019), the batch-size is cross-validated in {64, 128, 256} for the DN architecture,
and {128, 256, 512} for the WRN architecture. For L4Adam and L4Mom, the learning-rate hyper-
parameter α is cross-validated in {0.015, 0.15}. For AMSGrad, AdamW, Yogi, DFW and ALI-G,
the learning-rate hyper-parameter η is cross-validated as a power of 10 (in practice η ∈ {0.1, 1} for
ALI-G). SGD, DFW and ALI-G use a Nesterov momentum of 0.9. Following Berrada et al. (2019),
for all methods but ALI-G and AdamW, the L2 regularization is cross-validated in {0.0001, 0.0005}
on the WRN architecture, and is set to 0.0001 for the DN architecture. For AdamW, the weight-decay
is cross-validated as a power of 10. For ALI-G, L2 regularization is expressed as a constraint on the
norm on the vector of parameters; its maximal value is set to 100 for the WRN models, and to 75 for
the DN ones.

Results. We present the results in Table 3. In this setting again, ALI-G obtains competitive
performance with manually decayed SGD. ALI-G largely outperforms AMSGrad, AdamW and Yogi.

8

Under review as a conference paper at ICLR 2020

In addition, it significantly bridges the gap between DFW and SGD on CIFAR-10 with the WRN
model, and on CIFAR-100 with the DN one.

Data Set Architecture AMSGrad

AdamW
Yogi

DFW
L4

Adam
L4

Mom
ALI-G

SGD
SGD
†

CIFAR-10 WRN 90.8 92.2 91.3 94.2 90.5 91.6 95.2 95.3 95.4
DN 91.7 92.2 92.4 94.6 90.8 91.9 94.8 95.1 -

CIFAR-100 WRN 68.7 70.3 68.0 76.0 61.7 61.4 75.8 77.8 78.8
DN 69.4 70.0 68.6 73.2 60.5 62.6 76.3 76.3 -

Table 3: Test Accuracy (%) on the CIFAR data sets. In red, SGD benefits from a hand-designed
schedule for its learning-rate. In black, adaptive methods, including ALI-G, have a single hyper-
parameter for their learning-rate. SGD† refers to the result from Zagoruyko & Komodakis (2016).
Each reported result is an average over three independent runs.

5.5 TRAINING PERFORMANCE

The experiments have so far focused on testing accuracy (except for the DNC task), because that is the
main metric driving practitioners’ choice of optimization algorithm. In this section, we empirically
assess the performance of ALI-G and its competitors in terms of training objective. In order to have
comparable objective functions, the L2 regularization is deactivated. We do not use dropout. The
learning-rate is selected as a power of ten for best final objective value, and the batch-size is set to its
default value. The L4 methods diverge on CIFAR-100 in this setting. For clarity, we only display
the performance of SGD, Adam, Adagrad and ALI-G. Here SGD uses a constant learning-rate to
emphasize the need for adaptivity. Therefore all methods use one hyper-parameter for their learning-
rate. As can be seen, ALI-G provides better training performance than the baseline algorithms on all
tasks.

0 100 200

10
−4

10
−3

10
−2

10
−1

10
0

WRN-CIFAR10

0 100 200

10
−3

10
−2

10
−1

10
0

WRN-CIFAR100

0 100 200 300

10
−4

10
−3

10
−2

10
−1

10
0

DN-CIFAR10

0 100 200 300

10
−3

10
−2

10
−1

10
0

DN-CIFAR100

0 80 160

10
−5

10
−4

10
−3

10
−2

10
−1

WRN-SVHN

Adagrad
Adam
SGD
ALI-G

Figure 4: Objective function over the epochs on CIFAR-10, CIFAR-100 and SVHN (smoothed with a
moving average over 5 epochs). On SVHN, ALI-G obtains similar performance to its competitors
and converges faster. On CIFAR-10 and CIFAR-100, which are more difficult tasks, ALI-G yields an
objective function that is an order of magnitude better than the baselines.

9

Under review as a conference paper at ICLR 2020

6 DISCUSSION

We hope that the ALI-G algorithm is a helpful step towards efficient and reliable training of deep
neural networks. ALI-G is readily applicable to a broad range of applications in deep learning where
the model can interpolate the data. When that is not the case however, it would be interesting to
design new algorithms that adapt the minimum f? online while requiring few hyper-parameters. This
could be achieved for instance by building upon the works of Nedić & Bertsekas (2001b) and Rolinek
& Martius (2018).

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, GregS.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelioné Man, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernandaégas Vi, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems, 2015. Software available from tensorflow.org.

Hilal Asi and John C Duchi. Stochastic (approximate) proximal point methods: Convergence,
optimality, and adaptivity. SIAM Journal on Optimization, 2019.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. International Conference on Learning
Representations, 2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:
Compressed optimisation for non-convex problems. International Conference on Machine Learn-
ing, 2018.

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Deep Frank-Wolfe for neural network
optimization. International Conference on Learning Representations, 2019.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated
corpus for learning natural language inference. Conference on Empirical Methods in Natural
Language Processing, 2015.

Ulf Brännlund. A generalized subgradient method with relaxation step. Mathematical Programming,
1995.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in
Machine Learning, 2015.

Jinghui Chen and Quanquan Gu. Padam: Closing the generalization gap of adaptive gradient methods
in training deep neural networks. arXiv preprint, 2018.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. International Conference on Learning Representations,
2019.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. Conference
on Empirical Methods in Natural Language Processing, 2017.

Alexandre Défossez and Francis Bach. Adabatch: Efficient gradient aggregation rules for sequential
and parallel stochastic gradient methods. arXiv preprint, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 2011.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 1956.

10

Under review as a conference paper at ICLR 2020

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 2016.

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. Conference on Computer Vision and Pattern Recognition, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate Frank-
Wolfe optimization for structural SVMs. International Conference on Machine Learning, 2013.

Kfir Levy. Online to offline conversions, universality and adaptive minibatch sizes. Neural Information
Processing Systems, 2017.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. International Conference on Artificial Intelligence and Statistics, 2019.

Francesco Locatello, Rajiv Khanna, Michael Tschannen, and Martin Jaggi. A unified optimization
view on generalized matching pursuit and frank-wolfe. International Conference on Artificial
Intelligence and Statistics, 2017.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. International
Conference on Learning Representations, 2019.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. International Conference on Learning Representations, 2019.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. International Conference on Machine
Learning, 2018.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad with logarithmic
regret bounds. International Conference on Machine Learning, 2017.

Angelia Nedić and Dimitri Bertsekas. Convergence rate of incremental subgradient algorithms.
Stochastic optimization: algorithms and applications, 2001a.

Angelia Nedić and Dimitri Bertsekas. Incremental subgradient methods for nondifferentiable opti-
mization. SIAM Journal on Optimization, 2001b.

Francesco Orabona and Dávid Pál. Scale-free algorithms for online linear optimization. International
Conference on Algorithmic Learning Theory, 2015.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. NIPS Autodiff Workshop, 2017.

Boris Teodorovich Polyak. Minimization of unsmooth functionals. USSR Computational Mathematics
and Mathematical Physics, 1969.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
International Conference on Learning Representations, 2018.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, 1951.

Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep learning.
Neural Information Processing Systems, 2018.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. International Conference
on Machine Learning, 2013.

11

Under review as a conference paper at ICLR 2020

Frank Schneider, Lukas Balles, and Philipp Hennig. DeepOBS: A deep learning optimizer benchmark
suite. International Conference on Learning Representations, 2019.

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. Mathematical Programming, 2016.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
International Conference on Machine Learning, 2018.

Naum Zuselevich Shor. Minimization methods for non-differentiable functions. Springer Series in
Computational Mathematics, 1985.

Conghui Tan, Shiqian Ma, Yu-Hong Dai, and Yuqiu Qian. Barzilai-borwein step size for stochastic
gradient descent. Neural Information Processing Systems, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 2012.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. International Conference on Artificial
Intelligence and Statistics, 2019a.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. arXiv
preprint, 2019b.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Neural Information Processing Systems,
2017.

Xiaoxia Wu, Rachel Ward, and Léon Bottou. WNGrad: Learn the learning rate in gradient descent.
arXiv preprint, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. British Machine Vision Confer-
ence, 2016.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. Neural Information Processing Systems, 2018.

Matthew Zeiler. ADADELTA: an adaptive learning rate method. arXiv preprint, 2012.

Ziming Zhang, Yuanwei Wu, and Guanghui Wang. Bpgrad: Towards global optimality in deep
learning via branch and pruning. Conference on Computer Vision and Pattern Recognition, 2017.

Shuai Zheng and James T Kwok. Follow the moving leader in deep learning. International Conference
on Machine Learning, 2017.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. Sgd converges to
global minimum in deep learning via star-convex path. International Conference on Learning
Representations, 2019.

12

Under review as a conference paper at ICLR 2020

A LOCAL INTERPRETATION OF THE POLYAK STEP-SIZE

Proposition 2. Suppose that the problem is unconstrained: Ω = Rp. Let wt+1 = wt −
f(wt)−f?
‖∇f(wt)‖2∇f(wt). Then wt+1 verifies:

wt+1 = arg min
w∈Rp

‖w −wt‖ subject to: f(wt) +∇f(wt)
>(w −wt) = f?, (6)

where we remind that f? is the minimum of f , and w 7→ f(wt) + ∇f(wt)
>(w − wt) is the

linearization of f at wt. In other words, wt+1 is the closest point to wt that lies on the hyper-plane
f(wt) +∇f(wt)

>(w −wt) = f?.

Proof : See Appendix D.1

B CONVERGENCE RESULTS

Before we detail our convergence results, we introduce the notions of uniform lower bound and
ε-interpolation.

B.1 NOTATION

Intuitively, a uniform lower bound on the problem (P) is a lower bound on all loss functions `z on
their unconstrained domain Rp. We formalize this below:
Definition 1 (Uniform Lower Bound). We say that B is a uniform lower bound on (P) if:

B ≤ inf
z∈Z

inf
w∈Rp

`z(w). (7)

Note that in the main paper, we have used the special case B = 0 as the uniform lower bound. The
definition above makes B a useful statistic to analyze the behavior of each loss function `z around
w?, in a uniform way (that is, independently of z). The quality of a uniform lower bound B can be
quantified by the notion of ε-interpolation:
Definition 2 (ε-Interpolation). Let B be a uniform lower bound on (P), w? be a solution of (P) and
ε ≥ 0 be a non-negative number. Then we say that w? is an ε-interpolation for ((P), B) if:

∀z ∈ Z, `z(w?)− B ≤ ε. (8)

By taking the expectation over equation (8), we can see that if w? is an ε-interpolation for ((P), B),
then we immediately have: f? − ε ≤ B ≤ f?. In other words, B is also an approximation of f? by
below, and its quality is quantified by ε. We further note that f? does not satisfy the definition of a
uniform lower bound in the general case. However when f? actually is a uniform lower bound, for
any solution w? of (P), w? is a ε = 0-interpolation for ((P), f?).

In the general case where B may be different from 0, the ALI-G step-size can be defined as:

γt = min

{
`zt(wt)− B

‖∇`zt(wt)‖2 + δ
, η

}
(9)

We now turn to our convergence results, which give convergence rates in three settings: convex and
Lipschitz functions, convex and smooth function, and strongly convex and smooth functions. In each
setting, we analyze three regimes which complement each other: no (infinite) maximal learning-rate,
large maximal learning-rate and small maximal learning-rate.

B.2 LIPSCHITZ CONVEX FUNCTIONS

Theorem 2. [Convex and Lipschitz] We assume that X is a convex set, and that for every z ∈ Z ,
`z is convex and C-Lipschitz. Let B be a uniform lower bound on (P) and w? be a solution of (P).
Further suppose that w? is an ε-interpolation for ((P), B). Then ALI-G∞ applied to f satisfies:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤ ε

√(
C2

δ
+ 1

)
+
‖w0 −w?‖

√
C2 + δ√

T + 1
. (10)

13

Under review as a conference paper at ICLR 2020

Proof : See Appendix D.3.

Theorem 3. We assume thatX is a convex set, and that for every z ∈ Z , `z is convex andC-Lipschitz.
Let w? be an ε-interpolation for ((P), B). We further assume that η > ε

δ . Then if we apply ALI-G
with a maximal learning-rate of η to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
−f? ≤

‖w0 −w?‖2

(η − ε
δ)(T + 1)

+
ε2

δ(η − ε
δ)

+

√
(C2 + δ)‖w0 −w?‖2

T + 1
+ε

√
C2

δ
+ 1.

(11)

Proof : See Appendix D.4.

We note that for very large values of η (η →∞), Theorem 3 gives the exact same result as Theorem
2. However when η is small, the convergence error of Theorem 3 is large. This is corrected in the
following result which is informative in the regime where η is small:
Theorem 4. We assume thatX is a convex set, and that for every z ∈ Z , `z is convex andC-Lipschitz.
Let w? be an ε-interpolation for ((P), B). Then if we apply ALI-G with a maximal learning-rate of η
to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

‖w0 −w?‖2

η(T + 1)
+ ε+

√
(C2 + δ)‖w0 −w?‖2

T + 1
+ ηε

√
C2 + δ. (12)

Proof : See Appendix D.5.

B.3 SMOOTH CONVEX FUNCTIONS

We now tackle the convex and β-smooth case. Our proof techniques naturally produce the separation
η ≥ 1

2β and η ≤ 1
2β . Whenever η ≥ 1

2β , the convergence result is exactly the same as when η →∞.
When η ≤ 1

2β , the speed of convergence is limited by the value of η.
Theorem 5. [Convex and Smooth] We assume that X is a convex set, and that for every z ∈ Z , `z is
convex and β-smooth. Let B be a uniform lower bound on (P) and w? be a solution of (P). Further
suppose that w? is an ε-interpolation for ((P), B), and that δ > 2βε. Then ALI-G∞ applied to f
satisfies:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

δ

β(1− 2βε
δ)

+
2β

1− 2βε
δ

‖w0 −w?‖2

T + 1
. (13)

Proof : See Appendix D.6.

Theorem 6. We assume that X is a convex set, and that for every z ∈ Z , `z is convex and β-smooth.
Let w? be an ε-interpolation for ((P), B), and suppose that δ > 2βε. Further assume that η ≥ 1

2β .
Then if we apply ALI-G with a maximal learning-rate of η to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

δ

β(1− 2βε
δ)

+
2β

1− 2βε
δ

‖w0 −w?‖2

T + 1
. (14)

Proof : See Appendix D.7.

Theorem 7. We assume that X is a convex set, and that for every z ∈ Z , `z is convex and β-smooth.
Let w? be an ε-interpolation for ((P), B), and suppose that δ > 2βε. Further assume that η ≤ 1

2β .
Then if we apply ALI-G with a maximal learning-rate of η to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

‖w0 −w?‖2

η(T + 1)
+

δ

2β
+ ε. (15)

Proof : See Appendix D.8.

14

Under review as a conference paper at ICLR 2020

B.4 SMOOTH AND STRONGLY CONVEX FUNCTIONS

Finally, we consider the α-strongly convex and β-smooth case. Again, our proof yields a natural
separation between η ≥ 1

2β and η ≤ 1
2β . In a similar way to the β-smooth case, when η ≥ 1

2β ,
Theorem 9 gives the exact same result as η →∞. And when η ≤ 1

2β , the rate of convergence given
by Theorem 10 is limited by the value of η.
Theorem 8. [Strongly Convex and Smooth] We assume that X is a convex set, and that for every
z ∈ Z , `z is α-strongly convex and β-smooth. Let B be a uniform lower bound on (P) and w? be a
solution of (P). Further suppose that w? is an ε-interpolation for ((P), B), and that δ > 2βε. Then
ALI-G∞ applied to f satisfies:

f(wT+1)− f? ≤ β exp

(
−αT

8β

)
‖w0 −w?‖2 +

2δ

α
+

(
10
β

α
+ 4

β2

α2

)
ε. (16)

In other words, f approximately converges to f? at a rate of O(exp(−αT/8β)).

Proof : See Appendix D.9.

Theorem 9. We assume that X is a convex set, and that for every z ∈ Z , `z is α-strongly convex
and β-smooth. Let w? be an ε-interpolation for ((P), B), and suppose that δ > 2βε. Further assume
that η ≥ 1

2β . Then if we apply ALI-G with a maximal learning-rate of η to f , we have:

f(wT+1)− f? ≤ β exp

(
−αT

8β

)
‖w0 −w?‖2 +

2δ

α
+

(
10
β

α
+ 4

β2

α2

)
ε. (17)

Proof : See Appendix D.10.

Theorem 10. We assume that X is a convex set, and that for every z ∈ Z , `z is α-strongly convex
and β-smooth. Let w? be an ε-interpolation for ((P), B), and suppose that δ > 2βε. Further assume
that η ≤ 1

2β . Then if we apply ALI-G with a maximal learning-rate of η to f , we have:

f(wT+1)− f? ≤ β exp

(
−αηT

4

)
‖w0 −w?‖2 +

2δ

α
+

14εβ

α
. (18)

Proof : See Appendix D.11.

C ON THE NEED FOR A MAXIMAL LEARNING-RATE FOR NON-CONVEXITY

The Restricted Secant Inequality (RSI) is a milder assumption than convexity. It can be defined as
follows:
Definition 3. Let f : Rp → R be a lower-bounded differentiable function achieving its minimum at
w?. We say that f satisfies the RSI if there exists α > 0 such that:

∀w ∈ Rp, ∇f(w)>(w −w?) ≥ α‖w −w?‖2. (19)

The RSI is sometimes used to prove convergence of optimization algorithms without assuming
convexity (Vaswani et al., 2019b).

As we prove below, the Polyak step-size may not convergence under the RSI assumption, even in a
non-stochastic setting with the exact minimum known.

We introduce the function f : w ∈ [−3
5 ; 3

5] 7→ w2 − |w|3. We restrict our domain of study to [−3
5 ; 3

5]
for simplicity purposes – an extension to R can easily be constructed by extending f . We will first
show that f fulfills the RSI assumption, and then that it oscillates between two points for a well
chosen initialization.

Let us show that f satisfies the RSI with α = 1
5 . First we note that f achieves its minimum at w? = 0,

and that f(w?) = 0. In addition, we introduce the sign function σ(w), which is equal to 1 if w ≥ 0,

15

Under review as a conference paper at ICLR 2020

wt=− 3
5

wt+1=3
5

f : w 7→ w2 − |w|3

Linearizations of f

Figure 5: Illustration of the function f , which satisfies the RSI. When starting at w = −3/5, gradient
descent with the Polyak step-size oscillates between w = −3/5 and w = 3/5.

and −1 otherwise. Now let w ∈ [−3
5 ; 3

5]. Then we have that:

∇f(w)(w − w?)−
1

5
(w − w?)2, = (2w − 3σ(w)w2)(w − 0)− 1

5
(w − 0)2,

=
9

5
w2 − 3σ(w)w3,

= 3w2(
3

5
− σ(w)w),

≥ 0.

(20)

Now let us show that if we apply gradient descent with a Polyak step-size to f , with starting point
w0 = −3

5 , we obtain w1 = 3
5 . This will prove oscillation of the iterates by symmetry of the problem.

Let w0 = −3
5 . Then we have f(w0) = 9

25 −
27
125 = 18

125 . Furthermore, ∇f(w0) = 2(−3
5) + 3(9

25) =
−3
25 . Therefore:

w1 = w0 −
f(w0)− 0

(∇f(w0))2
∇f(w0),

= w0 −
f(w0)

∇f(w0)
,

=
−3

5
+

18
125
3
25

,

=
−3

5
+

6

5
,

=
3

5
.

(21)

D PROOFS

D.1 PROPOSITION 2

Proposition 2. Suppose that the problem is unconstrained: Ω = Rp. Let wt+1 = wt −
f(wt)−f?
‖∇f(wt)‖2∇f(wt). Then wt+1 verifies:

wt+1 = arg min
w∈Rp

‖w −wt‖ subject to: f(wt) +∇f(wt)
>(w −wt) = f?, (6)

where we remind that f? is the minimum of f , and w 7→ f(wt) + ∇f(wt)
>(w − wt) is the

linearization of f at wt. In other words, wt+1 is the closest point to wt that lies on the hyper-plane
f(wt) +∇f(wt)

>(w −wt) = f?.

Proof : First we show that wt+1 satisfies the linear equality constraint:

16

Under review as a conference paper at ICLR 2020

f(wt) +∇f(wt)
>(wt+1 −wt)

= f(wt) +∇f(wt)
>
(
− f(wt)− f?
‖∇f(wt)‖2

∇f(wt)

)
,

= f(wt)− f(wt) + f?,

= f?.

(22)

Now let us show that it has a minimal distance to wt.

We take ŵ ∈ Rp a solution of the linear equality constraint, and we will show that ‖wt+1 − wt‖ ≤
‖ŵ −wt‖. By definition, we have that ŵ satisfies:

f(wt) +∇f(wt)
>(ŵ −wt) = f?. (23)

Now we can write:

‖wt+1 −wt‖ = ‖ f(wt)− f?
‖∇f(wt)‖2

∇f(wt)‖,

=
f(wt)− f?
‖∇f(wt)‖

,

=
|∇f(wt)

>(ŵ −wt)|
‖∇f(wt)‖

,

≤ ||∇f(wt)‖‖ŵ −wt‖
‖∇f(wt)‖

, (Cauchy-Schwarz)

= ‖ŵ −wt‖.

(24)

D.2 THEOREM 1

Proposition 1. [Proximal Interpretation] Suppose that Ω = Rp and let δ = 0. We consider
the update performed by SGD: wSGD

t+1 = wt − ηt∇`zt(wt); and the update performed by ALI-G:

wALI-G
t+1 = wt − γt∇`zt(wt), where γt = min

{
`zt (wt)

‖∇`zt (wt)‖2+δ , η
}

. Then we have:

wSGD
t+1 = arg min

w∈Rp

{ 1

2ηt
‖w −wt‖2 + `zt(wt) +∇`zt(wt)

>(w −wt)
}
, (4)

wALI-G
t+1 = arg min

w∈Rp

{ 1

2η
‖w −wt‖2 + max

{
`zt(wt) +∇`zt(wt)

>(w −wt), 0
}}

. (5)

Proof : We tackle the slightly more general case where B may be different from zero. In order to make the
notation simpler, we use dt , ∇`zt(wt) and lt , `zt(wt)− B.
First, let us consider dt = 0.

Then we choose γt = 0 and it is clear that wt+1 = wt − ηγtdt = wt is the optimal solution of problem
(5).

We now assume dt 6= 0.

We can successively re-write the proximal problem (5) as :

min
w∈Rp

{
1

2η
‖w −wt‖2 + max

{
`zt(wt) +∇`zt(wt)

>(w −wt), B
}}

,

min
w∈Rp

{
1

2η
‖w −wt‖2 + max

{
`zt(wt)− B +∇`zt(wt)

>(w −wt), 0
}}

,

min
w∈Rp

{
1

2η
‖w −wt‖2 + max

{
lt + d>t (w −wt), 0

}}
,

min
w∈Rp,υ

{
1

2η
‖w −wt‖2 + υ

}
subject to: υ ≥ 0, υ ≥ lt + d>t (w −wt)

17

Under review as a conference paper at ICLR 2020

min
w∈Rp,υ

sup
µ,ν≥0

{
1

2η
‖w −wt‖2 + υ − µυ − ν(υ − lt − d>t (w −wt))

}
sup
µ,ν≥0

min
w∈Rp,υ

{
1

2η
‖w −wt‖2 + υ − µυ − ν(υ − lt − d>t (w −wt))

}
(strong duality) (25)

The inner problem is now smooth in w and υ. We write its KKT conditions:

∂·
∂υ

= 0 : 1− µ− ν = 0 (26)

∂·
∂w

= 0 :
1

η
(w −wt) + νdt = 0 (27)

We plug in these results and obtain:

sup
µ,ν≥0

{
1

2η
‖ηνdt‖2 + ν(lt + d>t (−ηνdt))

}
st: µ+ ν = 1

sup
ν∈[0,1]

{η
2
ν2‖dt‖2 + νlt − ην2‖d>t ‖2

}
sup
ν∈[0,1]

{
−η

2
ν2‖dt‖2 + νlt

}
(28)

This is a one-dimensional quadratic problem in ν. It can be solved in closed-form by finding the global
maximum of the quadratic objective, and projecting the solution on [0, 1]. We have:

∂·
∂ν

= 0 : −ην‖dt‖2 + lt = 0 (29)

Since dt 6= 0 and η 6= 0, this gives the optimal solution:

ν = min

{
max

{
lt

η‖dt‖2
, 0

}
, 1

}
= min

{
lt

η‖dt‖2
, 1

}
, (30)

since lt, η, ‖dt‖2 ≥ 0.
Plugging this back in the KKT conditions, we obtain that the solution wt+1 of the primal problem can be
written as:

wt+1 = wt − ηνdt,

= wt − ηmin

{
lt

η‖dt‖2
, 1

}
dt,

= wt − ηmin

{
`zt(wt)− B

η‖∇`zt(wt)‖2
, 1

}
∇`zt(wt),

= wt −min

{
`zt(wt)− B

‖∇`zt(wt)‖2
, η

}
∇`zt(wt).

(31)

D.3 THEOREM 2

Theorem 2. [Convex and Lipschitz] We assume that X is a convex set, and that for every z ∈ Z ,
`z is convex and C-Lipschitz. Let B be a uniform lower bound on (P) and w? be a solution of (P).
Further suppose that w? is an ε-interpolation for ((P), B). Then ALI-G∞ applied to f satisfies:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤ ε

√(
C2

δ
+ 1

)
+
‖w0 −w?‖

√
C2 + δ√

T + 1
. (10)

Proof :

We consider the update at time t, which we condition on the draw of zt ∈ Z:

‖wt+1 −w?‖2

18

Under review as a conference paper at ICLR 2020

= ‖ΠΩ(wt − γt∇`zt(wt))−w?‖2

≤ ‖wt − γt∇`zt(wt)−w?‖2 (ΠΩ projection)

= ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γ2

t ‖∇`zt(wt)‖2

= ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γt

`zt(wt)− B

‖∇`zt(wt)‖2 + δ
‖∇`zt(wt)‖2

(definition of γt)

≤ ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γt

`zt(wt)− B

‖∇`zt(wt)‖2
‖∇`zt(wt)‖2

(because `zt(wt)− B ≥ 0 and δ ≥ 0)

≤ ‖wt −w?‖2 − 2γt(`zt(wt)− `zt(w?)) + γt(`zt(wt)− B) (convexity of `zt)

= ‖wt −w?‖2 − γt
(

(`zt(wt)− `zt(w?))− (`zt(w?)− B)
)

= ‖wt −w?‖2 −
1

‖∇`zt(wt)‖2 + δ

(
(`zt(wt)− B)(`zt(wt)− `zt(w?))

− (`zt(wt)− B)(`zt(w?)− B)
)

(definition of γt)

= ‖wt −w?‖2 −
1

‖∇`zt(wt)‖2 + δ

(
(`zt(wt)− `zt(w?))(`zt(wt)− `zt(w?))

+ (`zt(w?)− B)(`zt(wt)− `zt(w?))− (`zt(wt)− `zt(w?))(`zt(w?)− B)

− (`zt(w?)− B)(`zt(w?)− B)
)

(we use twice `zt(wt)− B = `zt(wt)− `zt(w?) + `zt(w?)− B)

= ‖wt −w?‖2 −
1

‖∇`zt(wt)‖2 + δ

(
(`zt(wt)− `zt(w?))

2 − (`zt(w?)− B)2
)

(middle terms cancel out)

= ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

‖∇`zt(wt)‖2 + δ
+

(`zt(w?)− B)2

‖∇`zt(wt)‖2 + δ

≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

C2 + δ
+

(`zt(w?)− B)2

δ
(0 ≤ ‖∇`zt(wt)‖2 ≤ C)

≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

C2 + δ
+
ε2

δ
(definition of ε) (32)

We re-write this inequality as:

(`zt(wt)− `zt(w?))
2 ≤ ε2

(
C2

δ
+ 1

)
+
(
C2 + δ

) (
‖wt −w?‖2 − ‖wt+1 −w?‖2

)
(33)

We can now use the Cauchy-Schwarz inequality to bound the sum over the iterations:

(T + 1)
T∑
t=0

(`zt(wt)− `zt(w?))
2 ≥

(
T∑
t=0

`zt(wt)− `zt(w?)

)2

(34)

Therefore we can write:(
T∑
t=0

`zt(wt)− `zt(w?)

)2

≤ (T + 1)

T∑
t=0

(`zt(wt)− `zt(w?))
2

≤ (T + 1)2 ε2

(
C2

δ
+ 1

)
+ (T + 1)

(
C2 + δ

) (
‖w0 −w?‖2 − ‖wT+1 −w?‖2

)
,

≤ (T + 1)2 ε2

(
C2

δ
+ 1

)
+ (T + 1)

(
C2 + δ

)
‖w0 −w?‖2,

(35)

19

Under review as a conference paper at ICLR 2020

which yields:

T∑
t=0

`zt(wt)− `zt(w?) ≤

√
(T + 1)2 ε2

(
C2

δ
+ 1

)
+ (T + 1) (C2 + δ) ‖w0 −w?‖2,

≤ (T + 1) ε

√
C2

δ
+ 1 +

√
(T + 1) (C2 + δ) ‖w0 −w?‖2,

(36)

We can now take the expectation over the zt:

T∑
t=0

f(wt)− f? ≤ (T + 1) ε

√
C2

δ
+ 1 +

√
(T + 1) (C2 + δ) ‖w0 −w?‖2. (37)

Dividing by T + 1 and exploiting convexity of f , we finally get:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

1

T + 1

T∑
t=0

f(wt)− f? (convexity of f)

≤ ε
√
C2

δ
+ 1 +

√(
C2 + δ

)
‖w0 −w?‖2

T + 1
.

(38)

D.4 THEOREM 3

Theorem 3. We assume thatX is a convex set, and that for every z ∈ Z , `z is convex andC-Lipschitz.
Let w? be an ε-interpolation for ((P), B). We further assume that η > ε

δ . Then if we apply ALI-G
with a maximal learning-rate of η to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
−f? ≤

‖w0 −w?‖2

(η − ε
δ)(T + 1)

+
ε2

δ(η − ε
δ)

+

√
(C2 + δ)‖w0 −w?‖2

T + 1
+ε

√
C2

δ
+ 1.

(11)

Proof :

We consider the update at time t, which we condition on the draw of zt ∈ Z:

‖wt+1 −w?‖2

= ‖ΠΩ(wt − γt∇`zt(wt))−w?‖2

≤ ‖wt − γt∇`zt(wt)−w?‖2 (ΠΩ projection)

= ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γ2

t ‖∇`zt(wt)‖2

≤ ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γt

`zt(wt)− B

‖∇`zt(wt)‖2 + δ
‖∇`zt(wt)‖2

(because γt ≤
`zt(wt)− B

‖∇`zt(wt)‖2 + δ
)

≤ ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γt

`zt(wt)− B

‖∇`zt(wt)‖2
‖∇`zt(wt)‖2

(because `zt(wt)− B ≥ 0 and δ ≥ 0)

≤ ‖wt −w?‖2 − 2γt(`zt(wt)− `zt(w?)) + γt(`zt(wt)− B) (convexity of `zt)

= ‖wt −w?‖2 − 2γt(`zt(wt)− `zt(w?)) + γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B)

= ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B) (39)

We now consider different cases, according to the value that γt takes: γt =
`zt (wt)−B

‖∇`zt (wt)‖2+δ
or γt = η.

20

Under review as a conference paper at ICLR 2020

First, suppose that γt =
`zt (wt)−B

‖∇`zt (wt)‖2+δ
. Then we can follow the proof of Theorem 2 to obtain:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

C2 + δ
+
ε2

δ
. (40)

Now suppose γt = η and `zt(wt)− `zt(w?) ≤ 0. We can use γt ≤
`zt (wt)−B

‖∇`zt (wt)‖2+δ
to write:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B),

≤ ‖wt −w?‖2 −
`zt(wt)− B

‖∇`zt(wt)‖2 + δ
(`zt(wt)− `zt(w?))

+
`zt(wt)− B

‖∇`zt(wt)‖2 + δ
(`zt(w?)− B),

(41)

where the last inequality has used γt ≤
`zt (wt)−B

‖∇`zt (wt)‖2+δ
, `zt(wt) − `zt(w?) ≤ 0 and `zt(w?) −

B ≥ 0. Therefore we are exactly in the same situation as the first case (where we used γt =
`zt (wt)−B

‖∇`zt (wt)‖2+δ
), and thus we have again:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

C2 + δ
+
ε2

δ
. (42)

Now suppose that γt = η and `zt(wt)− `zt(w?) ≥ 0. The inequality (39) gives:

‖wt+1 −w?‖2

≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B),

= ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B), (γt = η)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + γtε. (definition of ε, γt ≥ 0)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ε
`zt(wt)− B

‖∇`zt(wt)‖2 + δ
,

(because γt ≤
`zt(wt)− B

‖∇`zt(wt)‖2 + δ
, ε ≥ 0)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ε
`zt(wt)− B

δ
, (‖∇`zt(wt)‖2 ≥ 0)

= ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ε
`zt(wt)− `zt(w?) + `zt(w?)− B

δ
,

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ε
`zt(wt)− `zt(w?) + ε

δ
,

(because `zt(w?)− B ≤ ε)

= ‖wt −w?‖2 −
(
η − ε

δ

)
(`zt(wt)− `zt(w?)) +

ε2

δ
.

(43)

We now introduce IT and JT as follows:

IT , {t ∈ {0, ..., T} : γt = η and `zt(wt)− `zt(w?) ≥ 0}
JT , {0, ..., T} \ IT

(44)

Then, by combining inequalities (40), (42) and (43), and using a telescopic sum, we obtain:

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 +
∑
t∈JT

(
− (`zt(wt)− `zt(w?))

2

C2 + δ
+
ε2

δ

)

+
∑
t∈IT

(
−
(
η − ε

δ

)
(`zt(wt)− `zt(w?)) +

ε2

δ

) (45)

21

Under review as a conference paper at ICLR 2020

Using ‖wT+1 −w?‖2 ≥ 0, we obtain:

1

C2 + δ

∑
t∈JT

(`zt(wt)−`zt(w?))
2 +
(
η − ε

δ

) ∑
t∈IT

(`zt(wt)−`zt(w?)) ≤ ‖w0−w?‖2 +(T +1)
ε2

δ

(46)

In particular, the inequality (46) gives that:(
η − ε

δ

) ∑
t∈IT

(`zt(wt)− `zt(w?)) ≤ ‖w0 −w?‖2 + (T + 1)
ε2

δ
. (47)

Furthermore, for every t ∈ IT , we have (`zt(wt)−`zt(w?)) ≥ 0, which yields
(
η − ε

δ

) ∑
t∈IT

(`zt(wt)−

`zt(w?)) ≥ 0 since η > ε
δ

. Thus the inequality (46) also gives:

1

C2 + δ

∑
t∈JT

(`zt(wt)− `zt(w?))
2 ≤ ‖w0 −w?‖2 + (T + 1)

ε2

δ
. (48)

Using the Cauchy-Schwarz inequality, we can further write:∑
t∈JT

`zt(wt)− `zt(w?)

2

≤ |JT |
∑
t∈JT

(`zt(wt)− `zt(w?))
2. (49)

Therefore we have:∑
t∈JT

`zt(wt)− `zt(w?) ≤
√
|JT |

∑
t∈JT

(`zt(wt)− `zt(w?))2,

≤

√
|JT |(C2 + δ)

(
‖w0 −w?‖2 + (T + 1)

ε2

δ

)
.

(50)

We can now put together inequalities (47) and (49) by writing:

T∑
t=0

`zt(wt)− `zt(w?)

=
∑
t∈IT

`zt(wt)− `zt(w?) +
∑
t∈JT

`zt(wt)− `zt(w?)

≤ 1

η − ε
δ

(
‖w0 −w?‖2 + (T + 1)

ε2

δ

)
+

√
|JT |(C2 + δ)

(
‖w0 −w?‖2 + (T + 1)

ε2

δ

)

≤ 1

η − ε
δ

(
‖w0 −w?‖2 + (T + 1)

ε2

δ

)
+

√
(T + 1)(C2 + δ)

(
‖w0 −w?‖2 + (T + 1)

ε2

δ

)
(51)

Dividing by T + 1 and taking the expectation, we obtain:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

1

T + 1

T∑
t=0

f(wt)− f?, (f is convex)

≤ ‖w0 −w?‖2

(η − ε
δ
)(T + 1)

+
ε2

δ(η − ε
δ
)

+

√
(C2 + δ)

(
‖w0 −w?‖2

T + 1
+
ε2

δ

)
,

≤ ‖w0 −w?‖2

(η − ε
δ
)(T + 1)

+
ε2

δ(η − ε
δ
)

+

√
(C2 + δ)‖w0 −w?‖2

T + 1

+ ε

√
C2

δ
+ 1.

(52)

22

Under review as a conference paper at ICLR 2020

D.5 THEOREM 4

Theorem 4. We assume thatX is a convex set, and that for every z ∈ Z , `z is convex andC-Lipschitz.
Let w? be an ε-interpolation for ((P), B). Then if we apply ALI-G with a maximal learning-rate of η
to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

‖w0 −w?‖2

η(T + 1)
+ ε+

√
(C2 + δ)‖w0 −w?‖2

T + 1
+ ηε

√
C2 + δ. (12)

Proof :

We consider the update at time t, which we condition on the draw of zt ∈ Z . We re-use the inequality (39)
from the proof of Theorem 3:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B) (53)

We consider again different cases, according to the value of γt and the sign of `zt(wt)− `zt(w?).

Suppose that `zt(wt)− `zt(w?) ≤ 0. Then the inequality (53) gives:

‖wt+1 −w?‖2

≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B),

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B),

(because γt ≤ η, `zt(wt)− `zt(w?) ≤ 0)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + γtε, (definition of ε, γt ≥ 0)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ηε, (γt ≤ η, ε ≥ 0)

(54)

Now suppose `zt(wt)− `zt(w?) ≥ 0 and γt = η. Then the inequality (53) gives:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B),

= ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + η(`zt(w?)− B), (γt = η)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ηε, (definition of ε, η ≥ 0)

(55)

Finally, suppose that `zt(wt) − `zt(w?) ≥ 0 and γt =
`zt (wt)−B

‖∇`zt (wt)‖2+δ
. Then the inequality (53)

gives:

‖wt+1 −w?‖2

≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B),

≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + η(`zt(w?)− B), (γt ≤ η, `zt(w?)− B ≥ 0)

≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + ηε, (definition of ε, η ≥ 0)

= ‖wt −w?‖2 −
`zt(wt)− B

‖∇`zt(wt)‖2 + δ
(`zt(wt)− `zt(w?)) + ηε, (γt =

`zt(wt)− B

‖∇`zt(wt)‖2 + δ
)

≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

‖∇`zt(wt)‖2 + δ
+ ηε, (`zt(wt)− B ≥ `zt(wt)− `zt(w?) ≥ 0)

≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

C2 + δ
+ ηε, (‖∇`zt(wt)‖2 ≤ C2)

(56)

We now introduce IT and JT as follows:

JT ,

{
t ∈ {0, ..., T} : γt =

`zt(wt)− B

‖∇`zt(wt)‖2 + δ
and `zt(wt)− `zt(w?) ≥ 0

}
IT , {0, ..., T} \ IT

(57)

23

Under review as a conference paper at ICLR 2020

Then, by combining inequalities (54), (55) and (56), and using a telescopic sum, we obtain:

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 +
∑
t∈JT

(
− (`zt(wt)− `zt(w?))

2

C2 + δ
+ ηε

)
+
∑
t∈IT

(−η(`zt(wt)− `zt(w?)) + ηε)
(58)

Using ‖wT+1 −w?‖2 ≥ 0, we obtain:

1

C2 + δ

∑
t∈JT

(`zt(wt)− `zt(w?))
2 + η

∑
t∈IT

(`zt(wt)− `zt(w?)) ≤ ‖w0 −w?‖2 + (T + 1)ηε (59)

We now take the expectation and obtain:

1

C2 + δ

∑
t∈JT

E
[
(`zt(wt)− `zt(w?))

2]+ η
∑
t∈IT

(f(wt)− f?) ≤ ‖w0 −w?‖2 + (T + 1)ηε (60)

Since E[U]2 ≤ E[U2] for any real-valued random variable, we can write:

1

C2 + δ

∑
t∈JT

(f(wt)− f?)2 + η
∑
t∈IT

(f(wt)− f?) ≤ ‖w0 −w?‖2 + (T + 1)ηε (61)

Since each f(wt)− f? ≥ 0, the inequality (61) gives that:

η
∑
t∈IT

(f(wt)− f?) ≤ ‖w0 −w?‖2 + (T + 1)ηε, (62)

and:
1

C2 + δ

∑
t∈JT

(f(wt)− f?)2 ≤ ‖w0 −w?‖2 + (T + 1)ηε. (63)

Using the Cauchy-Schwarz inequality, we can further write:∑
t∈JT

f(wt)− f?

2

≤ |JT |
∑
t∈JT

(f(wt)− f?)2. (64)

Therefore we have:∑
t∈JT

f(wt)− f? ≤
√
|JT |

∑
t∈JT

(f(wt)− f?)2,

≤
√
|JT |(C2 + δ) (‖w0 −w?‖2 + (T + 1)ηε).

(65)

We can now put together inequalities (62) and (65) by writing:

T∑
t=0

f(wt)− f?

=
∑
t∈IT

f(wt)− f? +
∑
t∈JT

f(wt)− f?

≤ 1

η

(
‖w0 −w?‖2 + (T + 1)ηε

)
+
√
|JT |(C2 + δ) (‖w0 −w?‖2 + (T + 1)ηε)

≤ 1

η

(
‖w0 −w?‖2 + (T + 1)ηε

)
+
√

(T + 1)(C2 + δ) (‖w0 −w?‖2 + (T + 1)ηε)

(66)

24

Under review as a conference paper at ICLR 2020

Dividing by T + 1, we obtain:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

1

T + 1

T∑
t=0

f(wt)− f?, (f is convex)

≤ ‖w0 −w?‖2

η(T + 1)
+ ε+

√
(C2 + δ)

(
‖w0 −w?‖2

T + 1
+ ηε

)
,

≤ ‖w0 −w?‖2

η(T + 1)
+ ε+

√
(C2 + δ)‖w0 −w?‖2

T + 1
+ ηε

√
C2 + δ.

(67)

D.6 THEOREM 5

Lemma 1. Let z ∈ Z . Assume that `z is convex, β-smooth and is lower-bounded on Rp by B ∈ R.
Then we have:

∀w ∈ Rp, `z(w)− B ≥ 1

2β
‖∇`z(w)‖2 (68)

Proof : Let w ∈ Rp and suppose that `z reaches its infimum at w ∈ (R ∪ {−∞,+∞})p.

First, let us consider the case w ∈ Rp. Then by Lemma 3.5 of Bubeck (2015), we have:

`z(w)− `z(w) ≤ ∇`z(w)>(w −w)− 1

2β
‖∇`z(w)−∇`z(w)‖2,

= − 1

2β
‖∇`z(w)‖2 (∇`z(w) = 0).

(69)

Therefore we can write:

`z(w)− B ≥ `z(w)− `z(w) ≥ 1

2β
‖∇`z(w)‖2. (70)

Now let us assume that w /∈ Rp. Then we can construct a sequence (wk)k∈N ∈ (Rp)N that converges to
w. Since `z and∇`z are continuous functions (they are respectively convex and smooth), we have:

lim
k→∞

`z(wk) = inf `z,

lim
k→∞

∇`z(wk) = 0.
(71)

Therefore the previous case gives the wanted result by using wk in place of w and then taking the limit
k →∞.

Lemma 2. Let z ∈ Z . Assume that `z is convex, β-smooth and is lower-bounded on Rp by B ∈ R.
Then we have:

∀w ∈ Rp,
`z(w)− B

‖∇`z(w)‖2 + δ
≥ 1

2β
− δ

4β2(`z(w)− B))
(72)

Proof :

Let w ∈ Rp. We apply Lemma 1 and we write successively:

`z(w)− B

‖∇`z(w)‖2 + δ
≥ `z(w)− B

2β(`z(w)− B) + δ
, (Lemma 1)

=
`z(w)− B + δ

2β
− δ

2β

2β(`z(w)− B + δ
2β

)
,

=
1

2β
−

δ
2β

2β(`z(w)− B + δ
2β

)
,

≥ 1

2β
− δ

4β2(`z(w)− B)
. (δ ≥ 0)

(73)

25

Under review as a conference paper at ICLR 2020

Theorem 5. [Convex and Smooth] We assume that X is a convex set, and that for every z ∈ Z , `z is
convex and β-smooth. Let B be a uniform lower bound on (P) and w? be a solution of (P). Further
suppose that w? is an ε-interpolation for ((P), B), and that δ > 2βε. Then ALI-G∞ applied to f
satisfies:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

δ

β(1− 2βε
δ)

+
2β

1− 2βε
δ

‖w0 −w?‖2

T + 1
. (13)

Proof :

We consider the update at time t, which we condition on the draw of zt ∈ Z:

‖wt+1 −w?‖2

= ‖ΠΩ(wt − γt∇`zt(wt))−w?‖2

≤ ‖wt − γt∇`zt(wt)−w?‖2 (ΠΩ projection)

= ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γ2

t ‖∇`zt(wt)‖2

= ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γt

`zt(wt)− B

‖∇`zt(wt)‖2 + δ
‖∇`zt(wt)‖2

(definition of γt)

≤ ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γt

`zt(wt)− B

‖∇`zt(wt)‖2
‖∇`zt(wt)‖2

(because `zt(wt)− B ≥ 0 and δ ≥ 0)

≤ ‖wt −w?‖2 − 2γt(`zt(wt)− `zt(w?)) + γt(`zt(wt)− B) (convexity of `zt)

= ‖wt −w?‖2 − 2γt(`zt(wt)− `zt(w?)) + γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B)

= ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B) (74)

We now lower bound γt(`zt(wt)− `zt(w?)) and upper bound γt(`zt(w?)− B) individually.

We begin with γt(`zt(wt)− `zt(w?)), for which we distinguish two cases according to its sign:

Suppose (`zt(wt)− `zt(w?)) ≥ 0. Then we can write:

γt(`zt(wt)− `zt(w?))

=
`zt(wt)− B

‖∇`zt(wt)‖2 + δ
(`zt(wt)− `zt(w?)), (definition of γt)

≥
(

1

2β
− δ

4β2(`z(wt)− B)

)
(`zt(wt)− `zt(w?)) (Lemma 2, (`zt(wt)− `zt(w?)) ≥ 0)

=
1

2β
(`zt(wt)− `zt(w?))−

δ

4β2

`zt(wt)− `zt(w?)

(`zt(wt)− B)

≥ 1

2β
(`zt(wt)− `zt(w?))−

δ

4β2
(`zt(w?) ≥ B, (`zt(wt)− `zt(w?)) ≥ 0)

(75)

26

Under review as a conference paper at ICLR 2020

Now suppose (`zt(wt)− `zt(w?)) ≤ 0, and let us show that the same result holds. We have:

γt =
`zt(wt)− B

‖∇`zt(wt)‖2 + δ

≤ `zt(w?)− B

‖∇`zt(wt)‖2 + δ
((`zt(wt)− `zt(w?)) ≤ 0)

≤ ε

‖∇`zt(wt)‖2 + δ
(definition of ε)

≤ ε

δ
(‖∇`zt(wt)‖ ≥ 0)

≤ 1

2β
(δ ≥ 2βε)

(76)

Therefore we have:

γt(`zt(wt)− `zt(w?))

≥ 1

2β
(`zt(wt)− `zt(w?)) ((`zt(wt)− `zt(w?)) ≤ 0)

≥ 1

2β
(`zt(wt)− `zt(w?))−

δ

4β2
(δ ≥ 0)

(77)

In conclusion, regardless of the sign, it always holds true that:

γt(`zt(wt)− `zt(w?)) ≥
1

2β
(`zt(wt)− `zt(w?))−

δ

4β2
(78)

We now upper bound γt(`zt(w?)− B):

γt(`zt(w?)− B) =
(`zt(wt)− B)(`zt(w?)− B)

‖∇`zt(wt)‖2 + δ
, (definition of γt)

≤ (`zt(wt)− B)(`zt(w?)− B)

δ
, (‖∇`zt(wt)‖ ≥ 0)

≤ (`zt(wt)− `zt(w?) + ε)ε

δ
, (definition of ε twice)

=
ε

δ
((`zt(wt)− `zt(w?)) +

ε2

δ
.

(79)

Putting inequalities (74), (78) and (79) together, we obtain:

‖wt+1−w?‖2 ≤ ‖wt−w?‖2−
1

2β
(`zt(wt)−`zt(w?))+

δ

4β2
+
ε

δ
((`zt(wt)−`zt(w?))+

ε2

δ
. (80)

Therefore we have:(
1

2β
− ε

δ

)
(`zt(wt)− `zt(w?))−

(
δ

4β2
+
ε2

δ

)
≤ ‖wt −w?‖2 − ‖wt+1 −w?‖2. (81)

By summing over t and taking the expectation over the zt, we obtain:

δ − 2βε

2βδ

T∑
t=0

(
f(wt)− f(w?)−

δ2 + 4β2ε2

4β2δ

)
≤ ‖w0−w?‖2−E

[
‖wT+1 −w?‖2

]
≤ ‖w0−w?‖2.

(82)

27

Under review as a conference paper at ICLR 2020

By assumption, we have that δ − 2βε > 0. Dividing by T + 1 and using the convexity of f , we finally
obtain:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

1

T + 1

T∑
t=0

f(wt)− f? (convexity of f),

=
2βδ

δ − 2βε

δ2 + 4β2ε2

4β2δ
+

2βδ

δ − 2βε

‖w0 −w?‖2

T + 1
,

=
δ2 + 4β2ε2

2β(δ − 2βε)
+

2βδ

δ − 2βε

‖w0 −w?‖2

T + 1
,

≤ δ2

β(δ − 2βε)
+

2βδ

δ − 2βε

‖w0 −w?‖2

T + 1
, (δ − 2βε ≥ 0)

=
δ

β(1− 2βε
δ

)
+

2β

1− 2βε
δ

‖w0 −w?‖2

T + 1
.

(83)

D.7 THEOREM 6

Theorem 6. We assume that X is a convex set, and that for every z ∈ Z , `z is convex and β-smooth.
Let w? be an ε-interpolation for ((P), B), and suppose that δ > 2βε. Further assume that η ≥ 1

2β .
Then if we apply ALI-G with a maximal learning-rate of η to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

δ

β(1− 2βε
δ)

+
2β

1− 2βε
δ

‖w0 −w?‖2

T + 1
. (14)

Proof :

By using the fact that γt ≤
`zt (wt)−B

‖∇`zt (wt)‖2+δ
rather than γt =

`zt (wt)−B

‖∇`zt (wt)‖2+δ
, we can see that the inequality

(74) is still valid:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B) (84)

As previously, we lower bound γt(`zt(wt)− `zt(w?)) and upper bound γt(`zt(w?)− B) individually.

We begin with γt(`zt(wt)− `zt(w?)). We remark that either γt =
`zt (wt)−B

‖∇`zt (wt)‖2+δ
or γt = η.

Suppose γt =
`zt (wt)−B

‖∇`zt (wt)‖2+δ
and `zt(wt)− `zt(w?) ≥ 0. Then we are in the same condition as in

Theorem 5, and thus the inequality (78) holds true:

γt(`zt(wt)− `zt(w?)) ≥
1

2β
(`zt(wt)− `zt(w?))−

δ

4β2
. (85)

Now suppose γt = η and `zt(wt)− `zt(w?) ≥ 0. Then we have:

γt(`zt(wt)− `zt(w?)) = η(`zt(wt)− `zt(w?))

≥ η(`zt(wt)− `zt(w?))−
δ

4β2

≥ 1

2β
(`zt(wt)− `zt(w?))−

δ

4β2

(because η ≥ 1

2β
, `zt(wt)− `zt(w?) ≥ 0). (86)

28

Under review as a conference paper at ICLR 2020

Now suppose `zt(wt) − `zt(w?) ≤ 0. By using γt ≤
`zt (wt)−B

‖∇`zt (wt)‖2+δ
instead of γt =

`zt (wt)−B

‖∇`zt (wt)‖2+δ
, we can see that the inequality (76) is still valid, which gives:

γt ≤
1

2β
(87)

We now use `zt(wt)− `zt(w?) ≤ 0 to write:

γt (`zt(wt)− `zt(w?)) ≥
1

2β
(`zt(wt)− `zt(w?)) (`zt(wt)− `zt(w?) ≤ 0)

≥ 1

2β
(`zt(wt)− `zt(w?))−

δ

4β2

(88)

In conclusion, in all cases, it holds true that:

γt(`zt(wt)− `zt(w?)) ≥
1

2β
(`zt(wt)− `zt(w?))−

δ

4β2
(89)

By using γt ≤
`zt (wt)−B

‖∇`zt (wt)‖2+δ
, we can remark that the inequality (79) holds true and gives:

γt(`zt(w?)− B) ≤ ε

δ
((`zt(wt)− `zt(w?)) +

ε2

δ
. (90)

We now put together inequalities (84), (89) and (90):

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 −
1

2β
(`zt(wt)− `zt(w?)) +

δ

4β2
+
ε

δ
((`zt(wt)− `zt(w?)) +

ε2

δ
,

= ‖wt −w?‖2 −
(

1

2β
− ε

δ

)
(`zt(wt)− `zt(w?)) +

δ

4β2
+
ε2

δ
.

(91)

This is exactly the same result as in the inequality (81) from the proof of Theorem 5. Therefore the rest of
the proof of Theorem 5 follows and we obtain the desired result.

D.8 THEOREM 7

Theorem 7. We assume that X is a convex set, and that for every z ∈ Z , `z is convex and β-smooth.
Let w? be an ε-interpolation for ((P), B), and suppose that δ > 2βε. Further assume that η ≤ 1

2β .
Then if we apply ALI-G with a maximal learning-rate of η to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

‖w0 −w?‖2

η(T + 1)
+

δ

2β
+ ε. (15)

Proof :

By using the fact that γt ≤
`zt (wt)−B

‖∇`zt (wt)‖2+δ
rather than γt =

`zt (wt)−B

‖∇`zt (wt)‖2+δ
, we can see that the inequality

(74) is still valid:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt(`zt(w?)− B) (92)

As previously, we lower bound γt(`zt(wt)− `zt(w?)) and upper bound γt(`zt(w?)− B) individually.

We begin with γt(`zt(wt)− `zt(w?)). We remark that either γt =
`zt (wt)−B

‖∇`zt (wt)‖2+δ
or γt = η.

29

Under review as a conference paper at ICLR 2020

Suppose γt =
`zt (wt)−B

‖∇`zt (wt)‖2+δ
and `zt(wt)− `zt(w?) ≥ 0. First we write:

γt =
`zt(wt)− B

‖`zt(wt)‖2 + δ

=
`zt(wt)− B + δ

2β

‖`zt(wt)‖2 + δ
−

δ
2β

‖`zt(wt)‖2 + δ

≥
‖`zt (wt)‖2

2β
+ δ

2β

‖`zt(wt)‖2 + δ
− δ

2β

1

‖`zt(wt)‖2 + δ
(Lemma 1)

=
1

2β
− δ

2β

1

‖`zt(wt)‖2 + δ

≥ η − δ

2β

1

‖`zt(wt)‖2 + δ
(η ≤ 1

2β
)

(93)

Since `zt(wt)− `zt(w?) ≥ 0, this yields:

γt(`zt(wt)− `zt(w?)) ≥
(
η − δ

2β

1

‖`zt(wt)‖2 + δ

)
(`zt(wt)− `zt(w?))

= η(`zt(wt)− `zt(w?))−
δ

2β

`zt(wt)− `zt(w?)

‖`zt(wt)‖2 + δ

≥ η(`zt(wt)− `zt(w?))−
δ

2β

`zt(wt)− B

‖`zt(wt)‖2 + δ
(`zt(w?) ≥ B)

(94)

We now notice that since γt =
`zt (wt)−B

‖∇`zt (wt)‖2+δ
, and γt ≤ η, then necessarily `zt (wt)−B

‖∇`zt (wt)‖2+δ
≤ η.

This gives:

γt(`zt(wt)− `zt(w?)) ≥ η(`zt(wt)− `zt(w?))−
ηδ

2β
(95)

Now suppose γt = η and `zt(wt)− `zt(w?) ≥ 0. Then we have:

γt(`zt(wt)− `zt(w?)) = η(`zt(wt)− `zt(w?))

≥ η(`zt(wt)− `zt(w?))−
ηδ

2β
. (96)

Now suppose `zt(wt)− `zt(w?) ≤ 0. Since γt ≤ η by definition, we have that:

γt (`zt(wt)− `zt(w?)) ≥ η(`zt(wt)− `zt(w?)) (`zt(wt)− `zt(w?) ≤ 0)

≥ η(`zt(wt)− `zt(w?))−
ηδ

2β
.

(97)

In conclusion, in all cases, it holds true that:

γt(`zt(wt)− `zt(w?)) ≥ η(`zt(wt)− `zt(w?))−
ηδ

2β
(98)

We upper bound γt(`zt(w?)− B) as follows:

γt(`zt(w?)− B) ≤ η(`zt(w?)− B) (`zt(w?) ≥ B)
≤ ηε (definition of ε)

(99)

We combine inequalities (92), (98) and (99) and obtain:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) +
ηδ

2β
+ ηε. (100)

By taking the expectation and using a telescopic sum, we obtain:

0 ≤ ‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 −
T∑
t=0

(
η(f(wt)− f?) +

ηδ

2β
+ ηε

)
. (101)

30

Under review as a conference paper at ICLR 2020

Re-arranging and using the convexity of f , we finally obtain:

f

(
1

T + 1

T∑
t=0

wt

)
≤ ‖w0 −w?‖2

η(T + 1)
+

δ

2β
+ ε. (102)

D.9 THEOREM 8

Lemma 3. For any a, b ∈ Rp, we have that:

‖a‖2 + ‖b‖2 ≥ 1

2
‖a− b‖2 (103)

Proof : This is a simple application of the parallelogram law, but we give the proof here for completeness.

‖a‖2 + ‖b‖2 − 1

2
‖a− b‖2 = ‖a‖2 + ‖b‖2 − 1

2
‖a‖2 − 1

2
‖b‖2 + a>b

=
1

2
‖a‖2 +

1

2
‖b‖2 + a>b

=
1

2
‖a+ b‖2

≥ 0

Lemma 4. Let z ∈ Z . Assume that `z is α-strongly convex and is lower-bounded on Rp by B ∈ R
such that inf `z − B ≤ ε. In addition, suppose that δ ≥ 2αε. Then we have:

∀w ∈ Rp,
`z(w)− B

‖∇`z(w)‖2 + δ
≤ 1

2α
. (104)

Proof :

Let w ∈ Rp and suppose that `z reaches its minimum at w ∈ Rp (this minimum exists because of strong
convexity). By definition of strong convexity, we have that:

∀ ŵ ∈ Rp, `z(ŵ) ≥ `z(w) +∇`z(w)>(ŵ −w) +
α

2
‖ŵ −w‖2 (105)

We minimize the right hand-side over ŵ, which gives:

∀ŵ ∈ Rp, `z(ŵ) ≥ `z(w) +∇`z(w)>(ŵ −w) +
α

2
‖ŵ −w‖2 ≥ `z(w)− 1

2α
‖∇`z(w)‖2 (106)

Thus by choosing ŵ = w and re-ordering, we obtain the following result (a.k.a. the Polyak-Lojasiewicz
inequality):

`z(w)− `z(w) ≤ 1

2α
‖∇`z(w)‖2 (107)

Therefore we can write:

`z(w)− B

‖∇`z(w)‖2 + δ
≤ `z(w)− `z(w) + ε

‖∇`z(w)‖2 + δ
≤

1
2α
‖∇`z(w)‖2 + ε

‖∇`z(w)‖2 + δ
. (108)

We introduce the function ψ : x ∈ R+ 7→
1

2α
x+ ε

x+ δ
, and we compute its derivative:

ψ′(x) =
1

2α
(x+ δ)− 1

2α
x− ε

(x+ δ)2
,

=
δ

2α
− ε

(x+ δ)2
≥ 0. (δ ≥ 2αε)

(109)

Therefore ψ is monotonically increasing. As a result, we have:

∀ x ∈ R+, ψ(x) ≤ lim
x→∞

ψ(x) =
1

2α
. (110)

31

Under review as a conference paper at ICLR 2020

Therefore we have that:
1

2α
‖∇`z(w)‖2 + ε

‖∇`z(w)‖2 + δ
= ψ

(
‖∇`z(w)‖2

)
≤ 1

2α
, (111)

which concludes the proof.

Theorem 8. [Strongly Convex and Smooth] We assume that X is a convex set, and that for every
z ∈ Z , `z is α-strongly convex and β-smooth. Let B be a uniform lower bound on (P) and w? be a
solution of (P). Further suppose that w? is an ε-interpolation for ((P), B), and that δ > 2βε. Then
ALI-G∞ applied to f satisfies:

f(wT+1)− f? ≤ β exp

(
−αT

8β

)
‖w0 −w?‖2 +

2δ

α
+

(
10
β

α
+ 4

β2

α2

)
ε. (16)

In other words, f approximately converges to f? at a rate of O(exp(−αT/8β)).

Proof :
We condition the update on zt drawn at random. The beginning of the proof is identical to that of Theorem
5 (and in particular requires δ > 2βε). In addition, we remark that δ > 2βε ≥ 2αε, because it always
holds true that β ≥ α. Combining inequalities (74) and (78), we obtain:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 −
1

2β
(`zt(wt)− `zt(w?)) +

δ

4β2
+ γt(`zt(w?)− B),

≤ ‖wt −w?‖2 −
1

2β
(`zt(wt)− `zt(w?)) +

δ

4β2
+ γtε, (definition of ε)

≤ ‖wt −w?‖2 −
1

2β
(`zt(wt)− `zt(w?)) +

δ

4β2
+

ε

2α
. (Lemma 4) (112)

Let w(zt) be the minimizer of `zt on its unconstrained domain Rp (its existence is guaranteed by the strong
convexity property). Then we exploit strong convexity to lower bound the progress made:

`zt(wt)− `zt(w?) = `zt(wt)− `zt(w
(zt)) + `zt(w?)− `zt(w

(zt))− 2(`zt(w?)− `zt(w
(zt)))

≥ `zt(wt)− `zt(w
(zt)) + `zt(w?)− `zt(w

(zt))− 2(`zt(w?)− B)

(because `zt(w
(zt)) ≥ B)

≥ `zt(wt)− `zt(w
(zt)) + `zt(w?)− `zt(w

(zt))− 2ε (definition of ε)

≥ α

2
‖wt −w(zt)‖2 +

α

2
‖w? −w(zt)‖2 − 2ε (α-strong convexity)

≥ α

4
‖wt −w?‖2 − 2ε (Lemma 3) (113)

We now combine inequalities (112) and (113):

‖wt+1 −w?‖2 ≤
(

1− α

8β

)
‖wt −w?‖2 +

ε

β
+

δ

4β2
+

ε

2α
(114)

We use a trivial induction over t and write:

‖wt+1 −w?‖2 ≤
(

1− α

8β

)
‖wt −w?‖2 +

ε

β
+

δ

4β2
+

ε

2α
,

≤
(

1− α

8β

)t
‖w0 −w?‖2 +

t∑
k=0

(
1− α

8β

)t−k (
ε

β
+

δ

4β2
+

ε

2α

)
,

≤
(

1− α

8β

)t
‖w0 −w?‖2 +

∞∑
k=0

(
1− α

8β

)k (
ε

β
+

δ

4β2
+

ε

2α

)
,

=

(
1− α

8β

)t
‖w0 −w?‖2 +

1
α
8β

(
ε

β
+

δ

4β2
+

ε

2α

)
,

32

Under review as a conference paper at ICLR 2020

=

(
1− α

8β

)t
‖w0 −w?‖2 +

8β

α

(
ε

β
+

δ

4β2
+

ε

2α

)
. (115)

In particular, we remark that the right hand-side of the equation is independent on zt.

Given an arbitrary w ∈ Rp, we now wish to relate the distance ‖w−w?‖2 to the function values f(w)−f(w?).

Since each `z is α-strongly convex and β-smooth, so is f = Ez[`z]. We introduce w the minimizer of f
on its unconstrained domain Rp. Then we can write that for any w ∈ Rp:

f(w)− f(w?) ≤ f(w)− f(w), (f(w) ≤ f(w?))

≤ ∇f(w)>(w −w) +
β

2
‖w −w‖2, (f is β-smooth)

=
β

2
‖w −w‖2, (∇f(w) = 0)

≤ β(‖w −w?‖2 + ‖w? −w‖2), (Lemma 3)

≤ β‖w −w?‖2 +
2β

α
(f(w?)− f(w)) , (f is α-strongly convex)

≤ β‖w −w?‖2 +
2β

α
(f(w?)− B) , (B ≤ f(w) by definition)

≤ β‖w −w?‖2 + 2
βε

α
, (definition of ε) (116)

We combine the results to obtain the final result:

f(wt+1)− f(w?) ≤ β‖wt+1 −w?‖2 + 2
βε

α
,

≤ β

((
1− α

8β

)t
‖w0 −w?‖2 +

8β

α

(
ε

β
+

δ

4β2
+

ε

2α

))
+ 2

βε

α
,

= β

(
1− α

8β

)t
‖w0 −w?‖2 +

8β

α

(
ε+

δ

4β
+
εβ

2α

)
+ 2

βε

α
,

= β

(
1− α

8β

)t
‖w0 −w?‖2 +

2δ

α
+

(
10
β

α
+ 4

β2

α2

)
ε,

≤ β exp

(
−αt

8β

)
‖w0 −w?‖2 +

2δ

α
+

(
10
β

α
+ 4

β2

α2

)
ε. (117)

D.10 THEOREM 9

Theorem 9. We assume that X is a convex set, and that for every z ∈ Z , `z is α-strongly convex
and β-smooth. Let w? be an ε-interpolation for ((P), B), and suppose that δ > 2βε. Further assume
that η ≥ 1

2β . Then if we apply ALI-G with a maximal learning-rate of η to f , we have:

f(wT+1)− f? ≤ β exp

(
−αT

8β

)
‖w0 −w?‖2 +

2δ

α
+

(
10
β

α
+ 4

β2

α2

)
ε. (17)

Proof : Re-using inequalities (84) and (89) from the proof of Theorem 6, we obtain:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 −
1

2β
(`zt(wt)− `zt(w?)) +

δ

4β2
+ γt(`zt(w?)− B). (118)

This is exactly the same result as the first line of the inequality (112) in the proof of Theorem 8. Then the rest of
the proof is identical to the one of Theorem 8.

D.11 THEOREM 10

Theorem 10. We assume that X is a convex set, and that for every z ∈ Z , `z is α-strongly convex
and β-smooth. Let w? be an ε-interpolation for ((P), B), and suppose that δ > 2βε. Further assume

33

Under review as a conference paper at ICLR 2020

that η ≤ 1
2β . Then if we apply ALI-G with a maximal learning-rate of η to f , we have:

f(wT+1)− f? ≤ β exp

(
−αηT

4

)
‖w0 −w?‖2 +

2δ

α
+

14εβ

α
. (18)

Proof : Re-using inequalities (92) and (98) from the proof of Theorem 7, we can write:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) +
ηδ

2β
+ γt(`zt(w?)− B),

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) +
ηδ

2β
+ ηε (γt ≤ η, 0 ≤ `zt(w?)− B ≤ ε).

(119)

Furthermore, the inequality (113) gives:

`zt(wt)− `zt(w?) ≥
α

4
‖wt −w?‖2 − 2ε (120)

Therefore, we can write:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 −
αη

4
‖wt −w?‖2 +

ηδ

2β
+ 3ηε,

=
(

1− αη

4

)
‖wt −w?‖2 +

ηδ

2β
+ 3ηε.

(121)

Then a trivial induction gives that:

‖wT+1 −w?‖2 ≤
(

1− αη

4

)T
‖w0 −w?‖2 +

(
ηδ

2β
+ 3ηε

) T∑
t=0

(
1− αη

4

)t
,

≤
(

1− αη

4

)T
‖w0 −w?‖2 +

(
ηδ

2β
+ 3ηε

) ∞∑
t=0

(
1− αη

4

)t
,

=
(

1− αη

4

)T
‖w0 −w?‖2 +

(
ηδ

2β
+ 3ηε

)
1

1−
(

1− αη

4

) ,
=
(

1− αη

4

)T
‖w0 −w?‖2 +

2δ

αβ
+

12ε

α
.

(122)

We now re-use the inequality (116) to write:

f(wT+1)− f? ≤ β‖wT+1 −w?‖2 +
2βε

α
,

≤ β
(

1− αη

4

)T
‖w0 −w?‖2 +

2δ

α
+

14εβ

α
,

≤ β exp

(
−αηT

4

)
‖w0 −w?‖2 +

2δ

α
+

14εβ

α
.

(123)

34

	Introduction
	The Algorithm
	Problem Setting
	The Polyak Step-Size
	The ALI-G Algorithm

	Justification and Analysis
	Interpolation Enables Inexpensive Stochastic Updates
	A Maximal Learning-Rate Helps with Non-Convexity

	Related Work
	Experiments
	Differentiable Neural Computers
	Wide Residual Networks on SVHN
	Bi-LSTM on SNLI
	Wide Residual Networks and Densely Connected Networks on CIFAR
	Training Performance

	Discussion
	Local Interpretation of the Polyak Step-Size
	Convergence Results
	Notation
	Lipschitz Convex Functions
	Smooth Convex Functions
	Smooth and Strongly Convex Functions

	On the Need for a Maximal Learning-Rate for Non-Convexity
	Proofs
	Proposition 2
	Theorem 1
	Theorem 2
	Theorem 3
	Theorem 4
	Theorem 5
	Theorem 6
	Theorem 7
	Theorem 8
	Theorem 9
	Theorem 10

