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ABSTRACT

Encoder-decoder convolutional neural networks (CNN) have been extensively
used for various inverse problems. However, their prediction error for unseen test
data is difficult to estimate a priori, since the neural networks are trained using
only selected data and their architectures are largely considered blackboxes. This
poses a fundamental challenge in improving the performance of neural networks.
Recently, it was shown that Stein’s unbiased risk estimator (SURE) can be used
as an unbiased estimator of the prediction error for denoising problems. However,
the computation of the divergence term in SURE is difficult to implement in a
neural network framework, and the condition to avoid trivial identity mapping is
not well defined. In this paper, inspired by the finding that an encoder-decoder
CNN can be expressed as a piecewise linear representation, we provide a close
form expression of the unbiased estimator for the prediction error. The close form
representation leads to a novel boosting scheme to prevent a neural network from
converging to an identity mapping so that it can enhance the performance. Experi-
mental results show that the proposed algorithm provides consistent improvement
in various inverse problems.

1 INTRODUCTION

Suppose that the measurement x is corrupted with additive noises:

x = µ+w, w ∼ N (0, σ2I), (1)

where µ ∈ Rn denotes the unknown mean vector, and σ2 is the variance. Consider a deep neural
network model F (x) := FΘ(x) with the weight Θ, which is trained with the data x producing an
estimate µ̂ = FΘ(x). Then, our goal is to estimate the prediction error:

Err(µ̂) = Ex,x∗‖x∗ − µ̂‖2 = Ex,x∗‖x∗ − F (x)‖2, (2)

which quantifies how well µ̂ can predict a test data x∗, independently drawn from the same distribu-
tion of x (Efron, 2004; Tibshirani & Rosset, 2018). The problem of estimating the prediction error is
closely related to the generalizability of neural network (Anthony & Bartlett, 2009). Moreover, this
problem is tightly linked to the classical approaches for model order selection in statistics literature
(Stoica & Selen, 2004). One of the most investigated statistical theories to address this question is
so-called covariance penalties approaches such as Mallow’s Cp (Mallows, 1973), Akaike’s informa-
tion criterion (AIC) (Akaike, 1974), Stein’s unbiased risk estimate (SURE) (Donoho & Johnstone,
1995), etc.

This paper is particularly interested in estimating the prediction error of encoder-decoder convo-
lutional neural networks (E-D CNNs) such as U-Net (Ronneberger et al., 2015; Han & Ye, 2018;
Ye & Sung, 2019). E-D CNNs have been extensively used for various inverse problems (Ye et al.,
2018). Recent theoretical results showed that, thanks to the ReLU nonlinearities, the input space is
partitioned into non-overlapping regions so that input images in each region share the same linear
representation, but not across different partitions (Ye & Sung, 2019).

One of the most important contributions of this paper is that this property can be exploited to derive
a simplified form of prediction error estimator that can be used for neural network training. In par-
ticular, we provide a close form expression for the divergence term in the SURE estimator, which
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suggests that the divergence term can be neglected if a proper batch normalization is used. Further-
more, the simplified form of the SURE estimate for the prediction error leads to a boosting scheme
to prevent the CNN from converging to a trivial solution so that it can improve the neural network
performance. The applicability of the new method is demonstrated using various inverse problems
such as accelerated MRI and energy-dispersive X-ray spectroscopic imaging, which clearly show
that our method can significantly improve the image quality compared to the existing approaches.

2 RELATED WORKS

2.1 STEIN RISK UNBIASED ESTIMATION FOR PREDICTION ERROR

The Stein Risk Unbiased Estimator (SURE) for the prediction error can be represented by (Donoho
& Johnstone, 1995):

ŜURE(x) := ‖x− F (x)‖2 + 2σ2div{F (x)}, (3)

where div(·) denotes the divergence. Recently, the authors in (Soltanayev & Chun, 2018) employed
the SURE for CNN-based image denoising without references by minimizing the following loss:

`SURE(Θ) :=
1

P

P∑
i=1

‖x(i) − FΘ(x(i))‖2 + 2σ2div{FΘ(x(i))}. (4)

where {x(i)}Pi=1 denotes the training samples. Although the application of SURE for unsupervised
denoising is an important advance in theory, there are several practical limitations. In particular,
due to the difficulty of calculating the divergence term, the authors relied on MonteCarlo SURE
(Ramani et al., 2008) which calculates the divergence term using MonteCarlo simulation. This
introduces additional hyperparameters, on which the final results critically depend.

2.2 PIECEWISE LINEAR REPRESENTATION BY E-D CNN WITH RELUS

Recently, the authors in (Ye & Sung, 2019) showed that the output of a CNN composed of κ layer
of encoder and decoder without skipped connection can be represented by the following basis-like
representation:

y := F (x) =
∑
i

〈bi(x),x〉b̃i(x) = B̃(x)B(x)>x, (5)

where bi(x) and b̃i(x) denote the i-th column of the following frame basis and its dual:

B(x) = E1Σ1(x)E2 · · ·Σκ−1(x)Eκ, (6)

B̃(x) = D1Σ̃1(x)D2 · · · Σ̃κ−1(x)Dκ, (7)

where Σl(x) and Σ̃l(x) denote the diagonal matrix with 0 and 1 values that are determined by the
ReLU output in the previous convolution steps. El andDl refer to the encoder and decoder matrices,
respectively, which are determined by pooling (resp. unpooling) operation and convolution filters
(Ye & Sung, 2019). For the case of encoder-decoder CNN with the skipped connection, similar basis
expression can be obtained Ye & Sung (2019).

Note that the expression (5) is nonlinear due to the dependency on the input signal x. Moreover, as
the ReLU nonlinearity is applied after the convolution operation, the on-and-off activation pattern
of each ReLU determines a binary partition of the feature space across the hyperplane that is deter-
mined by the convolution. Accordingly, one of the most important observation in Ye & Sung (2019)
is that the input space X is partitioned into multiple non-overlapping regions so that input images
for each region share the same linear representation, but overall representation is still non-linear.
This implies that two different input images may be automatically switched to two distinct linear
representations that are different from each other.

3 MAIN CONTRIBUTION

In (3) and (4), the calculation of the divergence term is not trivial for general neural networks. This
is why the authors in (Soltanayev & Chun, 2018) employed the MonteCarlo SURE. Thanks to the
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basis-like expression in (5), here we show that there exists a simple explicit form of the divergence
term for the case of E-D CNNs. Then, the batch normalization is shown to make the divergence
term trivial.

3.1 DIVERGENCE SIMPLIFICATION IN SURE

In Proposition 6 of (Ye & Sung, 2019), the authors show that ∂F (x)/∂x = B̃(x)B(x)> for the
case of E-D CNN with ReLUs. Accordingly, we have

div{F (x)} = Tr

(
∂F (x)

∂x

)
= Tr

(
B̃(x)B(x)>

)
= Tr

(
B(x)>B̃(x)

)
=

∑
i

〈bi(x), b̃i(x)〉, (8)

where Tr(A) denotes the trace ofA.

This close form representation (8) leads to a further simplification of divergence term by exploiting
the property of the batch normalization. Recall that batch normalization has been extensively used
to make the training stable (Ioffe & Szegedy, 2015; Hoffer et al., 2018; Cho & Lee, 2017; Miyato
et al., 2018; Ulyanov et al., 2016). It has been consistently shown that the batch normalization
is closely related to the norm of the Jacobian matrix ∂F (x)/∂x, which is equal to B̃(x)B(x)>.
For example, in their original paper (Ioffe & Szegedy, 2015), the authors conjectured that “Batch
Normalization may lead the layer Jacobians to have singular values close to 1, which is known to
be beneficial for training”. By extending the idea in (Ioffe & Szegedy, 2015) to multiple layers, the
batch normalization can be understood as to make the covariance of the network output and input
similar. For example, for the uncorrelated input with Cov[x(i)] = σ2I , the batch normalization may
result in Cov[F (x(i))] ' σ2I . Furthermore, for sufficiently smaller σ, we have

σ2I ' Cov[F (x(i))] = Cov
[
B̃(x(i))B(x(i))>x(i)x>(i)B(x(i))B̃(x(i))>

]
= B̃(x(i))B(x(i))>Cov

[
x(i)x>(i)

]
B(x(i))B̃(x(i))>

= σ2B̃(x(i))B(x(i))>B(x(i))B̃(x(i))>,

because the corresponding piecewise linear representation does not change for the small perturbation
of the input (Ye & Sung, 2019). Therefore, we have

B̃(x(i))B(x(i))> ' I,

since B̃(x(i))B(x(i))> is a square matrix. This suggests that

divEL{F (x(i))} =
∑
i

〈bi(x(i)), b̃i(x
(i))〉 = Tr

(
B̃(x(i))B(x(i))>

)
' n, (9)

where n is the dimension of the input signal. As the resulting divergence term is just a constant, the
contribution of the divergence term is considered trivial and can be neglected.

3.2 BAGGING/BOOSTING ESTIMATOR

Another important drawback of SURE-based denoising network (4) is that it is difficult to prevent the
network from learning a trivial identity mapping. More specifically, if FΘ(x) = x, the cost function
in (4) becomes zero. One way to avoid this trivial solution is to guarantee that the divergence term at
the optimal network parameter should be negative. However, given that the divergence term comes
from the degree of the freedom (Efron, 2004) and the amount of excess optimism in estimating the
prediction error (Tibshirani & Rosset, 2018), enforcing negative value may be unnatural. Moreover,
with the divergence simplification in (9), the cost function (4) can be simplified as

`SURE−ED(Θ) :=
1

P

P∑
i=1

‖x(i) − FΘ(x(i))‖2 + 2σ2n (10)

so that it is much apparent that a trivial solution for (10) is FΘ(x) = x.
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To prevent the neural network from converging to this trivial solution, here we propose a bootstrap
aggregation (bagging) scheme (Breiman, 1996). Bagging is a classical machine learning technique
which uses bootstrap sampling and aggregation of the results to reduce the variance and to improve
the accuracy of the base learner. The rationale for bagging is that it may be easier to train several
simple weak learners and combine them into a more complex learner than to learn a single strong
learner. More specifically, we use the following bagging estimator:

µ̃(x) =

K∑
k=1

wkFΘ(Lkx), (11)

and the corresponding prediction error estimate:

Err(µ̃) := Ex,x∗‖x∗ − µ̃‖2 = Ex,x∗‖x∗ −
K∑
k=1

wkFΘ(Lkx)‖2,

where {Lk}Kk=1 denotes the diagonal matrix whose diagonal elements are either 0 or 1 depending on
the bootstrap subsampling patterns, and {wk}Kk=1 is the corresponding weights. The corresponding
empirical prediction error estimate is then given by

` (Θ, {wk}) :=
1

P

P∑
i=1

‖x(i) −
K∑
k=1

wkFΘ(Lkx
(i))‖2, (12)

Note that x(i) 6= Lkx
(i) due to the subsampling patterns so that the optimal neural network FΘ

that minimizes (12) cannot be the trivial identity mapping. Furthermore, the following proposition
shows that the prediction error for the boosting estimator (11) is not bigger than the average of the
individual error estimate.

Proposition 1. Let wk ≥ 0 and
∑
k wk = 1. Then, we have

1

P

P∑
i=1

∑
k

wk‖x(i) − F (Lkx
(i))‖2 ≥ 1

P

P∑
i=1

∥∥∥x(i) −
∑

wkF (Lkx
(i))
∥∥∥2

.

Proof. For any x ∈ {x(i)}Pi=1, we have∑
k

wk‖x− F (Lkx)‖2 = x>x− 2x>
∑
k

wkF (Lkx) +
∑
k

wk‖F (Lkx)‖2

≥ x>x− 2x>
∑
k

wkF (Lkx) + ‖
∑

wkF (Lkx)‖2

=
∥∥∥x−∑wkF (Lkx)

∥∥∥2

,

where we use the Jensen’s inequality for the inequality. By summing up for all training data
{x(i)}Pi=1, we conclude the proof.

The gap increases more when the F (Lkx) provides diverse output for each realization of the index
Lk (Breiman, 1996). In fact, the authors in (Ye & Sung, 2019) showed that the input space results in
non-overlapping partitions with different linear representations so that by changing the subsampling
pattern Lk, the distinct representation may be selected, which can make the corresponding boosting
estimate more accurate.

4 IMPLEMENTATION DETAILS

The final loss function for our boosting estimator is given by

` (Θ,Ξ) :=
1

P

P∑
i=1

‖x(i) −
K∑
k=1

wk(Ξ)FΘ(x, Lk)‖2, (13)
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Figure 1: Overall network architecture of the proposed method. The acquired data is split into
multiple subset using bootstrap subsampling. The data is then processed using a regression network
followed by an aggregation module using an attention network.

where we also parameterize the weighting using a neural network with parameter Ξ. A schematic
diagram of the proposed method is illustrated in Fig. 1, which consists of three building blocks:
bootstrap subsampling, a regression network, and an attention network to calculate the weight pa-
rameters.

In particular, U-net (Ronneberger et al., 2015) in Fig. 2 was used as our regression network. The
network is composed of four stages with convolution, batch normalization, ReLU, and skip connec-
tion with concatenation. Each stage is composed of three 3×3 convolution layers followed by batch
normalization and ReLU, except for the last layer, which is 1× 1 convolution layer. The number of
convolutional filters increases from 64 in the first stage to 1024 in the final stage.

Figure 2: Architecture for the regression network.

To estimate the weight wk, our attention network consists of two fully connected layer. The input
dimension of the attention network is R1×1×K followed by the average pooling of the concatenated
output of regression network. The number of hidden node is 64, and the final dimension of the
output is R1×1×K for aggregation.

The overall network was trained using Adam optimization with the momentum β1 = 0.9 and β2 =
0.999. The proposed network was implemented in Python using TensorFlow library and trained
using an NVidia GeForce GTX 1080-Ti graphics processing unit.

5 EXPERIMENTAL RESULTS

Experiments were conducted for various inverse problems such as accelerated magnetic resonance
imaging (MRI) and energy-dispersive X-ray spectroscopy (EDX) (Solé et al., 2007).

5.1 ACCELERATED MRI

In accelerated MRI, the goal is to recover high quality MR images from sparsely sampled k-space
data to reduce the acquisition time. This problem has been extensively studied using compressed
sensing (Lustig et al., 2007), but recently deep learning approaches have been the main research
interest due to its excellent performance at significantly reduced run time complexity (Hammernik
et al., 2018; Han & Ye, 2019).

A standard method for neural network training for accelerated MRI is based on the supervised learn-
ing, where the MR images from fully sampled k-space data is used as reference and subsampled
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k-space data is used as the input for the neural network. Specifically, we use the R = 13.45 sub-
sampled k-space data as neural network input and the goal is to obtain high resolution images from
the sub-sampled k-space data. As a baseline algorithm, the state-of-the-art deep learning algorithm
called k-space deep learning (Han & Ye, 2019) is employed, which interpolates the missing k-data
using a CNN.

In the proposed method, the accelerated k-space data is further subsampled using bootstrap sampling
with the subsampling ratio of 91 %, and the number of bootstrap sample set K was set to 10. The
same k-space deep learning network (Han & Ye, 2019) was used for our regression network using
bootstrap samples. We trained the baseline algorithm and our method under the same conditions,
except that the proposed network was trained by minimize the loss (13). The initial learning rate
was set to 10−2, and it was divided by half at every 50 epochs until it reaches to around 10−4.

The training data was generated from Human Connectome Project (HCP) MR dataset
(https://db.humanconnectome.org). Among the 34 subject data sets, 28 subject data sets were used
for training and validation. The other subject data sets were used for test. We also provide re-
construction results by GRAPPA (Griswold et al., 2002), which is a standard k-space interpolation
method in MRI.

Figure 3: Reconstruction results using accelerated MR data at the acceleration factor of R = 13.45.
The PSNR and SSIM index values for each images are written at the corner.

Thanks to the boosting, the proposed method provided nearly perfect reconstruction results com-
pared to other algorithms as shown in Fig. 3. Moreover, its average peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) index significantly outperform existing methods as shown
in Table 1.

Table 1: Quantitative comparison using PSNR and SSIM index.

GRAPPA Baseline (Han & Ye, 2019) Ours

PSNR (dB) 34.52 38.67 42.72
SSIM 0.72 0.89 0.91

To demonstrate the optimality of the proposed architecture, we performed extensive ablation study.
For the ablation study, we used 13 subject data sets from HCP MR dataset, from which seven subject
data sets were used for training and validation and the remaining dataset were used for test. The
ablation study was performed by excluding some structures from the network and applying the
same training processes.

First, our theory says that the performance improvement of our method increases with the number of
bootstrap subsamples K. To verify this, we performed comparative studies with different K values
such as 1, 2, 4 and 10. As shown in Table 2, the proposed network provided better reconstruction
results as the number of bootstrap sample set K increased. This clearly confirmed the importance
of the bootstrap subsampling.

Second, our derivation suggests that the batch normalization plays a key role to simplify the diver-
gence term. As shown in Fig. 4 and Table 3, the lack of batch normalization produces a significantly
degraded image with an average PSNR drop from 40.047 dB to 25.290 dB. This verified the impor-
tant role of batch normalization.
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Table 2: Quantitative comparison using PSNR and SSIM index with respect to number of bootstrap
subsample sets.

K 1 2 4 10

PSNR (dB) 38.68 39.81 40.05 40.27
SSIM 0.89 0.90 0.91 0.93

We also evaluated the importance of the attention network to calculate the weights. Without the
attention network, the final output is a simple average of the entire network output for each bootstrap
subsamples. As shown in Fig. 4 and Table 3, the simple average produced blurry results than by the
attention network and the PSNR and SSIM values were worse. This confirmed that the important of
attention network for the weight calculation.

Figure 4: Ablation study for the accelerated MR experiments at the acceleration ratio of R = 13.45.
The PSNR and SSIM index values for each images are written at the corner. w/o BN: reconstruction
results from an ablated network without batch normalization, w/o attention: reconstruction results
from an ablated network without an attention module.

Table 3: Quantitative comparison in terms of PSNR and SSIM index in our ablation study.

without BN without attention network Ours

PSNR (dB) 25.29 35.91 40.05
SSIM 0.49 0.867 0.914

5.2 ENERGY-DISPERSIVE X-RAY SPECTROSCOPY IMAGING

As for another experiment, we use the energy-dispersive X-ray spectroscopy (EDX) (Solé et al.,
2007) data set which were measured by scanning transmission electron microscopy. EDX (Solé
et al., 2007) is an analytical technique used for spectroscopic characterization of a sample. It relies
on the emission of characteristic X-rays from a specimen that is generated by a high-energy beam of
electrons. Specifically, the incident beam may eject an electron from the inner shell of atoms. Then,
an electron from an outer shell then fills the hole, and the energy difference may be released in the
form of an X-ray. As the energies of the X-rays are characteristic of the energy differences that
are determined by the atomic structure of the emitting element, EDX is widely used for nano-scale
quantitative and qualitative elemental composition analysis by measuring X-ray radiation from the
interaction with high energy electron and the material (McDowell et al., 2012).

However, in EDX, the specimens can be quickly damaged by the high energy electrons, so the
acquisition time should be reduced to its minimum. This usually results in very noisy and even
incomplete images as shown in Fig. 5(a). Therefore, the goal of this experiment was to remove the
noise and reconstruct high resolution EDX images. The main technical difficulty is that there are
no noiseless reference data. Due to the lots of missing photons, a widely used approach for EDX
analysis is a kernel regression method using an average kernel as shown in Fig. 5(b). Unfortunately,
this often results in severe blurring.

Existing unsupervised learning methods such as SURE network (Soltanayev & Chun, 2018) and
Noise2Noise (Lehtinen et al., 2018) cannot be used for this purpose, since there are no specific noise
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models for the EDX and the noiseless clean data is not available for Noise2Noise training. In fact,
this difficulty of EDX denoising was our original motivation for this work. For our network training
and inference, we use bootstrap subsampled images from the measurement image in Fig. 5(a). In
addition, we used the measurement image in Fig. 5(a) as the label for training.

We used 28 cases from the EDX dataset. The specimen are composed of quantum-dots, where core
and shell consist of Cadmium (Cd), Selenium (Se), Zinc (Zn), and Sulfur (S). The regression network
was trained using image patches, whose sizes was 128 × 128. For stable training, the intensity of
data was normalized between [0, 1]. The initial learning rate was set to 10−3, and it was divided in
half at every 50 epochs until it reaches around 10−5. For the bootstrap subsampling, the number of
random subsampling mask wasK = 30. The regression network was optimized to minimize the loss
(13) with respect to Θ first, after which the attention network was trained to properly aggregate the
entire interpolated output. As shown in Fig. 5(c), our method successfully produced high resolution
images which are significantly better than existing kernel regression methods. Thanks to the bagging
procedure, the regression network is believed to learn the measurement statistics so that the network
not only removes the noise but also filled in the unmeasured data. This confirmed the efficacy of the
proposed method.

Figure 5: EDX experimental results. Green and blue particles refer to Zn and Cd, respectively. (a)
Input data, and the reconstruction results using (b) the existing kernel regression method and (c) the
proposed method.

6 CONCLUSION

In this paper, we proposed a novel boosting scheme of encoder-decoder CNNs for various inverse
problems. The algorithm was derived by the observation that the existing SURE-based unsuper-
vised denoising networks have several practical limitations due to the divergence term and potential
to converge to a trivial solution. Inspired by the recent discovery of basis-like representation of the
encoder-decoder CNN, we provide a simple approximation of the divergence term. This also led
to a novel boosting scheme to prevent from converging to the trivial identity mapping. In the im-
plementation, multiple input data were generated by bootstrap subsampling, after which final result
are obtained by aggregating the entire output of network using an attention network. Experimen-
tal results with accelerated MRI and EDX experiments showed that the proposed method provides
consistent improvement for various inverse problems.
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