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ABSTRACT

Unsupervised knowledge transfer has a great potential to improve the generaliz-
ability of deep models to novel domains. Yet the current literature assumes that
the label distribution is domain-invariant and only aligns the covariate shift or
vice versa. In this paper, we explore the task of Generalized Domain Adapta-
tion (GDA): How to transfer knowledge across different domains in the presence
of both covariate and label shift? We propose a covariate and label distribu-
tion CO-ALignment (COAL) model to tackle this problem. Our model leverages
prototype-based conditional alignment and label distribution estimation to dimin-
ish the covariate and label shift, respectively. We demonstrate experimentally that
when both types of shift exist in the data, COAL leads to state-of-the-art perfor-
mance on several cross-domain benchmarks.

1 INTRODUCTION

The success of deep learning models is highly dependent on the assumption that the training and
testing data are i.i.d and sampled from the same distribution. In reality, they are typically collected
from different but related domains, leading to a phenomenon known as domain shift (Quionero-
Candela et al., 2009). To bridge the domain gap, Unsupervised Domain Adaptation (UDA) transfers
the knowledge learned from a labeled source domain to an unlabeled target domain by statistical dis-
tribution alignment (Long et al., 2015; Tzeng et al., 2014a) or adversarial alignment (Tzeng et al.,
2017; Ganin & Lempitsky, 2015a; Saito et al., 2018). Though recent UDA work has made great
progress, it has mostly failed to address the case of label shift, i.e., a changing prior over the la-
bels. Denote the input data as x and output labels as y, and let the source and target domain be
characterized by probability distributions p and q, respectively. The majority of methods assume
that the conditional label distribution is invariant (p(y|x) = q(y|x)), and only the covariate shift
(p(x) 6= q(x)) needs to be minimized, neglecting any potential label shift (p(y) 6= q(y)). How-
ever, recent theoretical work (Zhao et al., 2019a) has demonstrated that minimizing the label shift is
crucial to solving the domain adaptation problem. Label shift also occurs in real applications; for ex-
ample, an autonomous driving system should be able to handle changing frequencies of pedestrians
and cars when adapting from a rural to a downtown area.

In this paper, we propose Generalized Domain Adaptation (GDA), a more challenging but practical
domain adaptation setting where the conditional covariate shift and label shift are required to be
minimized simultaneously. Specifically, we assume p(x|y) 6= q(x|y) and p(y) 6= q(y). The main
challenges of GDA are: (1) label shift exists between the source and target domain, which hampers
the effectiveness of mainstream domain adaptation methods that only minimize covariate shift, (2)
aligning the conditional feature distributions (p(x|y), q(x|y)) is difficult in the presence of label
shift, and (3) when the data in one or both of the domains are unequally distributed across different
categories, it is difficult to train an unbiased classifier. An overview of GDA is shown in Figure 1.

Mainstream unsupervised domain adaptation aligns the marginal distributions of two domains by
methods that include minimizing the Maximum Mean Discrepancy (Long et al., 2015; Tzeng et al.,
2014a), aligning high-order moments (Zellinger et al., 2017; Peng et al., 2019a), or adversarial
training (Tzeng et al., 2017; Ganin & Lempitsky, 2015a). These methods have achieved state-of-the-
art performance on several domain adaptation benchmarks (Saenko et al., 2010; Venkateswara et al.,
2017; Peng et al., 2017) which have significant covariate shift but limited label shift. These models
are limited by two factors when applied to the GDA task. First, they only align the covariate shift,
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Figure 1: We propose the Generalized Domain Shift setting, where we consider Covariate Shift and Label Shift
simultaneously. To tackle this problem, we propose to use self-training to estimate and align the target label
distribution, and use a prototype-based method for conditional alignment. In this way, we can better align the
feature distribution of each category. Due to label shift, previous methods that learn marginal domain-invariant
features will incorrectly align samples from different categories, leading to negative transfer.

ignoring the real issue of label shift which exists in many real-world applications. Second, these
models assume that the conditional distributions (p(x|y), q(x|y)) are automatically aligned when the
marginal distributions are aligned, which is not always correct in practical scenarios. Another line of
works (Lipton et al., 2018a; Azizzadenesheli et al., 2019a) assume that only label shift exists (p(y) 6=
q(y)) between two domains and the conditional feature distribution is invariant (p(x|y) = q(x|y)).
These methods have achieved good performance when the data in both domains are sampled from
the same data distributions but under different label distributions. However, these models cannot
handle the GDA task as the covariate shift is not well aligned. Taking steps towards minimizing
the covariate shift and label shift simultaneously, several works (Zhang et al., 2013; Gong et al.,
2016; Wu et al., 2019) provide a theoretical analysis with additional constraints on distributions p
and q, such as a linearity assumption between p(x|y) and q(x|y) (Zhang et al., 2013), which does
not necessarily hold in many real applications. In addition, no practical algorithm which can solve
real-world cross-domain problems has been proposed by these papers.

We postulate that it is essential to align the conditional feature distributions as well as the la-
bel distributions to tackle the GDA task. In this work, we address GDA with covariate and la-
bel shift CO-ALignment (COAL). Specifically, our approach diminishes covariate and label shift
with prototype-based conditional distribution alignment and label distribution estimation, respec-
tively. First, to reduce the covariate shift in the context of label shift, it is essential to align the
conditional rather than marginal feature distributions, to avoid the negative transfer effects which
are caused by matching marginal feature distributions, according to a theoretical proof from Zhao
et al. (2019a) (illustrated in Figure 2). To this end, we propose a prototype-based method to align
the conditional feature distributions of the two domains. The source prototypes are computed by
learning a similarity-based classifier and the target prototypes are estimated by a minimax entropy
algorithm (Saito et al., 2019b). Second, we align the label distributions in the context of covari-
ate shift by estimating the target label distribution. We incorporate covariate shift and label shift
alignment into an end-to-end deep learning framework, as illustrated in Figure 1. Comprehensive
experiments on standard cross-domain recognition benchmarks demonstrate that COAL achieves
significant improvements over the state-of-the-art methods on the task of GDA.

The main contributions of this paper are highlighted as follows: (1) to the best of our knowledge,
we provide the first practical solution and set of benchmarks for joint covariate and label shift in
deep learning; (2) we develop an end-to-end CO-ALignment (COAL) framework which leverages
conditional prototype-based alignment to diminish covariate shift and label distribution estimation to
align the label shift; and (3) we deliver extensive experiments and analysis to show the effectiveness
of COAL, and importantly, we empirically demonstrate that state-of-the-art methods fail to align
conditional covariate shift in the presence of label shift.

2 RELATED WORK

Unsupervised Domain Adaptation Domain adaptation aims to transfer the knowledge learned from
one or more source domains to a target domain. Recently, many unsupervised domain adapta-
tion methods have been proposed. These methods can be taxonomically divided into three cate-
gories (Wang & Deng, 2018). The first category is the discrepancy-based approach, which leverages
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Figure 2: Overview of the proposed COAL model. Our model is trained iteratively between two
steps. In step A, we forward the target samples through our model to generate the pseudo labels and
mask. In step B, we train our models by self-training with the pseudo labels and mask to align the
label shift, and prototype-based conditional alignment with the minimax entropy.

different measures to align the marginal feature distributions between source and target domains.
Commonly used measures include Maximum Mean Discrepancy (MMD) (Long et al., 2017; Tzeng
et al., 2014b), H-divergence (Ben-David et al., 2010), Kullback-Lerbler (KL) divergence (Zhuang
et al., 2015), and Wasserstein distance (Lee & Raginsky, 2017; Shen et al., 2017). The second cat-
egory is the adversarial-based approach (Tzeng et al., 2017; Liu & Tuzel, 2016; Peng et al., 2019b)
which uses a domain discriminator to encourage domain confusion via an adversarial objective. The
third category is the reconstruction-based approach. Data are reconstructed in the new domain by
an encoder-decoder (Bousmalis et al., 2016; Ghifary et al., 2016) or a GAN discriminator, such
as dual-GAN (Yi et al., 2017), cycle-GAN (Zhu et al., 2017), disco-GAN (Kim et al., 2017), and
CyCADA (Hoffman et al., 2018). However, these methods mainly consider aligning the marginal
distributions to decrease feature shift, neglecting label shift. To the best of our knowledge, we are
the first the propose an end-to-end deep model to tackle both feature and label shift between the
source and target domains.

Learning with Label Shift Despite its wide applicability, learning under label shift remains under-
explored. Existing works tackle this challenge by importance reweighting or target distribution
estimation. Specifically, Zhang et al. (2013) exploit importance reweighting to enhance knowledge
transfer under label shift. Recently, Azizzadenesheli et al. (2019b) propose a regularized algorithm
to correct shifts in the label distribution by estimating the importance weights using labeled source
data and unlabeled target data. Lipton et al. (2018b) introduce a test distribution estimator to detect
and correct for label shift. These methods assume that the source and target domains share the same
generative distributions and only differ in the marginal label distribution. In this work, we explore
transfer learning between domains under domain and label shifts. In this direction, Zhao et al.
(2019b) introduce a theoretical analysis to show that only learning domain-invariant features is not
sufficient to solve domain adaptation task since the label priors are not aligned. In related work, Wu
et al. (2019) propose asymmetrically-relaxed distribution alignment to overcomes the limitations
of standard domain adaptation algorithms which aims to extract domain-invariant representations.
Panareda Busto & Gall (2017) propose open set domain adaptation where the categories in the
training domain and testing domain are not fully overlapped. Cao et al. (2018b) introduce partial
domain adaptation where the categories in the target domain are a subset of those in the source
domain.

Domain adaptation with self-training Self-training methods utilize pseudo-labels to compensate
for the lack of categorical information in the target domain. The intuition is to assign pseudo-labels
to unlabeled samples based on the predictions of one or more classifiers. Long et al. (2013) jointly
align the marginal and conditional distributions using an MMD loss with pseudo-label refinement.
Saito et al. (2017) leverage an asymmetric tri-training strategy to assign pseudo-labels to the unla-
beled target domain. Xie et al. (2018) propose to assign pseudo-labels to all target samples and use
them to achieve semantic alignment across domains. Zhang et al. (2018) progressively enlarge the
training data with pseudo-labeled target samples assigned by the classifier from the previous training
epoch and retrain the model with the enlarged training set. Recently, Chen et al. (2019a) propose to
progressively label the target samples and align the prototypes of source domain and target domain
to achieve domain alignment. However, to the best of our knowledge, self-training has not been
applied for DA with label shift.
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3 GENERALIZED DOMAIN ADAPTATION WITH CO-ALIGNMENT

In generalized domain adaptation, we are given a source domain DS = {(xsi , ysi )
Ns
i=1} with Ns

labeled examples, and a target domain DT = {(xti)
Nt
i=1} with Nt unlabeled examples. We assume

that p(x|y) 6= q(x|y) and p(y) 6= q(y). We aim to construct a end-to-end deep neural network which
is able to transfer the knowledge learned from DS to DT , and train a classifier y = θ(x) which can
minimize task risk εT (θ) = Pr(x,y)∼q[θ(x) 6= y].

Previous works either focus on aligning the marginal covariate shift (Long et al., 2015; Tzeng et al.,
2017) or aligning the label shift (Lipton et al., 2018b). These approaches are not able to fully tackle
the generalized domain adaptation as they only align one shift. In this work, we tackle GDA with
prototype-based conditional alignment and label distribution estimation.

3.1 PROTOTYPE-BASED CONDITIONAL ALIGNMENT FOR COVARIATE SHIFT

The mainstream idea in covariate-shift oriented methods is to learn domain-invariant features by
aligning the marginal feature distributions, which was proved to be inferior in the presence of label
shift (Zhao et al., 2019a). Instead, we propose to align the conditional feature distributions. To this
end, we leverage a similarity-based classifier to estimate p(x|y), and a minimax entropy algorithm
to align it with q(x|y). We achieve conditional covariate shift alignment by aligning the source and
target prototypes in an adversarial process.

Similarity-based Classifier The architecture of our COAL model contains a feature extractor F
and a similarity-based classifier C. Similarity- or prototype-based classifiers perform well in few-
shot learning settings (Chen et al., 2019b), which motivates us to adopt them since in label-shift
settings some categories can have low frequencies. Specifically, C is composed of a weight matrix
W ∈ Rd×c and a temperature parameter T , where d is the dimension of feature generated by F ,
and c is the total number of classes. Denote W as [w1,w2, ...,wc], this matrix can be seen as c
d-dimension vectors, one for each category. For each input feature F (x), we compute its similarity
with the ith weight vector as si =

F (x)wi

T‖F (x)‖ . Then, we compute the probability of the sample being

labeled as class i by hi(x) = σ( F (x)wi

T‖F (x)‖ ), normalizing over all the classes. Finally, we can compute
the prototype-based classification loss for DS with standard cross-entropy loss:

LSC = E(x,y)∈DS
Lce(h(x), y) (1)

The intuition behind this loss is that the higher the confidence of sample x being classified as class
i, the closer the embedding of x is to wi. Hence, when optimizing Equation 1, we are reducing the
intra-class variation by pushing the embedding of each sample x closer to its corresponding weight
vector in W. In this way, wi can be seen as a representative data point (prototype) for p(x|y = i).

Prototype-based Conditional Alignment by Minimax Entropy Due to the lack of categorical
information in the target domain, it is infeasible to utilize Equation 1 to obtain target prototypes.
Instead, we propose to tackle this problem by 1) moving each source prototype to be closer to its
nearby target samples, and 2) clustering target samples around this moved prototype. Inspired by
Saito et al. (2019a), we propose to achieve these two objectives jointly by entropy minimax learning.
Specifically, for each sample xt ∈ DT fed into the network, we can compute the entropy of the
classifier’s output by

H = −Ex∈DT

c∑
i=1

hi(x) log hi(x). (2)

Larger H indicates the target samples are similar to all the weight vectors (prototypes) of C. We
achieve conditional feature distributions alignment by aligning the source and target prototypes in an
adversarial process: (1) we train C to maximize H , aiming to move the prototypes from the source
samples towards the neighboring target samples; (2) we train F to minimize H , aiming to make the
embedding of target samples closer to their nearby prototypes. By training with these two objectives
as a min-max game betweenC and F , we can align source and target prototypes. Practically, we add
a gradient-reverse layer (Ganin & Lempitsky, 2015a) between C and F to flip the sign of gradient.
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Algorithm 1: Conditional Feature Alignment with Decision Boundary Refinement
Input: F , C, DS , DT , Niter, Nepoch, Nb, k = k0
Output: F̂ , Ĉ

1 train F and C with DS using Equation 1
2 for i = 0, ..., Nepoch do
3 Step A:
4 compute D̂T = {(xti, ŷti ,mi)

Nt
i=1} with k as in Section 3.2

5 Step B:
6 for j = 0, ..., Niter do
7 randomly sample mini-batch {(xsi , ysi )

Nb
i=1} ∈ DS , {(xti, ŷti,mi)

Nb
i=1} ∈ D̂T

8 train F and C with Equation 4
9 k = min(k + kstep, kmax)

3.2 LABEL DISTRIBUTION ESTIMATION WITH SELF-TRAINING

As the source label distribution p(y) is different from that of the target q(y), it is not guaranteed that
the classifier C which has low risk on DS will have low error on the target domain. Intuitively, if
the classifier is trained with imbalanced source data, the decision boundary will be dominated by the
most frequent categories in the training data, leading to a “biased” classifier. When the classifier is
applied to target domain with a different label distribution, its accuracy will degrade as it is highly
biased. To tackle this problem, we employ the self-training method to estimate the target label
distribution and refine the decision boundary. In addition, we leverage balanced sampling of the
source data to further diminish the effect of label shift.

Self-training In order to refine the decision boundary, we propose to estimate the target label distri-
bution with self-training (Zou et al., 2018). We will assign pseudo labels ŷ to all the target samples
according to the output the classifier C. As we have aligned the conditional covariate shift (p(x|y)
and q(x|y)), we assume that the pseudo label distribution q(ŷ) is the approximation of the real label
distribution q(y) for the target domain.

For each category, we select top-k percent of the target samples with the highest confidence scores
belonging to that category. We utilize the highest probability in h(x) as the classifier’s confidence
on sample x. Specifically, for each pseudo-labeled sample (x, ŷ), we set its selection mask m = 1
if h(x) is among the top-k percent of all the target samples with the same pseduo-label, otherwise
m = 0. Denote the pseudo-labeled target set as D̂T = {(xti, ŷti ,mi)

Nt
i=1}, we leverage the data and

pseudo labels from D̂T to train the classifier C, aiming to refine the decision boundary with target
label distribution. The objective for self-training is:

LST = LSC + E(x,ŷ,m)∈D̂T
Lce(h(x), ŷ) ·m (3)

where ŷ indicates the pseudo labels and m indicates selection masks. In our approach, we choose
the top-k percent of the highest confidence target samples within each category, instead of univer-
sally. This is crucial to estimate the real target label distribution, otherwise, the easy-to-transfer
category(ies) will dominate D̂T , leading to inaccurate estimation of the target label distribution.

Balanced Sampling of Source Data In addition to estimating the target label distribution, we pro-
pose a balanced sampling process to enhance label shift alignment. When coping with label shift,
the label distribution of the source domain could be highly unbalanced. A classifier trained on un-
balanced categories will make highly-biased predictions for the samples from the target domain (He
& Garcia, 2009). This effect also hinders the self-training process discussed above, as the label dis-
tribution estimation will also be biased. To tackle these problems, we apply a balanced mini-batch
sampler to generate training data from the source domain and ensure that each source mini-batch
contains roughly the same number of samples for each category.

3.3 TRAINING PROCESS

In this section, we combine the above ideas into an end-to-end training process. Given input samples
from source domain DS and target domain DT , we first initialize our network F and C with only
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labeled data DS . Then, we iterate between the assignment of pseudo labels and adaptive learning
until convergence or reaching the maximum no. of iterations. An overview of this process can be
seen in Algorithm 1. The overall training objective is as follows:

Ĉ = argmin
C

LST − βH

F̂ = argmin
F

LST + βH
(4)

3.4 THEORETICAL INSIGHTS

Conditional Feature Alignment According to Zhao et al. (2019b), the target error in domain adap-
tation is bounded by three terms: 1) source error, 2) the discrepancy between the marginal distribu-
tions and 3) the distance between the source and target optimal labeling functions. Denote h ∈ H
as the hypothesis, εS(·) and εT (·) as the expected error of a labeling function on source and target
domain, and fS and fT as the optimal labeling functions in the source and target domain. Then, we
have:

εT (h) ≤ εS(h) + dĤ(DS ,DT ) + min{εS(fT ), εT (fS)}, (5)

where dĤ denote the discrepancy of the marginal distributions (Zhao et al., 2019b). The bound
demonstrates that the optimal labeling functions fS and fT need to generalize well in both domains,
such that the term min{εS(fT ), εT (fS)} can be bounded. Conventional domain adaptation ap-
proaches which only align marginal feature distribution cannot guarantee that min{εS(fT ), εT (fS)}
is minimized. This motivates us to align the conditional feature distribution, i.e. p(x|y) and q(x|y).
Our model COALestimates and aligns the source and target prototypes to align p(x|y) and q(x|y).
Decision Boundary Refinement Theorem 4.3 in Zhao et al. (2019b) indicates that the target error
εT (h) can not be minimized if we only align the covariate shift and neglect and label shift. Denote
dJS as the Jensen-Shannon(JS) divergence between two distributions, Zhao et al. (2019b) propose:

εS(h) + εT (h) ≥
1

2
(dJS(p(y), q(y))− dJS(p(x), q(x)))2 (6)

This theorem demonstrates that when dJS(p(y), q(y)) is significant, minimizing the marginal dis-
tribution dJS(p(x), q(x)) and the source task error εS(h) will enlarge the target task error εT (h).
Motivated by this, we propose to align the empirical label shift dJS(p̂(y), q̂(y)) with self-training
algorithms.

4 EXPERIMENTS

We evaluate our CO-ALignment (COAL) model with three popular benchmarks, i.e., Digits, Office-
Home (Venkateswara et al., 2017) and DomainNet (Peng et al., 2019a). Sample images of these
datasets can be found in Figure 3a. As Digits and Office-Home dataset contains limited label shift,
we artificially create considerable label shift by random sub-sampling the data for each category.

4.1 SETUP

Sub-sampling Protocol. To create significant label shift between source and target domains, we
sub-sample the current datasets with Reversely-unbalanced Source and Unbalanced Target (RS-
UT) protocol. In this setting, both the source and target domains have unbalanced label distribution,
while the label distribution of the source domain is a reversed version of that of the target domain.
An illustration of this setting can be found in Figure 3(a). We refer our reader to supplementary
material for more details!

Digits We select four digits datasets: MNIST (LeCun et al., 1998), USPS (Hull, 1994), SVHN
(Netzer et al., 2011) and Synthetic Digits (SYN) (Ganin & Lempitsky, 2015b). In this work, we
investigate four domain adaptation tasks: MNIST→ USPS, USPS→MNIST, SVHN→MNIST,
and SYN→MNIST.

Office-Home (Venkateswara et al., 2017) is a dataset collected in office and home environment with
65 object classes and four domains: Real World (Rw), Clipart (Cl), Product (Pr), Art (Ar). Since
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(a) Sample images of the datasets we use in our experiments.2 4 6 8 10
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Figure 3: (a): Image examples from Digits, Office-Home (Venkateswara et al., 2017), and Domain-
Net Peng et al. (2019a). (b): illustrations of Reversely-unbalanced Source (RS) and Unbalanced
Target (UT) distribution in MNIST→USPS task. (c): Natural label shift of DomainNet.

Methods USPS→MNIST MNIST→USPS SVHN→MNIST SYN→MNIST AVG

Source Only 75.31±0.09 87.92±0.74 50.25±0.81 85.74±0.49 74.81

F-DANN 72.59±1.61 81.62±2.38 45.65±2.93 82.07±1.65 70.48
JAN 75.75±0.75 78.82±0.93 53.21±3.94 75.64±1.42 70.86
BBSE 75.01±3.68 78.84±10.73 49.01±2.02 85.69±0.71 72.14
BSP 71.99±1.52 89.74±0.77 50.61±1.67 77.30±1.20 72.41
PADA 73.66±0.15 78.59±0.23 54.13±1.61 85.06±0.60 72.86
MCD 77.18±5.65 85.34±4.07 53.52±4.23 76.37±3.48 73.10
DAN 79.12±1.34 87.15±1.71 53.63±1.80 80.89±2.00 75.20
DANN 77.28±2.13 91.88±0.74 57.16±1.83 77.60±1.29 75.98

COAL (Ours) 88.12±0.37 93.04±1.67 65.67±1.29 90.60±0.44 84.33

Table 1: Per-class mean accuracy on Digits with RS-UT label shifts. Our model achieves 84.33%
average accuracy across four experimental settings, outperforming other baselines.
the “Art” domain is too small to sample an imbalanced subset, we focus on the remaining domains
and explore all the six adaptation scenarios.

DomainNet (Peng et al., 2019a) is a large-scale testbed for domain adaptation, which contains six
domains with about 0.6 million images distributed among 345 classes. Since some domains and
classes contains many outliers, we select 40 commonly-seen classes from four domains: Real (R),
Clipart (C), Painting (P), Sketch (S). Different from two datasets above, the label shift in DomainNet
is significant enough, as illustrated in Figure 3. Moreover, the images are directly collected from
image search engine and they are in consistence with the natural label distribution in the real world.

Baselines We compare covarite and label shift CO-ALignment (COAL) with state-of-the-art do-
main adaptation methods that mainly aligns covariate shift: Deep Adaptation Network (DAN) (Long
et al., 2015), Joint Adaptation Network (JAN) (Long et al., 2017), Domain Adversarial Neural Net-
work (DANN) (Ganin & Lempitsky, 2015a), Batch Spectral Penalization (BSP) (Chen et al., 2019c),
f-divergence Domain Adversarial Neural Network (F-DANN) (Wu et al., 2019), Maximum Classi-
fier Discrepancy (MCD) (Saito et al., 2018). We also compare our model with methods that aligns
the label shift: Partial Adversarial Domain Adaptation (PADA) (Cao et al., 2018a), Black Box Shift
Estimation (BBSE) (Lipton et al., 2018b).

Implementation Details. We implement all our experiments in Pytorch1 platform. For the Digits
dataset, we adopt the network architecture proposed by Saito et al. (2018). We adopt SGD with the
momentum of 0.9 and learning rate of 0.01 for the linear classifier and 0.001 for all other layers. The
batch size is set as 32 for samples from each domain. For the other two datasets, we utilize ResNet-

1https://pytorch.org/

7

https://pytorch.org/


Under review as a conference paper at ICLR 2020

Methods Rw→Pr Rw→Cl Pr→Rw Pr→Cl Cl→Rw Cl→Pr AVG

Source Only 69.77 38.35 67.31 35.84 53.31 52.27 52.81

BSP 72.80 23.82 66.19 20.05 32.59 30.36 40.97
PADA 60.77 32.28 57.09 26.76 40.71 38.34 42.66
BBSE 61.10 33.27 62.66 31.15 39.70 38.08 44.33
MCD 66.03 33.17 62.95 29.99 44.47 39.01 45.94
DAN 69.35 40.84 66.93 34.66 53.55 52.09 52.90
F-DANN 68.56 40.57 67.32 37.33 55.84 53.67 53.88
JAN 67.20 43.60 68.87 39.21 57.98 48.57 54.24
DANN 71.62 46.51 68.40 38.07 58.83 58.05 56.91

COAL (Ours) 73.65 42.58 73.26 40.61 59.22 57.33 58.40

Table 2: Per-class mean accuracy on Office-Home dataset with RS-UT label shifts. Our model
achieve 58.40% average accuracy across six GDA tasks, outperforming other baselines.

Methods R→C R→P R→S C→R C→P C→S P→R P→C P→S S→R S→C S→P AVG

Source Only 58.84 67.89 53.08 76.70 53.55 53.06 84.39 55.55 60.19 74.62 54.60 57.78 62.52

BBSE 55.38 63.62 47.44 64.58 42.18 42.36 81.55 49.04 54.10 68.54 48.19 46.07 55.25
MCD 61.97 69.33 56.26 79.78 56.61 53.66 83.38 58.31 60.98 81.74 56.27 66.78 65.42
PADA 65.91 67.13 58.43 74.69 53.09 52.86 79.84 59.33 57.87 76.52 66.97 61.08 64.48
DAN 64.36 70.65 58.44 79.44 56.78 60.05 84.56 61.62 62.21 79.69 65.01 62.04 67.07
FDANN 66.15 71.80 61.53 81.85 60.06 61.22 84.46 66.81 62.84 81.38 69.62 66.50 69.52
JAN 65.57 73.58 67.61 85.02 64.96 67.17 87.06 67.92 66.10 84.54 72.77 67.51 72.48
BSP 67.29 73.47 69.31 86.50 67.52 70.90 86.83 70.33 68.75 84.34 72.40 71.47 74.09
DANN 63.37 73.56 72.63 86.47 65.73 70.58 86.94 73.19 70.15 85.73 75.16 70.04 74.46

COAL (Ours) 73.85 74.82 70.50 85.68 70.86 71.29 87.71 69.90 67.28 83.82 73.21 70.53 74.96

Table 3: Per-class mean accuracy on DomainNet dataset with natural label shifts. Our method
achieve 74.96% average accuracy across the 12 experiments. We observe that our model has signif-
icant performance boost on several tasks, such as R→C, and C→P. Note that DomainNet contains
about 0.6 million images, it is non-trivial to have even one percent performance boost.

50 (He et al., 2015) as our backbone network, and replace the last fully-connected layer with a
randomly initialized N-way classifier layer (for N categories). We also use SGD with momentum of
0.9 while setting the learning rate to be 0.001 for linear layers and 0.0001 for all the other layers.
The batch size is set as 16 for each domain. We set k0 = 5, kstep = 5, kmax = 50 as the parameters
for self-training selection policy. For all the compared methods, we decide their hyper-parameters
on the validation set of Painting→ Clipart task in DomainNet.

Evaluation metric. When the target domain is highly unbalanced, conventional overall average
accuracy that treats every class uniformly is not an appropriate performance metric (He & Garcia,
2008). Therefore, we follow Dong et al. (2019) to use the per-class mean accuracy in our main
results. Formally, we denote Si =

n(i,i)

ni
as the accuracy for class i, where n(i,j) represents the

number of class i samples labeled as class j, and ni =
∑c

j=1 n(i,j) represents the number of samples
in class i. Then, the per-class mean accuracy is computed as S = 1

c

∑c
i=1 Si.

4.2 RESULTS

We first show the experimental results of our model and the compared baselines on Digits dataset
in Table 1. The covariate shift between the source and target domains is related small on Digits
dataset. For fair comparison, we leverage the same backbones for all the models. From the results,
we can make the following observations. (1) Our model achieves 84.33% average accuracy across
four experimental setting, outperforming the best-performing baselines by 8.4%! (2) Within the
eight selected baselines, only DAN and DANN have marginal improvement (less than 2%) over
the source-only baseline. The other six compared methods encounter the negative transfer (Pan &
Yang, 2010) issue and perform worse than the source-only baselines. These results demonstrate that
aligning only the marginal feature distributions or only the label distributions can not fully tackle
GDA task. In contrast, our model co-aligns the conditional feature distributions and label shift and
outperforms the baselines by a large margin.

Next, we show the experimental results on more challenging real-image datasets, i.e. Office-Home
and DomainNet, in Table 2 and Table 3, respectively. In Office-Home experiments, our model
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(a) Source Only (b) DAN (c) DANN (d) COAL (Ours)

(e) Source Only (f) DAN (g) DANN (h) COAL (Ours)
Figure 4: Feature visualization: t-SNE plot for source features, DAN features, DANN features, and
COAL features on GDA task Real → Clipart. Figure (a)-(d): features from each class. Different
colors denote different categories. Figure (e)-(h): features from each domain. Blue and red points
represents features from the source domain and target domain, respectively.

achieves 58.40% average accuracy across the six GDA tasks, outperforming other compared base-
lines. Our model has 5.59% improvement from the source-only result. We also notice that the BSP,
PADA, BBSE and MCD models perform worse than the source-only baselines, which is in consis-
tent with the results on Digits dataset. The empirical results on Office-Home dataset demonstrate
the effectiveness of co-alignment of conditional covariate shift and label shift.

In DomainNet experiments, our model get 74.96% average accuracy across the 12 experiments,
outperforming the compared baselines. Note we have carefully tuned the hyper-parameters for the
compared domain adaptation methods. Without the hyper-parameters tuning, i.e. directly applying
the model released by the authors, these models perform worse than the source-only baselines. In
addition, our model improves the performance of source-only models by 12.4%.

4.3 ANALYSIS

Ablation Study. Our COAL method has mainly two objectives: 1) alignment of conditional feature
distribution and 2) alignment of label distribution. To show the importance of these two objectives
in GDA, we show the performance of our method without each of these objectives respectively on
multiple tasks. The results in Table 4 showed the importance of both objectives. For example, for
task USPS → MNIST, if we remove the conditional feature distribution alignment objective, the
accuracy of our model will drop by 2.55%. Similarly, if we remove the label distribution alignment
objective, the accuracy will drop by 2.9%. These results demonstrate that both the alignment of
conditional feature distribution and label distribution are important to GDA task.

Feature Visualization. In this section, we plot the learned features with t-SNE (van der Maaten &
Hinton, 2008) in Figure 4. We investigate the Real to Clipart task in DomainNet experiment with
ResNet-50 backbones. From (a)-(d), we can observe that our method has better ability to cluster
each sample towards its class centroid. This confirms the effectiveness of the entropy minimization
in Equation 4. From (e)-(h), we observe that our method can better align source and target features
in each category, while other methods either leave the feature distributions unaligned, or incorrectly
aligned samples in different categories. These results further show the importance of prototype-
based conditional feature alignment for generalized domain adaptation task.

Effect of Source Balanced Sampler. Source balanced samplers described in Section 3.2 can
help us tackle the bias-classifier problem caused by the imbalanced data distribution of source do-
main. A significant performance boost can be observed after applying the balanced sampler for our
COAL model, as well as the compared baselines. In this section, we specifically show the effect
of using source balanced samplers. We show in Table 5 the performance of several methods with
and without source balanced samplers on 5 adaptation tasks from multiple datasets. We observe
that for 22 of the total 25 tasks (5 models on 5 adaptation tasks), using source balanced samplers

9
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Methods U→M M→U Syn→M Cl→Rw Pr→Rw R→C P→C P→R AVG

w/o self-training 85.22 85.94 55.17 58.38 69.39 71.92 62.86 77.45 70.79
w/o conditional alignment 85.57 92.28 63.34 59.41 72.11 71.34 68.50 87.14 74.96

COAL (full model) 88.12 93.04 65.67 59.81 73.46 73.65 69.90 87.71 76.42

Table 4: Ablation study of different objectives in our method. We randomly select 8 sets of exper-
iments to perform the ablation study. The results demonstrate that the prototype-based conditional
alignment and self-training are both critical for GDA.

Methods USPS→MNIST SVHN→MNIST Pr→Cl Cl→Rw R→S
w/o with w/o with w/o with w/o with w/o with

SourceOnly 71.35 74.98 50.35 50.25 34.99 35.84 50.64 53.31 50.16 53.08
DAN 64.81 79.37 22.05 48.19 32.93 34.66 45.18 53.55 64.78 58.44
DANN 42.77 77.48 27.60 56.35 35.17 38.07 47.19 58.05 68.92 72.63
MCD 20.15 79.59 44.83 51.91 33.06 29.99 49.57 44.47 58.50 79.78

COAL 87.50 88.12 60.12 65.67 34.03 40.61 57.67 59.22 59.23 70.50

Table 5: The performance of five models w. or w/o. source balanced sampler. We observe a
significant performance boost when the source balanced sampler is applied, both for our model and
the compared baselines, demonstrating the effectiveness of source balanced sampler to GDA task.

will improve the domain adaptation performance. Furthermore, in USPS→MNIST and SVHN→
MNIST, source balance samplers can prevent the baseline methods from negative transfer. These
results show the effectiveness of having a source balanced sampler when tackling GDA task.

0% 20% 40% 60% 80% 100%
Label Shift

80

85

90
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DAN
DANN
MCD
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Figure 5: Performance on USPS→MNIST
task with different degrees of label shift. 0%
and 100% denote the BS-BT and RS-UT
settings respectively. Others are the linear
interpolations of BS-BT and RS-UT. The re-
sults demonstrate that our model are more
robust to different degrees of label shift.

Different Degrees of Label Shift. In Section 4, we only
investigated the performance of each method under a cer-
tain kind of label shift in each dataset, i.e., RS-UT. In this
section, we investigate the effect of different degrees of
label shift on the performance of domain adaptation meth-
ods. Specifically, we create 4 interval degrees of label
shift between the BS-BT (Blanced Source and Blanced
Target) and RS-UT setting. To this end, we compute
the proportions of each category by linear interpolation
between its proportions in BS-BT and RS-UT. We de-
note BS-BT and RS-UT as 0% and 100% degree of la-
bel shift respectively, and create datasets with label shifts
of 20%, 40%, 60% and 80% on the linear interpolation.
For fair comparison, all the datasets have the same total
amount of samples. With these datasets, we evaluated
the performances of different methods on the USPS →
MNIST task of Digits. The results in Figure 5 show that
the performances of previous domain adaptation methods
will be significantly affected by label shift. For example, the accuracy of MCD drastically drops
from 91.45% to 77.18%. In contrast, the performance our method is much more stable, which
ranges between 93.42% and 88.12%. It shows that our method are robust to different degrees of
label shift.

5 CONCLUSION

In this paper, we first propose a generalized domain adaptation (GDA) learning schema and demon-
strate the importance of GDA in practical scenarios. Then we deliver theoretically analysis to
demonstrate that aligning conditional feature distributions (p(x|y), q(x|y)) and aligning the label
shift (p(y),q(y)) are essential for GDA. Towards tackling GDA task, we have proposed conditional
covarite shift and label shift CO-ALignment (COAL) approach, which leverages prototype-based
conditional alignment and self-training method. Empirically, we demonstrate that previous UDA
models which learn domain-invariant features by aligning the marginal distributions fail to tackle
GDA task, due to the presence of label shift. An extensive empirical evaluation on GDA benchmarks
demonstrate the efficacy of the proposed model against several state-of-the-art domain adaptation
algorithms.
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A ADDITIONAL RESULTS

We have shown in the paper the performance of different domain adaptation methods when condi-
tional covariant shift and label shift exist simultaneously. To analysis the influence of label shift in
unsupervised domain adaptation, in this appendix we also include the results on datasets without
label shift. To this end, we also created datasets with the Balanced Source Balanced Target (BS-BT)
setting. Specifically, under BS-BT every class has the same number of samples. We use this set-
ting to sub-sample the BS-BT datasets from Digits and Office-Home. For fair comparison with the
results in Section 4, we constrain that the total amount of samples of each domain is the same in
BS-BT and RS-UT. We show the results in Table 1, and 2.

Methods USPS→MNIST MNIST→USPS SVHN→MNIST SynD→SVHN AVG

Source Only 71.49±0.08 84.73±1.34 56.95±1.52 86.33±0.56 76.00

FDANN 72.13±1.88 87.30±0.99 34.16±1.64 80.77±1.45 67.41
BBSE 79.42±3.04 74.07±3.56 53.73±3.19 87.14±0.88 71.65
PADA 73.07±0.13 81.39±0.11 56.82±0.97 85.88±0.35 74.70
JAN 87.69±0.51 93.93±0.34 56.00±4.30 82.65±3.02 77.53
DAN 83.09±2.10 86.16±0.49 63.42±2.08 86.48±0.97 78.69
BSP 83.33±1.77 89.21±1.44 63.31±2.43 93.24±0.53 81.92
DANN 83.92±1.19 90.29±0.94 68.96±3.73 93.43±0.36 84.23
MCD 97.53±0.04 96.86±0.60 88.47±1.96 96.82±0.32 94.92

COAL (Ours) 92.87±0.60 95.40±0.59 82.01±2.36 96.39±0.26 91.27

Table 1: Class-balanced accuracy on Digit dataset with BS-BT label shifts

Methods Rw→Pr Rw→Cl Pr→Rw Pr→Cl Cl→Rw Cl→Pr AVG

Source Only 72.91 39.21 69.84 38.16 56.06 54.08 55.04

PADA 64.44 33.89 59.21 30.35 41.92 41.19 45.17
BBSE 64.25 34.85 63.56 34.19 40.57 38.57 46.00
BSP 72.85 50.29 69.35 25.20 34.31 31.92 47.32
MCD 68.76 37.14 66.78 36.31 51.77 48.50 51.54
DAN 71.67 38.35 67.42 36.07 55.48 53.25 53.71
FDANN 71.20 39.11 67.30 33.86 60.85 53.64 54.33
JAN 66.69 42.28 69.61 38.65 59.42 57.19 55.64
DANN 74.70 47.10 70.07 39.35 60.56 54.88 57.78

COAL 77.44 47.42 71.23 42.87 63.46 61.24 60.61

Table 2: Class-balanced accuracy on Office-Home dataset with BS-BT label shifts

We can observe that conventional methods that focus on covariate shift can achieve decent improve-
ment over the Source Only baseline in BS-BT setting. For example, MCD is largely improving the
performance when there is no label shift between the source and target domain. However, as we
observed in Table 1 of our paper, MCD is actually having negative transfer effect when applied to
the more general GDA setting. This comparison demonstrates the importance of considering both
covariate and label shift in our generalized setting. Please note that the results in this section are
produced by models with hyper-parameters tuned on unbalanced DomainNet.

B CREATION DETAILS FOR LABEL SHIFT

In order to create unbalanced label distribution in each dataset, inspired by Liu et al. (2019), we
follow the Paredo distribution set different proportions for each category. By using this distribu-
tion, we can create long-tailed label distribution, which is frequently seen in real applications and
benchmarks (Van Horn et al., 2018; Peng et al., 2019a).
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The shape of Paredo distribution (Reed, 2001) is controlled by parameter α. Because different
datasets have different amount of samples, to avoid making some classes in the unbalanced dataset
to have too few samples, we use a different parameter for each dataset. Specifically, we set α = 1
for Digits dataset, and α = 100 for Office-Home dataset.

We further assign each computed proportion to each category by following the descending order
of the original class index. Specifically, in the target domain of RS-UT, we assign the kth largest
propotion to class k − 1, with class index starting from 0. For Digits, we set the index of each class
directly as the digit it represents. For Office-Home, we set the class index in alphabetical ascending
order.

C IMPLEMENTATION DETAILS FOR COMPARED METHODS

In our experiments, we use the authors’ official implementations for DAN (Long et al., 2015), and
JAN (Long et al., 2017), PADA (Cao et al., 2018b), MCD (Saito et al., 2018), and BSP (Chen et al.,
2019c). For DANN (Ganin & Lempitsky, 2015a), BBSE (Lipton et al., 2018b) and FDANN (Wu
et al., 2019), we implement their method by ourselves.

We tune the hyper-parameters of each method on Painting→ Clipart task in DomainNet. Specifi-
cally, for PADA, BSP, DAN, JAN and DANN we tune the weight α of the marginal feature alignment
loss. We empirically find that these method achieve better performance when we set α to be 5 10
times lower than default. Intuitively, it means that we can achieve better performance under gener-
alized domain shift setting if we relax the strength of marginal feature alignment. For MCD we tune
the number of feature generator updating times n.

D DETAILED INFORMATION FOR DATASETS

We provide detailed information for datasets in Table 3.

Digits

Splits USPS MNIST SVHN SYN Total

Train 12,144 1,550 10,395 107,005 118,950
Test 2,181 459 3,554 2,114 8,308

Office-Home

Splits Real World Product Clipart Total

Total 1,253 2,045 1,017 4,315

DomainNet

Splits Real Painting Clipart Sketch Total

Train 16,141 6,727 3,707 5,537 32,112
Test 6,943 2,909 1,616 2,399 13,867

Table 3: Detailed information for datasets
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