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Abstract

Deep neural networks have received dramatic success based on the optimization
method of stochastic gradient descent (SGD). However, it is still not clear how
to tune hyper-parameters, especially batch size and learning rate, to ensure good
generalization. This paper reports both theoretical and empirical evidence of a
training strategy that we should control the ratio of batch size to learning rate not too
large to achieve a good generalization ability. Specifically, we prove a PAC-Bayes
generalization bound for neural networks trained by SGD, which has a positive
correlation with the ratio of batch size to learning rate. This correlation builds the
theoretical foundation of the training strategy. Furthermore, we conduct a large-
scale experiment to verify the correlation and training strategy. We trained 1,600
models based on architectures ResNet-110, and VGG-19 with datasets CIFAR-10
and CIFAR-100 while strictly control unrelated variables. Accuracies on the test
sets are collected for the evaluation. Spearman’s rank-order correlation coefficients
and the corresponding p values on 164 groups of the collected data demonstrate
that the correlation is statistically significant, which fully supports the training
strategy.

1 Introduction

The recent decade saw dramatic success of deep neural networks [9] based on the optimization
method of stochastic gradient descent (SGD) [2, 32]. It is an interesting and important problem that
how to tune the hyper-parameters of SGD to make neural networks generalize well. Some works
have been addressing the strategies of tuning hyper-parameters [5, 10, 14, 15] and the generalization
ability of SGD [4, 11, 19, 26, 27]. However, there still lacks solid evidence for the training strategies
regarding the hyper-parameters for neural networks.

In this paper, we present both theoretical and empirical evidence for a training strategy for deep
neural networks:

When employing SGD to train deep neural networks, we should control the batch
size not too large and learning rate not too small, in order to make the networks
generalize well.

This strategy gives a guide to tune the hyper-parameters that helps neural networks achieve good test
performance when the training error has been small. It is derived from the following property:

The generalization ability of deep neural networks has a negative correlation with
the ratio of batch size to learning rate.

As regards the theoretical evidence, we prove a novel PAC-Bayes [24, 25] upper bound for the
generalization error of deep neural networks trained by SGD. The proposed generalization bound
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Figure 1: Scatter plots of accuracy on test set to ratio of batch size to learning rate. Each point
represents a model. Totally 1,600 points are plotted.

has a positive correlation with the ratio of batch size to learning rate, which suggests a negative
correlation between the generalization ability of neural networks and the ratio. This result builds the
theoretical foundation of the training strategy.

From the empirical aspect, we conduct extensive systematic experiments while strictly control
unrelated variables to investigate the influence of batch size and learning rate on the generalization
ability. Specifically, we trained 1,600 neural networks based on two popular architectures, ResNet-
110 [12, 13] and VGG-19 [28], on two standard datasets, CIFAR-10 and CIFAR-100 [16]. The
accuracies on the test set of all the networks are collected for analysis. Since the training error is
almost the same across all the networks (it is almost 0), the test accuracy is an informative index to
express the generalization ability. Evaluation is then performed to 164 groups of the collected data.
The Spearman’s rank-order correlation coefficients and the corresponding p values [31] demonstrate
that the correlation is statistically significant (the probability that the correlation is wrong is smaller
than 0.005), which fully supports the training strategy.

The rest of this paper is organized as follows. Section 2 recalls the preliminaries of generalization
and SGD. Sections 3 and 4 respectively present the theoretical and empirical evidence of the training
strategy. Section 5 reviews the related works. Section 6 concludes the paper. Appendix A presents
additional background and preliminaries. Appendix B provides the proofs omitted from the main
text.

2 Preliminaries

Generalization bound for stochastic algorithms. Formally, machine learning algorithms are de-
signed to select the hypothesis function F✓ with the lowest expected risk R under the loss function
l from a hypothesis class {F✓|✓ 2 ⇥ ⇢ Rd

}, where ✓ is the parameter of the hypothesis and d is
the dimension of the parameter ✓. For many stochastic algorithms, such as SGD, we usually use a
distribution to express the output parameter. Suppose the parameter follows a distribution Q, the
expected risks respectively in terms of ✓ and Q are defined as:

R(✓) = E(X,Y )⇠Dl(F✓(X), Y ), (1)
R(Q) = E✓⇠QE(X,Y )⇠Dl(F✓(X), Y ). (2)

However, the expected risk R is not available from the data, since we do not know the formulation of
latent distribution D of data. Practically, we use the empirical risk R̂ to estimate the expected risk R,
which is defined as:

R̂(✓) =
1

|T |

|T |X

i=1

l(F✓(Xi), Yi), (3)

R̂(Q) = E✓⇠Q

2

4 1

|T |

|T |X

i=1

l(F✓(Xi), Yi)

3

5 , (4)
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where all (Xi, Yi) constitute the training sample T .

Equivalently, the empirical risk R̂ is the error of the algorithm on training data, while the expected
risk R is the expectation of the error on test data or unseen data. Therefore, the difference between
them is an informative index to express the generalization ability of the algorithm, which is called
generalization error. The upper bound of the generalization error (usually called generalization bound)
expresses how large the generalization error is possible to be. Therefore, generalization bound is also
an important index to show the generalization ability of an algorithm.

Stochastic gradient descent. To optimize the expected risk (eq. 1), a natural tool is the gradient
descent (GD). Specifically, the gradient of eq. (1) in terms of the parameter ✓ and the corresponding
update equation are defined as follows,

g(✓(t)) , r✓(t)R(✓(t)) = r✓(t)E(X,Y )l(F✓(t)(X), Y ), (5)
✓(t+ 1) = ✓(t)� ⌘g(✓(t)), (6)

where ✓(t) is the parameter at the interation t and ⌘ > 0 is the learning rate.

Stochastic gradient descent (SGD) estimates the gradient from mini batches of the training sample
set to estimate the gradient g(✓). Let S be the indices of a mini batch, in which all indices are
independently and identically (i.i.d.) drawn from {1, 2, . . . , N}, where N is the training sample size.
Then similar to the gradient, the iteration of SGD on the mini-batch S is defined as follows,

ĝS(✓(t)) = r✓(t)R̂(✓(t)) =
1

|S|

X

n2S

r✓(t)l(F✓(t)(Xn), Yn), (7)

✓(t+ 1) = ✓(t)� ⌘ĝ(✓(t)), (8)

where R̂(✓) = 1
|S|

P
n2S l(F✓(Xn), Yn) is the empirical risk on the mini batch and |S| is the

cardinality of the set S. For brevity, we rewrite l(F✓(Xn), Yn) = ln(✓) in the rest of this paper.

Also, suppose that in step i, the distribution of parameter is Qi, the initial distribution is Q0, and the
convergent distribution is Q. Then SGD is used to find Q from Q0 through a series of Qi.

3 Theoretical Evidence

In this section, we explore and develop the theoretical foundations for the training strategy. The main
ingredient is a PAC-Bayes generalization bound of deep neural networks based on the optimization
method SGD. The generalization bound has a positive correlation with the ratio of batch size to
learning rate. This correlation suggests the presented training strategy.

3.1 A Generalization Bound for SGD

Apparently, both ln(✓) and R̂(✓) are un-biased estimations of the expected risk R(✓), while r✓ln(✓)
and ĝS(✓) are both un-biased estimations of the gradient g(✓) = r✓R(✓):

E [ln(✓)] = E
h
R̂(✓)

i
= R(✓), (9)

E [r✓ln(✓)] = E [ĝS(✓)] = g(✓) = r✓R(✓), (10)

where the expectations are in terms of the corresponding examples (X,Y ).

An assumption (see, e.g., [7, 23]) for the estimations is that all the gradients {r✓ln(✓)} calculated
from individual data points are i.i.d. drawn from a Gaussian distribution centred at g(✓) = r✓R(✓):

r✓ln(✓) ⇠ N (g(✓), C). (11)

where C is the covariance matrix and is a constant matrix for all ✓. As covariance matrices are (semi)
positive-definite, for brevity, we suppose that C can be factorized as C = BB>. This assumption can
be justified by the central limit theorem when the sample size N is large enough compared with the
batch size S. Considering deep learning is usually utilized to process large-scale data, this assumption
approximately holds in the real-life cases.
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Therefore, the stochastic gradient is also drawn from a Gaussian distribution centred at g(✓):

ĝS(✓) =
1

|S|

X

n2S

r✓ln(✓) ⇠ N

✓
g(✓),

1

|S|
C

◆
. (12)

SGD uses the stochastic gradient ĝS(✓) to iteratively update the parameter ✓ in order to minimize the
function R(✓):

�✓(t) = ✓(t+ 1)� ✓(t) = �⌘ĝS(✓(t)) = �⌘g(✓) +
⌘p
|S|

B�W, �W ⇠ N (0, I). (13)

In this paper, we only consider the case that the batch size |S| and learning rate ⌘ are constant. Eq.
(13) expresses a stochastic process which is well-known as Ornstein-Uhlenbeck process [33].

Furthermore, we assume that the loss function in the local region around the minimum is convex and
2-order differentiable:

R(✓) =
1

2
✓>A✓, (14)

where A is the Hessian matrix around the minimum and is a (semi) positive-definite matrix. This
assumption has been primarily demonstrated by empirical works (see [18, p. 1, Figures 1(a) and 1(b)
and p. 6, Figures 4(a) and 4(b)]). Without loss of generality, we assume that the global minimum of
the objective function R(✓) is 0 and achieves at ✓ = 0. General cases can be obtained by translation
operations, which would not change the geometry of objective function and the corresponding
generalization ability. From the results of Ornstein-Uhlenbeck process, eq. (13) has an analytic
stationary distribution:

q(✓) = M exp

⇢
�
1

2
✓>⌃�1✓

�
, (15)

where M is the normalizer [8].

Estimating SGD as a continuous-time stochastic process dates back to works by [17, 21]. For a
detailed justification, please refer to a recent work [see 23, pp. 6-8, Section 3.2].

We then obtain a generalization bound for SGD as follows.
Theorem 1. For any positive real � 2 (0, 1), with probability at least 1� � over a training sample
set of size N , we have the following inequality for the distribution Q of the output hypothesis function
of SGD:

R(Q)  R̂(Q) +

s
⌘
|S| tr(CA�1)� 2 log(det(⌃))� 2d+ 4 log

�
1
�

�
+ 4 logN + 8

8N � 4
, (16)

and
⌃A+A⌃ =

⌘

|S|
C, (17)

where A is the Hessian matrix of the loss function around the local minimum, B is from the covariance
matrix of the gradients calculated by single sample points , and d is the dimension of the parameter ✓
(network size).

The proof for this generalization bound has two parts: (1) utilize results from stochastic differential
equation (SDE) to find the stationary solution of the latent Ornstein-Uhlenbeck process (eq. 13)
which expresses the iterative update of SGD; and (2) adapt the PAC-Bayes framework to obtain the
generalization bound based on the stationary distribution. A detailed proof is omitted here and is
given in Appendix B.1.

3.2 A Special Case of the Generalization Bound

In this subsection, we study a special case with two more assumptions for further understating the
influence of the gradient fluctuation on our proposed generalization bound.
Assumption 1. The matrices A and ⌃ are symmetric.
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Assumption 1 can be translated as that both the local geometry around the global minima and
the stationary distribution are homogeneous to every dimension of the parameter space. Similar
assumptions are also used by a recent work [14]. This assumption indicates that the product ⌃A of
matrices A and ⌃ is also symmetric.

Based on Assumptions 1, we can further get the following theorem.
Theorem 2. When Assumptions 1 holds, under all the conditions of Theorem 1, the stationary
distribution of SGD has the following generalization bound,

R(Q) R̂(Q)

+

vuut ⌘
2|S| tr(CA�1) + d log

⇣
2|S|
⌘

⌘
� log(det(CA�1))� d+ 2 log

�
1
�

�
+ 2 logN + 4

4N � 2
,

(18)

A detailed proof is omitted here and is given in Appendix B.2 in the supplementary materials.

Intuitively, our generalization bound links the generalization ability of the deep neural networks
trained by SGD with three factors:

Local geometry around minimum. The determinant of the Hessian matrix A expresses the local
geometry of the objective function around the local minimum. Specifically, the magnitude of det(A)
expresses the sharpness of the local minima. Many works suggest that sharp local minima relate to
poor generalization ability [15, 10].

Gradient fluctuation. The covariance matrix C (or equivalently the matrix B) expresses the fluctua-
tion of the estimation to the gradient from individual data points which is the source of gradient noise.
A recent intuition for the advantage of SGD is that it introduces noise into the gradient, so that it can
jump out of bad local minima.

Hyper-parameters. Batch size |S| and learning rate ⌘, adjust the fluctuation of gradient. Specifically,
under the following assumption, our generalization bound has a positive correlation with the ratio of
batch size to learning rate.
Assumption 2. The network size is large enough:

d >
tr(CA�1)⌘

2|S|
, (19)

where d is the number of the parameters, C expresses the magnitude of individual gradient noise, A
is the Hessian matrix around the global minima, ⌘ is the leaning rate, and |S| is the batch size.

This assumption can be justified that the network sizes of neural networks are usually extremely large.
This property is also called overparametrization [6, 3, 1]. We can obtain the following corollary by
combining Theorem 2 and Assumption 2.
Corollary 1. When all conditions of Theorem 2 and Assumption 2 hold, the generalization bound of
the network has a positive correlation with the ratio of batch size to learning rate.

The proof is omitted from the main text and given in Appendix B.3

It reveals the negative correlation between the generalization ability and the ratio. This property
further derives the training strategy that we should control the ratio not too large to achieve a good
generalization when training deep neural networks using SGD.

4 Empirical Evidence

To evaluate the training strategy from the empirical aspect, we conduct extensive systematic experi-
ments to investigate the influence of the batch size and learning rate on the generalization ability of
deep neural networks trained by SGD. To deliver rigorous results, our experiments strictly control
all unrelated variables. The empirical results show that there is a statistically significant negative
correlation between the generalization ability of the networks and the ratio of the batch size to the
learning rate, which builds a solid empirical foundation for the training strategy.
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(a) Test accuracy-batch size (b) Test accuracy-learning rate

Figure 2: Curves of test accuracy to batch size and learning rate. The four rows are respectively for
(1) ResNet-110 trained on CIFAR-10, (2) ResNet-110 trained on CIFAR-100, (3) VGG-19 trained on
CIFAR-10, and (4) VGG-19 trained on CIFAR-10. Each curve is based on 20 networks.

4.1 Implementation Details

To guarantee that the empirical results generally apply to any case, our experiments are
conducted based on two popular architectures, ResNet-110 [12, 13] and VGG-19 [28], on
two standard datasets, CIFAR-10 and CIFAR-100 [16], which can be downloaded from
https://www.cs.toronto.edu/ kriz/cifar.html. The separations of the training sets and the test sets are
the same as the official version.

We trained 1,600 models with 20 batch sizes, SBS = {16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176,
192, 208, 224, 240, 256, 272, 288, 304, 320}, and 20 learning rates, SLR = {0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20}. All train-
ing techniques of SGD, such as momentum, are disabled. Also, both batch size and learning rate
are constant in our experiments. Every model with a specific pair of batch size and learning rate is
trained for 200 epochs. The test accuracies of all 200 epochs are collected for analysis. We select the
highest accuracy on the test set to express the generalization ability of each model, since the training
error is almost the same across all models (they are all nearly 0).

The collected data is then utilized to investigate three correlations: (1) the correlation between the
generalization ability of networks and the batch size, (2) the correlation between the generalization
ability of networks and the learning rate, and (3) the correlation between the generalization ability
of networks and the ratio of batch size to learning rate, where the first two are preparations for
the final one. Specifically, we calculate the Spearman’s rank-order correlation coefficients (SCCs)
and the corresponding p value of 164 groups of the collected data to investigate the statistically
significance of the correlations. Almost all results demonstrate the correlations are statistically
significant (p < 0.005)1. The p values of the correlation between the test accuracy and the ratio are
all lower than 10�180 (see Table 3).

The architectures of our models are similar to a popular implementation of ResNet-110 and VGG-192.
Additionally, our experiments are conducted on a computing cluster with GPUs of NVIDIA® Tesla™

V100 16GB and CPUs of Intel® Xeon® Gold 6140 CPU @ 2.30GHz.

4.2 Empirical Results on the Correlation

Correlation between generalization ability and batch size. When the learning rate is fixed as an
element of SLR, we train ResNet-110 and VGG-19 on CIFAR10 and CIFAR100 with 20 batch sizes
of SBS . The plots of test accuracy to batch size are illustrated in Figure 2a. We list 1/4 of all plots
due to space limitation. The rest of the plots are in the supplementary materials. We then calculate the
SCCs and the p values as Table 1, where bold p values refer to the statistically significant observations,
while underlined ones refer to those not significant (as well as Table 2). The results clearly show that
there is a statistically significant negative correlation between generalization ability and batch size.

1The definition of “statistically significant” has various versions, such as p < 0.05 and p < 0.01. This paper
uses a more rigorous one (p < 0.005).

2See Wei Yang, https://github.com/bearpaw/pytorch-classification, 2017.
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Table 1: SCC and p values of batch size to test accuracy for different learning rate (LR).
LR ResNet-110 on CIFAR-10 ResNet-110 on CIFAR-100 VGG-19 on CIFAR-10 VGG-19 on CIFAR-100

SCC p SCC p SCC p SCC p

0.01 �0.96 2.6 ⇥ 10�11 �0.92 5.6 ⇥ 10�8 �0.98 3.7 ⇥ 10�14 �0.99 7.1 ⇥ 10�18

0.02 �0.96 1.2 ⇥ 10�11 �0.94 1.5 ⇥ 10�9 �0.99 3.6 ⇥ 10�17 �0.99 7.1 ⇥ 10�18

0.03 �0.96 3.4 ⇥ 10�11 �0.99 1.5 ⇥ 10�16 �0.99 7.1 ⇥ 10�18 �1.00 1.9 ⇥ 10�21

0.04 �0.98 1.8 ⇥ 10�14 �0.98 7.1 ⇥ 10�14 �0.99 9.6 ⇥ 10�19 �0.99 3.6 ⇥ 10�17

0.05 �0.98 3.7 ⇥ 10�14 �0.98 1.3 ⇥ 10�13 �0.99 7.1 ⇥ 10�18 �0.99 1.4 ⇥ 10�15

0.06 �0.96 1.8 ⇥ 10�11 �0.97 6.7 ⇥ 10�13 �1.00 1.9 ⇥ 10�21 �0.99 1.4 ⇥ 10�15

0.07 �0.98 5.9 ⇥ 10�15 �0.94 5.0 ⇥ 10�10 �0.98 8.3 ⇥ 10�15 �0.97 1.7 ⇥ 10�12

0.08 �0.97 1.7 ⇥ 10�12 �0.97 1.7 ⇥ 10�12 �0.98 2.4 ⇥ 10�13 �0.97 1.7 ⇥ 10�12

0.09 �0.97 4.0 ⇥ 10�13 �0.98 3.7 ⇥ 10�14 �0.98 1.8 ⇥ 10�14 �0.96 1.2 ⇥ 10�11

0.10 �0.97 1.9 ⇥ 10�12 �0.96 8.7 ⇥ 10�12 �0.98 8.3 ⇥ 10�15 �0.93 2.2 ⇥ 10�9

0.11 �0.97 1.1 ⇥ 10�12 �0.98 1.3 ⇥ 10�13 �0.99 2.2 ⇥ 10�16 �0.93 2.7 ⇥ 10�9

0.12 �0.97 4.4 ⇥ 10�12 �0.96 2.5 ⇥ 10�11 �0.98 7.1 ⇥ 10�13 �0.90 7.0 ⇥ 10�8

0.13 �0.94 1.5 ⇥ 10�9 �0.98 1.3 ⇥ 10�13 �0.97 1.7 ⇥ 10�12 �0.89 1.2 ⇥ 10�7

0.14 �0.97 2.6 ⇥ 10�12 �0.91 3.1 ⇥ 10�8 �0.97 6.7 ⇥ 10�13 �0.86 1.1 ⇥ 10�6

0.15 �0.96 4.6 ⇥ 10�11 �0.98 1.3 ⇥ 10�13 �0.95 8.3 ⇥ 10�11 �0.79 3.1 ⇥ 10�5

0.16 �0.95 3.1 ⇥ 10�10 �0.96 8.7 ⇥ 10�12 �0.95 1.4 ⇥ 10�10 �0.77 6.1 ⇥ 10�5

0.17 �0.95 2.4 ⇥ 10�10 �0.95 2.6 ⇥ 10�10 �0.91 2.3 ⇥ 10�8 �0.68 1.3 ⇥ 10�3

0.18 �0.97 4.0 ⇥ 10�12 �0.97 1.1 ⇥ 10�12 �0.93 2.6 ⇥ 10�9 �0.66 2.8 ⇥ 10�3

0.19 �0.94 6.3 ⇥ 10�10 �0.95 8.3 ⇥ 10�11 �0.90 8.0 ⇥ 10�8 �0.75 3.4 ⇥ 10�4

0.20 �0.91 3.6 ⇥ 10�8 �0.98 1.3 ⇥ 10�13 �0.95 6.2 ⇥ 10�11 �0.57 1.4 ⇥ 10�2

Correlation between generalization ability and learning rate. When the batch size is fixed as an
element of SBS , we train ResNet-110 and VGG-19 on CIFAR10 and CIFAR100 respectively with
20 learning rates SLR. The plot of the test accuracy to the learning rate is illustrated in Figure 2b,
which include 1/4 of all plots due to space limitation. The rest of the plots are in the supplementary
materials. We then calculate the SCC and the p values as Table 2 shows. The results clearly show that
there is a statistically significant positive correlation between the learning rate and the generalization
ability of SGD.

Table 2: SCC and p values of learning rate to test accuracy for different batch size (BS).
BS ResNet-110 on CIFAR-10 ResNet-110 on CIFAR-100 VGG-19 on CIFAR-10 VGG-19 on CIFAR-100

SCC p SCC p SCC p SCC p

16 0.60 5.3 ⇥ 10�3 0.84 3.2 ⇥ 10�6 0.62 3.4 ⇥ 10�3 �0.80 2.6 ⇥ 10�5

32 0.60 5.0 ⇥ 10�3 0.90 9.9 ⇥ 10�8 0.78 4.9 ⇥ 10�5 �0.14 5.5 ⇥ 10�1

48 0.84 3.2 ⇥ 10�6 0.89 1.8 ⇥ 10�7 0.87 4.9 ⇥ 10�7 0.37 1.1 ⇥ 10�1

64 0.67 1.2 ⇥ 10�3 0.89 1.0 ⇥ 10�7 0.91 2.0 ⇥ 10�8 0.91 1.1 ⇥ 10�6

80 0.80 2.0 ⇥ 10�5 0.99 4.8 ⇥ 10�16 0.95 2.4 ⇥ 10�10 0.87 4.5 ⇥ 10�6

96 0.79 3.3 ⇥ 10�5 0.89 2.4 ⇥ 10�7 0.94 5.2 ⇥ 10�9 0.94 1.5 ⇥ 10�9

112 0.90 8.8 ⇥ 10�8 0.91 2.7 ⇥ 10�8 0.97 2.6 ⇥ 10�12 0.95 1.2 ⇥ 10�10

128 0.95 8.3 ⇥ 10�11 0.92 1.1 ⇥ 10�8 0.98 2.2 ⇥ 10�14 0.99 4.8 ⇥ 10�16

144 0.85 2.1 ⇥ 10�6 0.98 7.7 ⇥ 10�14 0.90 6.2 ⇥ 10�8 0.98 3.5 ⇥ 10�15

160 0.90 4.3 ⇥ 10�8 0.94 5.0 ⇥ 10�10 0.95 3.3 ⇥ 10�10 0.99 7.1 ⇥ 10�18

176 0.94 5.0 ⇥ 10�10 0.99 3.6 ⇥ 10�17 0.91 2.3 ⇥ 10�8 0.98 1.8 ⇥ 10�14

192 0.94 6.7 ⇥ 10�10 0.94 5.0 ⇥ 10�10 0.95 6.2 ⇥ 10�11 0.97 2.6 ⇥ 10�12

208 0.91 3.6 ⇥ 10�8 0.97 6.7 ⇥ 10�12 0.98 6.1 ⇥ 10�14 0.99 2.5 ⇥ 10�17

224 0.90 9.0 ⇥ 10�8 0.98 3.7 ⇥ 10�14 0.93 2.2 ⇥ 10�9 0.98 1.3 ⇥ 10�13

240 0.78 4.6 ⇥ 10�5 0.95 2.4 ⇥ 10�10 0.98 8.3 ⇥ 10�15 0.99 9.6 ⇥ 10�19

256 0.83 4.8 ⇥ 10�6 0.94 5.0 ⇥ 10�10 0.99 4.8 ⇥ 10�16 0.97 5.4 ⇥ 10�12

272 0.95 2.4 ⇥ 10�10 0.96 2.5 ⇥ 10�11 0.97 4.0 ⇥ 10�13 0.99 1.5 ⇥ 10�16

288 0.94 9.8 ⇥ 10�10 0.92 1.5 ⇥ 10�18 0.95 8.3 ⇥ 10�11 0.99 1.5 ⇥ 10�16

304 0.81 1.5 ⇥ 10�5 0.97 4.0 ⇥ 10�13 0.95 6.2 ⇥ 10�11 1.00 3.7 ⇥ 10�24

320 0.94 1.4 ⇥ 10�9 0.95 8.3 ⇥ 10�11 0.97 2.6 ⇥ 10�12 1.00 7.2 ⇥ 10�20

Correlation between generalization ability and ratio of batch size to learning rate. We plot the
test accuracies of ResNet-110 and VGG-19 on CIFAR-10 and CIFAR-100 to the rate of batch size to
learning rate in Figure 1. Totally over 1,600 points are plotted. Additionally, we perform Spearman’s
rank-order correlation test on all the accuracies of ResNet-110 and VGG-19 on CIFAR-10 and
CIFAR-100. The SCC and p values show that the correlation between the ratio and the generalization
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ability is statistically significant as Table 3 demonstrate. Each test is performed on 400 models. The
results strongly support the training strategy.

Table 3: SCC and p values of the ratio of batch size to learning rate and test accuracy.
ResNet-110 on CIFAR-10 ResNet-110 on CIFAR-100 VGG-19 on CIFAR-10 VGG-19 on CIFAR-100

SCC p SCC p SCC p SCC p

�0.97 3.3 ⇥ 10�235 �0.98 5.3 ⇥ 10�293 �0.98 6.2 ⇥ 10�291 �0.94 6.1 ⇥ 10�180

5 Related Work

Former experiments have been addressing the influence of batch size and learning rate on the
generalization ability; however, the influence of hyper-parameters on the generalization is still under
debate. [15] uses experiments to show that the large-batch training leads to sharp local minima which
have the poor generalization of SGD, while small-batches lead to flat minima which make SGD
generalize well. However, only two values of batch size are investigated. [10] proposes the Linear
Scaling Rule to maintain the generalization ability of SGD: “When the minibatch size is multiplied by
k, multiply the learning rate by k”. [14] conducts experiments to show that the dynamics, geometry,
and the generalization are dependent on the ratio |S|/⌘, but both the batch size and learning rate only
have two values which considerably limits the generality of the results. Meanwhile, [5] finds that
most current notions for sharpness/flatness are ill-defined. [30] proves that for linear neural networks,
batch size has an optimal value when the learning rate is fixed. [29] suggests that increasing the batch
size during the training of neural networks can receive the same result of decaying the learning rate
when the rate of batch size to learning rate remains the same. This result is consistent with ours.

Some generalization bounds for algorithms trained by SGD are proposed, but they have not derived
hyper-parameters tuning strategies. [26] studies the generalization of stochastic gradient Langevin
dynamics (SGLD), and proposes an O (1/N) generalization bound and an O

⇣
1/
p
N
⌘

generalization
bound respectively via the stability and the PAC-Bayesian theory. [27] studies the generalization of all
iterative and noisy algorithms and gives a generalization error bound based on the mutual information
between the input data and the output hypothesis. As exemplary cases, it gives generalization
bounds for some special cases like SGLD. [4] proves a trade-off between convergence and stability
for all iterative algorithms respectively under convex smooth setting and strong convex smooth
setting. Considering the equivalence between stability and generalization, it also gives a trade-off
between the convergence and the generalization. Under the same assumptions, [4] gives an O (1/N)
generalization bound. [20] proves O(1/N) bounds for SGD when the loss function is Lipschitz
continuous and smooth. [22] also gives a PAC-Bayes generalization bound for SGD based on the KL
divergence of posterior Q and the prior P which is somewhat premature.

6 Conclusion

This work presents a training strategy for stochastic gradient descent (SGD) in order to achieve a
good generalization ability: we should control the ratio of batch size to learning rate not too large
while tuning the hyper-parameters. This strategy is based on a negative correlation between the
generalization ability of networks with the ratio of batch size to learning rate, which is proved from
both theoretical and empirical aspects in this paper. As the theoretical evidence, we prove a novel
PAC-Bayes upper bound for the generalization error of algorithms trained by SGD. The bound has a
positive correlation with the ratio of batch size to learning rate, which suggests a negative correlation
between the generalization ability the ratio. For the empirical evidence, we trained 1,600 models
based on ResNet-110 and VGG-19 on CIFAR-10 and CIFAR-110 and collected the accuracy on
the test sets, while strictly control other variables. Spearman’s order-rank correlation coefficients
and the corresponding p values are then calculated on 164 groups of the collected data. The results
demonstrate that the correlation is statistically significant, which is in full agreement with the training
strategy.
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