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ABSTRACT

An intriguing phenomenon observed during training neural networks is the spec-
tral bias, where neural networks are biased towards learning less complex func-
tions. The priority of learning functions with low complexity might be at the core
of explaining generalization ability of neural network, and certain efforts have
been made to provide theoretical explanation for spectral bias. However, there
is still no satisfying theoretical results justifying the existence of spectral bias.
In this work, we give a comprehensive and rigorous explanation for spectral bias
and relate it with the neural tangent kernel function proposed in recent work. We
prove that the training process of neural networks can be decomposed along dif-
ferent directions defined by the eigenfunctions of the neural tangent kernel, where
each direction has its own convergence rate and the rate is determined by the
corresponding eigenvalue. We then provide a case study when the input data is
uniformly distributed over the unit shpere, and show that lower degree spherical
harmonics are easier to be learned by over-parameterized neural networks.

1 INTRODUCTION

Over-parameterized neural networks have achieved great success in many applications such as com-
puter vision (He et al., 2016), language processing (Collobert and Weston, 2008) and speech recog-
nition (Hinton et al., 2012). It has been shown that over-parameterized neural networks can fit
complicated target function or even randomly labeled data (Zhang et al., 2016) and still exhibit good
generalization performance when trained with real labels. Intuitively, this is at odds with the tra-
ditional notions of generalization ability such as model complexity. In lack of enough justification
for over-parameterized training, efforts have been made towards the perspective of “implicit bias”
(Gunasekar et al., 2018b; Soudry et al., 2017; Gunasekar et al., 2018a), which states that the training
algorithms for deep learning implicitly pose an inductive bias onto the training process and lead to
a solution with low complexity.

In many attempts to establish implicit bias, an intriguing phenomenon called spectral bias was first
presented in (Rahaman et al., 2018). The spectral bias means that during training, neural networks
tend to learn components of lower complexity faster. The concept of spectral bias is appealing
because this may intuitively explain why over-parameterized neural networks can achieve great ac-
curacy without overfitting. During training, the networks only fit the low complexity components
first and thus lie in the concept class of low complexity. Arguments like this may guide rigorous
guarantee for generalization.

Among many works to seek and explain spectral bias, Rahaman et al. (2018) evaluates the Fourier
spectrum of ReLLU networks and empirically showed that the lower frequencies are learned first;
also lower frequencies are more robust to random perturbation. Andoni et al. (2014) shows that
for a sufficiently wide network, gradient descent with respect to the second layer can learn any
low degree bounded polynomial. Xu (2018) gives Fourier analysis to two-layer networks and show
similar empirical results on one-dimensional functions and real data. Nakkiran et al. (2019) uses
information theoretical approach to shows that networks obtained by stochastic gradient descent can
be explained by a linear classifier early during training. All these works provide convincing evidence
that neural networks exhibit spectral bias in real tasks. But the theoretical explanations, if any, are
to some extent restricted. For example, the popular Fourier analysis is usually constrained under the
one-dimensional setting, and thus lacks generality.
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Meanwhile, a recent line of works (Jacot et al., 2018; Du et al., 2018b; Li and Liang, 2018) have
shed lights on new approaches to analyze neural networks. In particular, they show that under certain
over-parameterized condition, the learning dynamics of neural networks will be characterized by the
kernel gradient with respect to the Neural Tangent Kernel (NTK). Du et al. (2018b) at the same time
shows that under NTK regime, the convergence is provably guaranteed by the smallest eigenvalue
of NTK. Arora et al. (2019) further gives a finer characterization of error convergence based on the
eigenvalues of NTK’s gram matrix. Su and Yang (2019) improves the convergence guarantee to the
k-th largest eigenvalue, given that the target function admits k-order approximation.

Inspired by these works mentioned above, we can present a theoretical explanation for spectral bias.
Under NTK regime, we can give a precise characterization for the training process of neural net-
works. More specifically, we theoretically prove that over-parameterized neural networks’ training
process can be controlled by the eigenvalues of the integrating operator defined by the NTK. Un-
der the specific case of uniform distribution on unit sphere, we give an exact calculation for these
eigenvalues and show that the lower frequencies have larger eigenvalues, which thus leads to faster
convergence. We also conduct experiments to corroborate the theory we establish.

Our contributions are highlighted as follows:

1. We prove a general, distribution-independent theorem which states that under sufficient
samples and over-parameterization conditions, the error term’s convergence along differ-
ent directions actually relies on the corresponding eigenvalues. This theorem gives finer-
grained control on error term’s than Su and Yang (2019), in which it also controls the error
term’s projection onto certain directions.

2. We present a more general results about the spectra of the neural tangent kernel. Both
layers of the neural network with ReLU activation are trained. In particular, we show that
the order of eigenvalues appears as i = O(min{k~9~1 d=**1}), which is better than
the bound O(k~9~1) derived in Bietti and Mairal (2019) when d » k. It is clear that our
bound is closer to the natural data’s setting.

3. We establish a rigorous explanation for the spectral bias, based on the aforementioned the-
oretical results. The error terms from different frequencies are provably controlled by the
eigenvalues of the NTK, and it is shown that the lower-frequency components enjoys faster
convergence rate. As far as the authors know, this is the first attempt to give a comprehen-
sive theory justifying the existence of spectral bias.

1.1 ADDITIONAL RELATED WORK

Recently, there is a rich literature about the property of neural tangent kernel. Jacot et al. (2018) first
shows that during training, the network function follows a descent along the kernel gradient with
respect to the Neural Tangent Kernel (NTK) under infinity width setting. Li and Liang (2018) and
Du et al. (2018b) implicitly build connection between Neural Tangent Kernel and gradient descent
by showing that GD can provably optimize sufficiently wide two-layer neural networks. In Du et al.
(2018b), it is shown gradient descent can achieve zero training loss, at a linear convergence rate, for
training two-layer ReLU network with square loss. However, these works only consider the smallest
eigenvalue )y of the Gram matrix. Allen-Zhu et al. (2018); Du et al. (2018a); Zou et al. (2018);
Cao and Gu (2019b); Zou and Gu (2019); Cao and Gu (2019a) further study the optimization and
generalization of deep neural networks, and are all either implicitly or explicitly related to the neural
tangent kernel. Later, Su and Yang (2019) shows that the smallest eigenvalue actually scales in the
number of samples n and will eventually converges to 0. In order to obtain constant convergence
rate, Su and Yang (2019) assumes the target function f* can be approximated by the first few
eigenfunctions of the integrating operator L, f(s) := {., (2, s) f(s)7(s) and gives constant rate as

log(1 — %nm), where 7 is the step size and p; is the [-th eigenvalue of L. Although they achieve
non-zero convergence rate, they still depend on the minimal eigenvalue in the eigenspace.

A few theoretical studies have been done towards understanding the spectra of neural tangent ker-
nels. Bach (2017), though not relevant to neural tangent kernel, gives a harmonic decomposition for
any a-homogeneous function (including ReLU) and the precise coefficient. Based on the technique
in Bach (2017), Bietti and Mairal (2019) shows eigenvalue decay of integrating operator L, f(z)
defined by NTK on unit sphere by using spherical harmonics. In Vempala and Wilmes (2018), they
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consider two-layer neural networks with sigmoid activation function and the eigenvalues are com-
puted. Basri et al. (2019) gives similar results as Bietti and Mairal (2019) where the one-hidden
layer network is equipped with bias, but only the first layer is optimized. Exact eigenvalues of inte-
gral operator with respect to the NTK on Boolean Cube is presented in Yang and Salman (2019) by
Fourier Analysis.

The rest of the paper is organized as follows. We state the notation, problem setup and other prelim-
inaries in Section 2 and present our main results in Section 3. In Section 4, we present experimental
results to support our theory. Proofs of our main results can be found in Appendix.

2 PRELIMINARIES

In this section we introduce the basic problem setup including the neural network structure and the
training algorithm, as well as some background on the neural tangent kernel proposed recently in
Jacot et al. (2018) and the corresponding integral operator.

2.1 NOTATION

We use lower case, lower case bold face, and upper case bold face letters to denote scalars, vectors
and matrices respectively. For a vector v = (v1,...,v4)7 € R? and a number 1 < p < o0, we
denote its p—norm by |v||, = (Z?=1 |vs|P)1/P. We also define infinity norm by |[v|., = max; |vy].
For a matrix A = (A; j)mxn» We use |Al|o to denote the number of non-zero entries of A, and use
|A|F = (Zijﬁl A? )1/2 10 denote its Frobenius norm. Let [A, = max|y), <1 |[Av], forp > 1,
and |A [ max = max; ; |4; ;. For two matrices A, B € R™*", we define (A, B) = Tr(A"B). We
use A > B if A — B s positive semi-definite. In addition, we define the asymptotic notations O(-),
O(-), Q(-) and €(-) as follows. Suppose that a,, and b, be two sequences. We write a,, = O(b,,) if
limsup,, ., |an/bn| < 00, and a,, = Q(by,) if iminf, o |an/by| > 0. We use O(-) and €(-) to
hide the logarithmic factors in O(-) and ().

2.2 PROBLEM SETUP

Here we introduce the basic problem setup. We consider two-layer fully connected neural networks
of the form

fw(X) = \/R . Wgo(Wlx),

where W € R™*(d+1) "W, e R'*™! are the first and second layer weight matrices respectively,
and o(-) = max{0, -} is the entry-wise ReLU activation function. The network is trained according
to the square loss on 7 training examples S = {(x;, y;)|i € [n]}

Ls(W) = % Z (yi — 0fw(x:))?,

(xi,y:)eS

where 6 is a small coefficient to control the effect of initialization, and the sample {x;}"_, is assumed

to follow some unknown distribution 7 on the unit sphere S¢ € R?*!. Without loss of generality, we
also assume that y; < 1.

We first use random initialization to parameters in our networks and then apply gradient descent to
optimize both layers. We present our detailed neural network training algorithm in Algorithm 1.

"Here the dimension of input is d + 1 since throughout this paper we assume that all training data lie in the
d-dimension unit sphere S% € R¥+1,
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Algorithm 1 GD for DNNss starting at Gaussian initialization

Input: Number of iterations T, step size 7).
Generate each entry of Wgo) and Wgo) from N(0,2/m) and N (0, 1/m) respectively.
fort=0,1,...,7T —1do
Update WD = W) — . Yy Lg(W®),
end for
Output: W),

The initialization scheme for W() given in Algorithm 1 is known as He initialization (He et al.,
2015). This scheme generates each entry of the weight matrices from a Gaussian distribution with
mean zero. The variance follows the principal that the initialization do not change the magnitudes of
inputs in each layer. The second layer parameter is not associated with the ReLU activation function,
thus it is initialized with variance 1/m instead of 2/m.

2.3 NEURAL TANGENT KERNEL

Attempts are made to study the convergence of gradient descent assuming the width of the network
is infinity (Du et al., 2018b; Li and Liang, 2018). When the width of the network goes to infinity,
with certain initialization on parameters, inner product of gradients of the output function would
converge to a limiting kernel, the Neural Tangent Kernel (Jacot et al., 2018). In this paper, we
denote it as r(x,x’) = lim,, o M~ N Vw fww© (X), Vw fwo (x')) and we have

k(x,x') = (x,x') - k1(x,X') + 2 Ka(x,X), 2.1
with , , , .
/"Jl(xa X ) = IEw~N(0,I) [U (<Wa X>)0’ <<W’ X >)]7
K2 (X7 XI) = IEvaN(O,I) [0(<W7 X>)J(<W7 X/>)]'
Since we apply gradient descent to both layers, the Neural Tangent Kernel is the sum of two different
kernel functions and clearly it can be reduced to one layer training setting. From Cho and Saul (2009)

we know that these two kernels are arc-cosine kernels of degree 0 and 1. Explicit expressions are
given with ¢ = (x, x")/ (|[x] [ x']])

2.2)

k1(t) = % (m — arccos (t)) ko(t) = % (t~ (m —arccos (t)) + V1 — t2) . (2.3)

2.4 INTEGRAL OPERATOR

The theory of integral operator with respect to kernel function has been well studied in machine
learning (Smale and Zhou, 2007; Rosasco et al., 2010) thus we only give a brief introduction here.
Let L2(X) be the Hilbert space of square-integrable functions with respect to a Borel measure 7
from X — R. For any continuous kernel function x : X x X — R and 7 we can define an integral
operator L,; on L2(X) by

Lo(f)(x) = JX K%, ¥) f(y)dr(y), xe€X. 2.4)

It has been pointed out in Cho and Saul (2009) that arc-cosine kernels are positive semi-definite.
Thus the kernel function x defined by (2.1) is positive semi-definite being a product and a sum of
positive semi-definite kernels. Clearly this kernel is also continuous and symmetric. Thus we know
that this Neural Tangent Kernel is a Mercer kernel and we will present Mercer decomposition in
next section.

3 MAIN RESULTS

In this section we present our main results. In Section 3.1, we give a general result on the conver-
gence rate of gradient descent along different eigendirections of neural tangent kernel. Motivated
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by this result, in Section 3.2, we give a case study on the spectrum of L, when the input data are
uniformly distributed over the unit sphere S%. In Section 3.3, we combine the spectrum analysis
with the general convergence result to give explicit convergence rate for uniformly distributed data
on the unit sphere.

3.1 CONVERGENCE ANALYSIS OF GRADIENT DESCENT

In this section we study the convergence of Algorithm 1. Instead of studying the standard conver-
gence of loss function value, we aim to provide a refined analysis on the speed of convergence along
different directions defined by the eigenfunction of L,,. We first introduce the following definitions
and notations.

Let {\;}i>1 with Ay = Ao = - - be the strictly positive eigenvalues of L, and ¢1(-), ¢2(:),- - be
the corresponding orthornormal eigenfunctions. Set v; = n~Y2(¢;(x1), ..., ¢i(xy)). 4 € [n]. Note
that L, may have eigenvalues with multiplicities larger then 1 and A;, ¢ > 1 are not distinct. There-
fore for any integer k, we define 7, as the sum of the multiplicities of the first k£ distinct eigenvalues
of L. Define V,, = (v1,...,v,,). By definition, v;, i € [ry] are rescaled restrictions of or-
thornormal functions in L2 (S%). Therefore we can expect them to form a set of almost orthornomal
bases in the vector space R™. The following lemma follows by standard concentration inequality.

Lemma 3.1. Suppose that |¢;(x)| < M for all x € S%. For any 6 > 0, with probability at least

1-96,
HV:,CVM —I|max < C/ M log(ry/0)/n,

where C is an absolute constant.

Denote y = (y1,...,yn)" and O = 0 - (fww (x1),..., fww (xn)), t = 0,...,T. Then
Lemma 3.1 shows that the convergence rate of [V, (y — $®)||2 roughly represents the speed gra-
dient descent learns the components of the target function corresponding to the first r eigenvalues.
The following theorem gives the convergence guarantee of |V, (y — F)la.

Theorem 3.2. Suppose |¢;(x)| < M for j € [ry] and x € S%. For any ¢, > 0 and integer k, if
n = Q(max{e (A, — Appi1) " e 2M2r2}), m = Q(poly (T, A, €7 1)), then with probability
at least 1 — &, Algorithm 1 with n = O((m#?)~1), 0 = €/16 satisfies

VI =9 <20 = A" T2 [V yle 4 e

Remark 3.3. Theorem 3.2 theoretically reveals the spectral bias of deep learning. Specifically, as
long as the network is wide enough and the sample size is large enough, gradient descent first learns
the target function along the the eigendirections of neural tangent kernel with larger eigenvalues,
and then learns the rest components corresponding to smaller eigenvalues. Therefore, Theorem 3.2
theoretically explains the empirical observations given in Rahaman et al. (2018), and demonstrates
that the difficulty of a function to be learned by neural network should be studied in the eigenspace
of neural tangent kernel: if the target function has a component corresponding to a small eigenvalue
of neural tangent kernel, then learning this function to good accuracy takes longer, and requires more
samples and wider network.

3.2 SPECTRAL ANALYSIS OF NEURAL TANGENT KERNEL FOR UNIFORM DISTRIBUTION

After presenting a general theorem (without assuming data distribution) in above subsection, we
restrict sample distribution to be uniform distribution on the unit sphere. We present our results
(an extension of Proposition 5 in Bietti and Mairal (2019)) of spectral analysis of Neural Tangent
Kernel. We show Mercer decomposition of Neural Tangent Kernel for two layers setting. We give
explicit expression of eigenvalues and show orders of eigenvalues in both cases when d » k and
k>»d.

Theorem 3.4. For any x,x’ € S¢ — R?!, we have the Mercer decomposition of the Neural
Tangent Kernel  : S¢ x S¢ — R,

o) N(d,k)
K (x, X/) = Z ke Z Yi; (%) Vi, j (X/) , 3.1
k=0 j=1

W
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where Y, j for j = 1,--- , N(d, k) are linearly independent spherical harmonics of degree k in d + 1
variables with N(d, k) = 2E£d=1 (¥19-2) and orders of yu, are explicitly given by

d—1 d-1 I'(9)
2dm 2dm I'(4£2)’

Ho = ,LLk/:O,k/:2j+].,jGN+,

[ = O (max {dd+1kk71(l€ + d)*k*d,dd+1kk(l€ + d)*k*d*l,dd+2k]€72(lC + d)*k7d71}>’
for k > 1, k # k'. More specifically, we have i, = O (k=%71) when k » d and i, = O (d~"*1)
when d » k.

Remark 3.5. In the above theorem, the coefficients py are actually different eigenvalues of the
integral operator L, on L2 (S%) defined by

Lu(D) = || rxy) )0, f e 12, (5,

where 7, is the uniform probability measure on unit sphere S¢. Therefore the ), in Theorem 3.2 is
just g given in Theorem 3.4 when 74 is uniform distribution.

Remark 3.6. In Vempala and Wilmes (2018), they consider two layers neural networks with sig-

Lol L
O(k)poly =% and iteration times

moid activation function, and present explicit order of m = (d + 1)
lgllz

T = (d+1)9F) 18 == (o achieve € + € error by restricting that Hg — g(sk) H2 < €g. Another highly
related work is Bietti and Mairal (2019), which gives jx = O(k~9~1). The order of eigenvalues we

present appears as /i = min(O(k~4"1), O(d~**1)). This is better when d » k, which is closer to
the practical setting.

3.3 EXPLICIT CONVERGENCE RATE FOR UNIFORMLY DISTRIBUTED DATA

In this section, we combine our results in above two subsections and give explicit convergence rate
for uniformly distributed data on the unit sphere. From the following corollaries, we can see how
spectral bias is revealed.

Corollary 3.7. Suppose that k > d, the sample {x;},_, follows the uniform distribution 74
on the unit sphere S? and |¢;(x)] < M for j € [ri]. For any ¢, > 0 and integer k, if
n = Q(max{e !, k1 e 2M2r2}), m = Q(poly(T, k=91, e~1)), then with probability at least
1 — 4, Algorithm 1 with p = O((m#2)~1), § = ¢/16 satisfies

_ ~ —d—1\\T _
nT2 VI =3 <2(1 -0 (RY) T2 V] +e

Corollary 3.8. Suppose that d » k, the sample {x;},_, follows the uniform distribution 74
on the unit sphere S¢ and |¢;(x)| < M for j € [ry]. For any ¢,6 > 0 and integer k, if

n = Q(max{e !, d* 1 e 2M?*r2}), m > Q(poly(T,d~**1 e~1)), then with probability at least
1 — 6, Algorithm 1 with n = O((m#?)~1), 0 = ¢/16 satisfies

_ ~ _ T _
V(=D <21 -0 @ F) 02 V] yla e

Remark 3.9. Here we give a further explanation for these corollaries: when k = 1, the results
imply that the convergence rates would be controlled by the first eigenvalue of the integral operator
of Neural Tangent Kernel. The directions would be degree 1 spherical harmonics. When k& = 2, we
know that the convergence rate of this algorithm is controlled by the second largest eigenvalue of
the integral operator and the direction is the set of degree 2 spherical harmonics. The convergence
rate is clearly slower than that when & = 1. And & can go to infinity with the same phenomenon that
the convergence rate would be slower when we project the target function to more complex basis.
In this way we give exact illustration how spectral bias is formed.

4 EXPERIMENTS

In this section we illustrate our results by training neural networks on synthetic data. Across all
tasks, we train a two-layer hidden neural networks with 4096 neurons and initialize it exactly as
defined in the setup. The optimization method is vanilla full gradient descent. We sample 1000
training data which is uniformly sampled from the unit sphere in RC.
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4.1 LEARNING COMBINATION OF SPHERICAL HARMONICS

First, we show a result when the target function is exactly linear combination of spherical harmonics.
The target function is explicitly defined as

[ (x) = a1 x Py({n,2)) + ag x Pa({(n2, x)) + ag x Py((ma, 2)),

where the Py (t) is the Gegenbauer polynomial. Note that according to the addition formula

Z;.v:(f’k) Yy ;j(x)Y%,;(y) = N(d,k)Py({x,y)), every normalized Gegenbauer polynomial is a
spherical harmonic, so f*(z) is a linear combination of spherical harmonics of order 1,2 and
4.The odd-order Gegenbauer polynomial is omitted because the spectral analysis showed that

e =0,k =3,57...

We mainly focus on how fast different components of the residual function f*(x) — fwe (x) de-
scend during training. The coefficient for a give component is calculated by integrating along the
spherical harmonics which is {o, f*(x)Py((n, ))d7(x). By Nystrom method we discretize this

measure to
iy [ (@) P, @))
Y1 P2 ((n, i)

ay, =

fH(x) = 1P(z) + 1Py(x) + 1Py(2) fH(x) = 1Py (z) + 3Py(x) 4+ 5Py(x)

-
)
o
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Figure 1: Convergence curve for different component. (a) shows the curve when the target function
have different component with the same scale. (b) shows the curve when the higner-order compo-
nents have larger scale. Both illustrate that the lower-order components are learned first.

Figure 1 shows that the convergence rates of different components are exactly predicted by our the-
ory in a qualitative sense. At the beginning of training, the lowest frequency(k = 1) are converging
to zero fast and then the second lowest(k = 2). The last frequency is converged latest. Following
the setting of Rahaman et al. (2018) we assign high frequencies a larger scale, expecting that larger
scale will introduce a better descending speed. Still, the low frequencies are regressed first.

4.2 LEARNING FUNCTIONS OF SIMPLE FORM

Apart from the synthesized low frequency function, we also showed the dynamics of normal func-
tions” projection to Py (z). These functions, though in a simple form, are composed of almost all
frequencies. In this subsection we further show our results still apply when all frequencies exists.
The target function is given as f*(x) = };, cos(a;(n, x)) or f*(x) = > .(n, x)P*, where 1 is a fixed
unit vector. The coefficient of given components is calculated in the same way as in 4.1.

Figure 2 shows that even for arbitrarily chosen functions of simple form, the networks can still first
learn the low frequency components of the target function. Notice that early in training not all the
curves may descend, we believe this is due to the unseen components’ influence on the gradient.
Again, as the training proceeds, the convergence is controlled at the predicted rate.
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fH(x) = cos(4x) + cos(6x) s f*(x) = 10(2? + 2t + 219
0.8 .
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Figure 2: Convergence curve for different component. (a) shows the curve of a trigonometric func-
tion. (b) shows the curve of a polynomial with even degrees. Both exhibits similar tendency as
combination of spherical harmonics.

Remark 4.1. The reason why we only use cosine function and even polynomial is that the only odd
basis function with non-zero eigenvalue is P;(x). To show a general tendency it is better to restrict
the target function in the even function space.

5 CONCLUSION AND DISCUSSION

In this paper, we give theoretical justification for spectral bias through a detailed analysis of the
convergence behavior of two-layer neural networks with ReLU activation function. We show that
the convergence of gradient descent in different directions depends on the corresponding eigenvalues
and essentially exhibits different convergence rates. We show Mercer decomposition of Neural
Tangent Kernel and give explicit order of eigenvalues of integral operator with respect to the Neural
Tangent Kernel when the data is uniformly distributed on the unit sphere S?. Combined with the
convergence analysis, we give exact order of convergence rate on different directions. We also
conduct experiments on synthetic data to support our theoretical work.

So far, we have considered the upper bound for convergence with respect to low frequency compo-
nents and present comprehensive theorem to explain the spectral bias. One desired improvement is to
give the lower bound of convergence with respect to high frequency components, which is essential
to establish tighter characterization of spectral-biased optimization. Another potential improvement
is to generalize the result to multi-layer neural networks, which might require different techniques
since our analysis heavily rely on exactly computing the eigenvalues of the neural tangent kernel.
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A REVIEW ON SPHERICAL HARMONICS

In this section, we give a brief review on relevant concepts in spherical harmonics. For more detials,
see Bach (2017), Bietti and Mairal (2019), Frye and Efthimiou (2012) and Atkinson and Han (2012)
for references.

We consider the unit sphere S = {x € R%"! : ||x|| = 1}, whose surface area is given by wq =
27(@+D/2 )T((d + 1)/2) and denote 7, the uniform measure on the sphere.

For any &k > 1, we consider a set of spherical harmonics
{kaj ST S RI1<j<N(d k) = W%(k;ff)}. They form an orthonormal basis and

satisfy the following equation (Yz;, Ys;)sa = SSd Yii(2)Ys;(2)drg(x) = 6;50s,. Moreover, since
they are homogeneous functions of degree k, it is clear that for any Y (z), this harmonics has the
same parity as k.

‘We have the addition formula

N(d,k)
Z Yiej (%)Y, (y) = N(d, k) P (<%, ¥)), (A.D)

where Py (t) is the Legendre polynomial of degree k in d + 1 dimensions, explicitly given by (Ro-
drigues’ formula)

Py(t) = (—;)k 1% (1- tQ)Z;Z’d (i)k (1- tZ)’”%

We can also see that Py (t), the Legendre polynomial of degree k shares the same parity with k. By
the orthogonality and the addition formula (A.1) we have,

9
[, w0 Pt ira(w) = 22 Py (a2)

Further we have the recurrence relation for the Legendre polynomials,

ke ktd—1
7P_ -
a1 O g

for k = 1 and tPy(t) = Pi(t) for k = 0.

The Hecke-Funk formula is given for a spherical harmonic Y}, of degree k

tPy(1) = P (t), (A3)

Lﬂ@wmwwww:W1n ff’m)( £2)(4-2/2qy,

B PROOF OF MAIN THEOREMS

B.1 PROOF OF THEOREM 3.2

In this section we give the proof of Theorem 3.2. We first introduce the following definitions and
notations.

Define KO = m ' ((Vwfwo (%), VW fwo (X ))nxn K& = (%6, %)) )nxn =
lim,, oo K©. Let {\;},, Ay = --- = \, be the eigenvalues of n~'K%, and vy,...,V, be
the corresponding eigenvectors. Set V.., = (V1,...,V,,), Vf:k = (Vigtlye-sVn).

For notation simplicity, we denote Vw fyw o) (x;) = [vaW(Xi)”W:W(op Vw, fowo (Xi) =
[vwlfw(xi)]‘wzw(o)’ =12

The following lemma is a direct application of Proposition 1 in Smale and Zhou (2009) or Proposi-
tion 10 in Rosasco et al. (2010).

11
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Lemma B.1. For any § > 0, with probability at least 1 — 4,
s — Al < O(v/Tog(1/8)/m).

The following lemma is partly summarized from the proof of equation (44) in Su and Yang (2019).

Lemma B.2. Suppose that |¢;(x)| < M for all x € S9!, There exist absolute constants
C,C',¢" > 0, such that for any § > 0 and integer k withry, < n,ifn > C (A, —Ar, 1) 2 log(1/6),
then with probability at least 1 — 6,

- 1 [log(1/6)
V! Vie<C .
|| Tk Tk HF )\rk _ >\rk+1 n ?
SO 1 log(1/6) [log(ry/d)
V, VIl -V, V|, <C” My | =22 B0
” EoTE o ”2 |:()\Tk+1 - )‘Tk)2 n T n

Lemma B.3. Suppose that the iterates of gradient descent W) ... W) are inside the ball
BW©) w). If w < O([log(m)]~/?), then with probability at least 1 — O(n) - exp[—Q(mw?/3)],
y = 3UH = [T = (/)K" )y =30) + e, e ], < O P*ymb?) - |y — 3|

forallt =0,...,t — 1, wherey = (y1,- -, Un) "> §%) = 0 (fyver (X1)s -+ s Fyven (%)) T
Lemma B.4. Suppose that the iterates of gradient descent W) ... W) are inside the ball

~

B(W©® w). If w < O(min{[log(m)]=%2, A3, (nym)~3}) and n > O(A;,?), then with proba-
bility at least 1 — O(n) - exp[—Q(mw?/?)]

[(VE)T (v =32 < [(VE) T (y =3 O) 2 + 1" wPym? - v/n - O(1 + wym)  (B.1)
VI (v =32 < V- (1 —nmé?X,, /2)" + AL 0 Pymé® - - O(1 + wy/m)

Tk

251 0W ) (V) T (v = 99)2 B.2)
Iy =32 < vr- (1= nmb°X, /2)" + O((mmb* X)) - (V) T (v =)
F AW - O(1 + wy/m) (B.3)

forallt’ =0,...,t— 1.

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Define w = CT/(\, /m) for some small enough absolute constant C.
Then by union bound, as long as m >, the conditions on w given in Lemmas D.2, D.4, D.5, B.3 and
B.4 are all satisfied.

We first show that all the iterates W(®) ..., W(T) are inside the ball B(W () w). We prove this
result by inductively show that W(*) e B(W(O) ,w),t =0,...,T. First of all, it is clear that WO e
B(W© ). Suppose that W) ... W e B(W(® ). Then the results of Lemmas D.2, D.4,
D.5, B.3 and B.4 hold for W@ ... . W®_ Denote u® =y —3®, ¢t e T. Then we have

t
(Wi = Wi < 3 W - Wi
t'=0

n

D =0+ fww (x:) 0 Vw, fwon (%4)

1
nia

t
=7 Z
t'=0

t n
1
<00 Y, — 2l =0 fwo (i)l - [Vwi fweo (%) e
t'=0 ~i=1

F

t n
1
< Cinfy/m Z - Z lyi — 0 - fwo (x4)]
t'=0 =1

t
< Cinfy/m/n Yy =3,
=0

12
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where the second inequality follows by Lemma D.4. By Lemma B.4, we have

t
2 by =92 < 2v/n/(m?As,) + O(T/(qmb*X.,)) - (Vi) T (y =3Oz
t'=0

+ )\,flele/S “A/n - O(1 4+ wym).

It then follows by the choice w = CT/(A,, /m), 7 = O((mh2X,,)~ 1), 6§ = ¢/16 and the assump-
tion m > O(poly (A, , 1)) that HWl(tH) - WI(O)HF < w, l = 1,2. Therefore by induction, we
see that W(0),..., W(T) € B(W©® ).

Applying Lemma B.4 then gives

2V y = 3T < (1= gmbA,, /2)T 02 V] (y = 5 O)]
1 2

+ TN, -w 2B3nme? . (1+w\/E)

+ A0 0w n 2 (V) Ty = 3o
Now by w = CT/(Ap,v/m), n = O(#2m)~" and the assumption that m > m* = (5()\;;4 -e79),
we obtain

2V (y =502 < (1 - A)T + €/16. (B.4)

By Lemma 3.1, 6 = ¢/16 and the assumptions n > Q(max{e ' (A, — Ap, 1)1, e 2M2r2}), the
eigenvalues of V,Tk V,.,. are all between 1/ +/2 and \/2. Therefore by Lemma B.2 we have

VI (v =52 = [V, V] (v =52

> Vo, V(v =52 = [(Ve, V] =V, VI )(y = 5D))2
1 log(1/9) log(r1,/0)
ST _ UO\Tk/T)
> V] (v = 3T)]2/v2 ((Mﬂ o M -

> V] (y = 5")l2/v2 ~ ev/n/16.
Similarly,
V5 =92 < V2 [V (y = 9T)la + ev/n/16 < V2 V] y]a + ev/n/8
Plugging the above two inequalities into (B.4) gives
VI =3 <20 - x )T 0TV e e
This completes the proof. O
B.2 PROOF OF THE THEOREM 3.4
Proof of the Theorem 3.4. The idea of the proof is close to that of Proposition 5 in (Bietti and

Mairal, 2019) where they consider £ > d and we present a more general case including k > d and
d>» k.

For any function g : S* — R, by denoting go(x) = Ssd g(y)dra(y), it can be decomposed as
o © N(d,k)
g(x) = Z gr(x) = 2 2 Y (v)Yij (x)9(y)dTa(y)
k=0 k=0 j=1 57
0
- R N@H [ aeP ). ®.5)
k=0 '

where we project function g to spherical harmonics in the second equality and apply the addition
equation in the last equality.
For a positive-definite dot-product kernel k(x,x’) : S¢ x S§? — R which has the form x(x,x’) =

13
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(x, x>)f0rR:L 1 1]

R R, we can present a decomposition by (B.5) if we consider g(x) =
d({x,2z)y) for z € S* and

ﬁl

Kx,x) = 3 N(d, ) L Ry X Py 0)dra(y)

= X NER LR (Gex) [ RDPO0 - )2

where we apply the Hecke-Funk formula and addition formula. By denoting Ay =
(Wa—1/wq) S LR Pe(t)(1 — 2)(@=2)/2dt and the addition formula, we have

0 N(p,k)
K(x,x) = > N (d, k) Pi((x, X)) = Z pe Y Vi ()i (x). (B.6)
k=0 Jj=1

This formula (B.6) is the Mercer decomposition for the kernel function x(x,x’) and puy is exactly
the eigenvalue of the integral operator Lx on Lo (S?) defined by

Le(f)(y) = [ wbey) (), f € La(S?).

By using same technique as x(x,x’), we can derive a similar expression for o((w,x))
max {(w,x),0} and o' ({w,x)) = 1{{(w,x) > 0}, since they are essentially dot-product func-
tion on Ly (S%). We deliver the expression below without presenting proofs.

o (w,30) = 3 BLaN(d, k) Pyl((w, %)), ®.7)
k=0
o((w,x)) = > BaN(d, k) Pu({w, %)), (B.8)
k=0
where 31, = (Wa—1/wq) Sl_l o(t)Pp(t)(1— tQ)(d 2)/2dt and Bak = (Wa—1/wq) S_ (t)Pr(t)(1—

t2)(d*2)/ 2dt. We add more comments on the values of B1,k and B . It has been pointed out in Bach
(2017) that when k£ > o and when k and o have same parity, we have 3,1,5 = 0. This is because
the Legendre polynomial Py (t) is orthogonal to any other polynomials of degree less than k with

respect to the density function p(t) = (1 — t2)(?=2/2, Then we clearly know that ; ; = 0 for
k =2jand B = 0fork =25 + 1 with j € NT.

For two kernel function defined in (2.2), we have
k1(x,x) = Ewonon [0/ ((W,3))0" ((w,x))]
= Ew-neon [0/ W/ [w],x))0" ((w/ |[w],x7))]
= Ld o' ((v,x))o' ({v, x"Y)dry(Vv). (B.9)
The first equality holds because ¢’ is 0-homogeneous function and the second equality is true since

the normalized direction of a multivariate Gaussian random variable satisfies uniform distribution
on the unit sphere. Similarly we can derive

ha(%, %) = (d+ 1) L o) (v X)) ra(). (B.10)

By combing (A.2), (B.7),(B.8), (B.9) and (B.10), we can get

0

r1(x,x') = > B L N(d, k) Pe((x, %)), (B.11)
k=0

14
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and

Ka(x,x) = (d+ 1) Z B2 N (d, k) P ((x,x')). (B.12)
k=0

Comparing (B.6), (B.11) and (B.12), we can easily show that
pak =By and po g = (d+1)83 . (B.13)
In Bach (2017), explicit expressions for 3; ; and (2 1, for k > o + 1 are presented by
d—1al(=1)k=1=0/2  T(d/2)T'(k — a)
2T 2k F(k—(21+1)1-\(k+d-i2-a+1)'

ﬁaJrl,k =

By Stirling formula I'(z) ~ :rw*1/2 ~%4/2m, we have following expression of 8,1 fork > a+1

(d 1) ( )kiai% d+1  k—a—1 —k—d—a
Basik = Cla azO(d?k 5= (k4 d) ™ )
i ()( —a+ 1) T (k+d+a+1)E ( )
r(etl\r(d
where C(a) = “Zlexpla + 1} Alo faiio = fi;lg(ii l>) . B =
o EPRTVONES! . )
s and fBa1 = T F(f”?’) . Thus combine (B.13) we know that poy1r =
O(dd+l+akk a— 1(k+d) a)

By considering (A.3) and (B.6), we have
to = p1,1 + 2H2,0,

e =0, K =2j4+1, jeNT,
and

k N k+d-—1
DY I Lo S Y AR

for k > 1 and k # k’. From the discussion above, we thus know exactly that for k > 1

)\k: =0 (max {dd+1kk—1(k + d)_k_d,dd+1kk(k + d)_k_d_l,dd+2kk_2(k + d)—k—d—l}) .

(B.14)
This finishes the proof. O

Wy = M1 k+1 T 202k,

C PROOF OF TECHNICAL LEMMAS

C.1 PROOF OF LEMMA B.2

Proof of Lemma B.2. The first inequality dlrectly follows by equation (44) in Su and Yang (2019).
To prove the second bound, we Wr1te V.. = VrkA + VJ- B, where A € R™*7 B e R—78) %7k
Let& =< C'(Ary, — Appt1)” log(1/0)/m, & = C’” M log(ry/d)/n be the bounds given in
the first inequality and Lemma 3. 1. By the first inequality, we have

IBlr = 1B |r = [V, Vi |r <

Moreover, since V.| V,, = ATA + BB, by Lemma 3.1 we have

[AAT — T, = |[ATA ~ 1> < [V, V,, —I|o + |B'B|2 <m0 + &
Therefore
IV V) =V, V] o= |V, , AATV] + VEBBT (VL) -V, V] |,
<[V (AAT =DV |2+ [V, BB (V;) T
=|AAT 1| + BB,
< rpbo + 287
Plugging in the definition of &; and &> completes the proof. O
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C.2 PROOF OF LEMMA B.3

Proof of Lemma B.3. The gradient descent update formula gives
n
WD) — w4 % Z — O fweo (x0)) - OVw Fav o (x2). .1

For any j € [n], subtracting W(*) and applying inner product with OV fw ) (x;) on both sides
gives

02
0V faeo (x,), WD —woy = 1

n

(yi — A(t)) (Vw fwo (X)), Vw fwe (Xi))-

-

1=1

Further rearranging terms then gives

At ~(t nmé* &
Yj — (y(fH))j =Y — (Y(f))j I Z(yz — fw (%)) Kfoj + g+ L2+ I35,
=1
(C.2)
where
n6% < (0)
Ije=—-— D i = Fweo (x3)) - (Vw fwo (%5), Vw fw (x:)) — mK; ],
1=1
_ b § ©) _ e
Ije=—— D wi = fwo (xi) - (K = K5),
i=1

I3 i = =0 [fworn (X5) — fwo (x5) — (V fweo (x5), WERD — WBy],

For Iy ;+, by Lemma D.6, we have
114, < O(w"*nmb?) - Z lyi — fwo (%3] < O(w"*nmb?) - |y — 5O 2/v/n.

For I ;; by Bemnstein inequality and union bound, with probability at least 1 — O(n?) -
exp(—Q(mw?/?)), we have

K% — K| < O@w"?)

for all 4, j € [n]. Therefore

1 & ~
I25.0] < O(Wym?) - = Z — fwn ()] < O Pnmb?) - |y — 50| 2//n.

3

For I3 ; ;, we have
I3 14 < O(w'Py/mb) - [W{Y — Wi,

O Sy/mb) - L 37 lys = b fwio ()] - 8- [V, o (x:)2
i=1

~ 1 ¢
< O(W3nme?) - - Z lyi — 0 fwo (xi)]
i—1

< O(wPnmb?) - |y — 39 |2/v/n,

where the first inequality follows by Lemmas D.2, the second inequality is obtained from (C.1), and
the third inequality follows by Lemma D.4. Setting the j-th entry of e®) as Iy j , + I ; ; + I3 j ; and
writing (C.2) into matrix form completes the proof. O
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C.3 PROOF OF LEMMA B.4
Proof of Lemma B.4. Denote u¥) = y — 3t € T. Then we have
[(V) Ty < (V)T = (nmé? /n) K= Tu™) |5 + Ow'Pym6?) - [ul)],
< [[(Vi) "2 + O P ym6?) - - O(1 + wy/m),

where the first inequality follows by Lemma B.3, and the second inequality follows by Lemma D.5.
Therefore we have

[(VE) Ta® 2 < [(VE) Tu® 2 + ¢ - wPym? - O(1 + wy/m)
fort’ = 0,...,t. This completes the proof of (B.1). Similarly, we have
[V a )y < VT = (gmo?/m) K= a5 + O(w P ym?) - [u®)
< (1 =nmt?A ) [V ) |z + O Anyme?) - (V] u® s + (V) Tu®)]y)
< (L =nmt\, /2)| V] 0 2 + O Byme?) - (V) Tu®),
< (1 =m0, /2)[ VI u® ]y + 1" (@3nme%)? - - O(1 + wy/m)
+ O(w"Pnmo?) - (V) Tu @,

for t/ = 0,...,t — 1, where the third inequality is by Lemma B.l and the assumption that w <
( 3), and the fourth inequality is by (B.1). Therefore we have

V7o < (1= nmb°,,/2)" [V 0o + (gm6® A, /2) 7" - (@ om6®)? - v/ - O(1 + wy/m)
+ (mmé* A, /2) 7 ( o ym6?) - (V) T,
= (1 —nmb?\,,/2)" H 7.ku ©) 2+ t’)\;kl cw?Bymé? - \/n - (7)(1 + wa/m)
+ AL O (Vi) Tals
< (1- nm92 Ar/2)F H\AIT u@ s + A0 w3yme? - /- O(1 + wy/m)
FAL O - [(VE) Ty,
This completes the proof of (B.2). Finally, for (B.3), by assumption we have w'/3nm6% < O(1).
Therefore
a2 < X (gm8? /n)K*IV, V0o + [T = (gm6? n)KZVE (Vi) Tl 2
+ O Pym0?) - [V}, a5 + O Pym?) - | (V) Tu®)],
< (U= gmt?X,) [V 0 + O Pgm?) - [V u® s + O1) - [(VE) Tu],
< (L= nmbA,, 2V a2 + O) (V7)) Tul ]
< (L= gm#A, 2|V 02 + O0) - (Vi) Tul 2 + 0! FymePy/in - O(1 + wy/m)
fort’ = 0,...,t — 1, where the third inequality is by Lemma B.l and the assumption that w <
O(X;?), and the fourth inequality follows by (B.1). Therefore we have
[0® s < V- (1 —gmb? N, /2)" + O((rmb?1,) ™) - [(VE) Tu @ o + A w3 y/n - O(1 + wy/m).
This finishes the proof. O

D AUXILIARY LEMMAS

In this section we list several auxiliary lemmas on the properties of over-parameterized neural net-
works we need in our proof of Theorem 3.2. These results are mostly summarized from Allen-Zhu
et al. (2018) and Cao and Gu (2019a).
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D.1 AUXILIARY LEMMAS

Denote

Di = dlag(]l{(Wlxl)l > 0}7 ey ]l{(Wlxi)m > 0}),

D = diag(1{(W\"x;); > 0},..., 1{(W{"x;),, > 0}).
Lemma D.1 (Allen-Zhu et al. (2018)). If w < O([log(m)]~3/?), then with probability at least
1 —O(n) - exp[—Q(mw?3)],

[D: = Do < O(w*m)
for all W e B(W©), w), i€ [n].
Lemma D.2 (Cao and Gu (2019a)). There exists an absolute constant « such that, with probability
at least 1 — O(n) - exp[—Q(mw?/?)] over the randomness of W), for all i € [n] and W, W' €
B(WW w) with w < x[log(m)]~3/2, it holds uniformly that
o (53) = fww () = (Tw fw (x:), W' = W) < O(w!/5y/mlog(m) ) - [ W] = Wi

Lemma D.3 (Cao and Gu (2019a)). For any § > 0, if m = C'log(n/d) for a large enough absolute
constant C, then with probability at least 1 — 6, | fyw© (2;)] < O(y/log(n/d)) for all i € [n].

Lemma D.4 (Cao and Gu (2019a)). There exists an absolute constant C' such that, with probability
at least 1 — O(n) - exp[—Q(mw??)], for all i € [n], 1 € [L] and W € B(WM w) with w <
C[log(m)]~3, it holds uniformly that

IVw, fw(xi)|r < O(vm).

The following lemma provides a uniform bound of the neural network function value over
B(WO ).
Lemma D.5. Suppose that m > Q(w=?/3log(n/d)) and w < O([log((m))]~?). Then with proba-
bility at least 1 — 6, | fw (x;)| < O(+/log(n/8) + wy/m) for all W € B(W©) w) i e [n].
Lemma D.6. If w < O([log(m)]~3/?), then with probability at least 1 — O(n) - exp[—Q(mw?/?)],

|Vw fw (x:) — Vw fwo (xi) |7 < O(w'3y/m),

(Vw fw (xi), Vw fw (%)) = (Vw fwo (%), Vw fawo (x)] < O(w'Pm)
for all W € B(W© w) and i € [n].

D.2 PROOFS OF LEMMAS D.5 AND D.6
Proof of Lemma D.5. By Lemmas D.2 and D.4, we have
|fw (i) — fwo (%3] < [Vw, fwo (%) [2[ W1 = W 2 + [V, fwvo (50) |2 [Wa — W
+ O(wY3y/mlog(m)) - [W, — W[,
< O(wy/m),

where the last inequality is by the assumption w < [log(m)]~2. Applying triangle inequality and
Lemma D.3 then gives

| fw (33)] < | fweor (%3] + | fw (xi) = fwo (xi)] < O(y/log(n/6)) + O(wy/m)
= O(+/log(n/d) + wy/m),

This completes the proof. O

Proof of Lemma D.6. By direct calculation, we have

Vw, fwo (xi) = vm - DWW Tx] Vi, fw(x:) = v/m - D;W]x] .
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Therefore we have
[Vw, fw (x:) = Vw, fwvo () [ = v/m - [D;W3x] = DPWE x|

= \/m ”XinDi — Xin))DgO) HF

= vm- [W2D; - WD ||

< vm- W (D = Dy)|r + vm - (W — Wa)D;|
By Lemma 7.4 in Allen-Zhu et al. (2018) and Lemma D.1, with probability at least 1 — n -
exp[—Q(m)], vm - [WO(D — D) < OWY3/m) for all i € [n]. Moreover, clearly
(W — Wy)D;|p < W — Wy p < w. Therefore

|Vw, fw (xi) = Vw, fwo (xi)|r < O(w"2y/m)

for all i € [n]. This proves the bound for the first layer gradients. For the second layer gradients, we
have

Vw, fwo (i) = Vi [o(Wi"x)] . Vw, fw (xi) = v/ [o(Wix:)]|
It therefore follows by the 1-Lipschitz continuity of o () that
[V, fw (xi) = Vw, fwo ()| < v/m - [Wix; = W% p < wyim < w'Py/m.
This completes the proof of the first inequality.

The second inequality directly follows by triangle inequality and Lemma D .4:

(Vw fw (%), Vw fw (x5)) — mK Q| < (Vw fw (%) — Vw fwo (%), Vw fw (%))
+ [KVw fwo (%), Vw fw (%) = Vw fwo (x5))]
< O(W3m).

This finishes the proof. O
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