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ABSTRACT

This paper shows how to train binary networks to within a few percent points
(∼ 3−5%) of the full precision counterpart with a negligible increase in the com-
putational cost. In particular, we first show how to build a strong baseline, which
already achieves state-of-the-art accuracy, by combining recently proposed ad-
vances, and carefully tuning the optimization procedure. Secondly, we show that
by attempting to minimize the discrepancy between the output of the binary and
the corresponding real-valued convolution additional significant accuracy gains
can be obtained. We materialize this idea in two complementary ways: (1) with a
loss function, during training, by matching the spatial attention maps computed at
the output of the binary and real-valued convolutions, and (2) in data-driven man-
ner, by using the real-valued activations being available during inference prior to
the binarization process for re-scaling the activations right after the binary convo-
lution. Finally, we show that, when putting all of our improvements together, the
resulting model reduces the gap to its real-valued counterpart to less than 3% and
5% top-1 error on CIFAR-100 and ImageNet, respectively, when using a ResNet-
18 architecture.

1 INTRODUCTION

Following the introduction of the BinaryNeuralNet (BNN) algorithm (Courbariaux et al., 2016),
binary neural networks emerged as one of the most promising approaches for training highly efficient
neural networks that can be deployed on devices with limited computational resources. Binary
networks are particularly appealing for two purposes: (a) Model compression: if the weights of the
network are stored as bits in a 32-bit float, this implies a reduction of 32× in memory usage. (b)
Computational speed-up: computationally intensive floating-point multiply and add operations are
replaced by efficient xnor and pop-count operations which have been shown to provide practical
speed-ups of up to 58× on CPU (Rastegari et al., 2016). Despite these appealing properties, binary
neural networks have been criticized as binarization typically results in large accuracy drop, which
renders their deployment in practical applications unlikely. For example, on ImageNet classification,
there is a ∼ 18% gap in top-1 accuracy between a ResNet-18 and its binary counterpart when
binarized with XNOR-Net (Rastegari et al., 2016), which is the method of choice for neural network
binarization.

But how far are we from training binary neural networks that are powerful enough to reach the
accuracy levels of their real-valued counterparts? Our first contribution in this work is to take stock
of some recent advances in training binary neural networks and train a very strong baseline which
already results in state-of-the-art results without any increase in the model size or the computational
cost. Our second contribution is a method for bridging most of the remaining gap which boils down
to minimizing the discrepancy between the output of the binary and the corresponding real-valued
convolution. This idea is materialized in our work in two complementary ways: Firstly, we match
the spatial attention maps computed at the output of the binary and real-valued convolutions within
a teacher-student training framework (Zagoruyko & Komodakis, 2017), where the binary network
is the student and the real-valued network acts as the teacher. Secondly, while the aforementioned
approach provides an extra supervisory signal during training, at test time, the guidance provided
by the real-valued network is no longer available. Hence, we further propose to use the real-valued
activations of the binary network being available during inference prior to the binarization process to
compute scale factors that are used to re-scale the activations produced right after the application of
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Figure 1: Left: The proposed real-to-binary block. The diagram shows how spatial attention maps
computed from a teacher real-valued network are matched with the ones computed from the binary
network. Supervision is injected at the end of each binary block. See also Sub-section 4.2. Right:
The proposed data-driven channel re-scaling approach. The left-hand side branch corresponds to the
standard binary convolution module. The right-hand side branch corresponds to the proposed gating
function that computes the channel-scaling factors from the output of the batch normalization. See
also Sub-section 4.3.

the binary convolution. This is in line with recent works which have shown that re-scaling the binary
convolution output results in large performance gains (Rastegari et al., 2016; Bulat & Tzimiropoulos,
2019) with the difference being that the computation of the scale factors in our case is data-driven,
based on the real-valued activations produced by each layer prior to binarization.

Overall, we make the following contributions:

• We construct a very strong baseline by combining some recent insights on training binary
networks, and by performing a thorough experimentation to find the most well-suited opti-
mization techniques. We show that this baseline already achieves state-of-the-art accuracy,
surpassing all previously published work on binary networks.

• We propose real-to-binary attention matching: this entails that matching spatial attention
maps computed at the output of the binary and real-valued convolutions is particular suited
for training binary neural networks. See Fig. 1, left and and Sub-section 4.2. We also devise
a multi-stage attention matching strategy.

• We propose data-driven channel re-scaling: this entails using the real-valued activations of
the binary network prior to the binarization process to compute the scale factors used to
re-scale the activations produced right after the application of the binary convolution. See
Fig. 1, right, and Sub-section 4.3.

• We show that our combined contributions provide, for the first time, competitive results
on two standard datasets, achieving 76.2% top-1 performance on CIFAR-100, and 65.4%
top-1 performance on ImageNet using a ResNet-18 –a gap bellow 3% and 5% respectively
compared to their full precision counterparts– and with a negligible increase in the model
size.

2 RELATED WORK

While being pre-dated by other works on binary networks (Soudry et al., 2014), the BNN algo-
rithm (Courbariaux et al., 2016) established how to train networks with binary weights within the
familiar back-propagation paradigm. The proposed training method relies on a real-valued copy of
the weights, which is binarized during the forward pass, but is updated during back-propagation
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ignoring the binarization step. Unfortunately, BNN resulted in a staggering ∼ 28% gap in top-1
accuracy compared to the full precision ResNet-18 on ImageNet.

In an attempt to bridge this gap, XNOR-Net (Rastegari et al., 2016) proposed to add a real-valued
scaling factor to each output channel of a binary convolution. In fact, it has become standard for
binary networks to use such scaling factors given the minimal increase in computational cost for a
very large performance increase. It is worth noting that, in almost all works, the proposed binary
networks do have a number of floating point operations; for example, the first convolution (a costly
7 × 7 kernel in ResNet), the fully connected layer as well as batch normalization layers are all
real-valued. Thus, adding a small amount of real-valued operations is typically well-justified and
accepted should it provide significant accuracy gains. For example, the authors of Bi-Real Net (Liu
et al., 2018) argued that skip connections are fundamental for binary networks and observed that
the flow of full precision activations provided by the skip connections is interrupted by the down-
sample convolutions, which degrade the signal and make subsequent skip connections less effective.
To alleviate this, they proposed making the downsample layers real-valued, obtaining around 3%
accuracy increase in the process with a small increase in complexity.

There have been also numerous ways to improve the optimization of training binary networks, such
as the use of smooth approximations of the gradient, use of PReLU instead of ReLU (Bulat et al.,
2019), two-stage training which binarizes the weights first and then the activations (Bulat et al.,
2019) and progressive quantization (Bulat et al., 2019; Gong et al., 2019). The work in (Wang
et al., 2019) proposed to learn channel correlations through reinforcement learning in order to better
preserve the sign of a convolution output. A set of regularizers are added to the loss term in (Ding
et al., 2019) so as to control the range of values of the activations, and guarantee good gradient flow.
Other optimization aspects, such the effect of gradient clipping or batch-norm momentum, were
empirically tested in (Alizadeh et al., 2019). In Sub-section 4.1, we show how to combine many of
the insights provided in the aforementioned works with standard optimization techniques to obtain
a very strong baseline that achieves state-of-the-art accuracy.

While the aforementioned works either maintain the same computational cost, or increase it by
a fractional amount, some other lines of research have focused instead on relaxing the problem
constraints by increasing the number of convolutions per layer by a large amount (typically a factor
of 2 to 8 times), see for example the ABC-Net of (Lin et al., 2017), the structure approximation of
(Zhuang et al., 2019), the circulant CNN of (Liu et al., 2019), and the binary ensemble of (Zhu et al.,
2019). Note that the large increase of binary operations diminishes the efficiency claim that justifies
the use of binary networks in first place. Furthermore, we will show that there is still a lot of margin
in order to bridge the accuracy gap prior to resorting to such approaches 1.

Our attention matching approach described in Sub-section 4.2 is somewhat related to the feature
distillation approach of Zhuang et al. (2018). However, Zhuang et al. (2018) tries to match the
whole feature maps of the to-be-quantized network with the quantized feature maps of a real-valued
network that is trained in parallel with the to-be-quantized network. Such an approach is shown
to improve training of low-bit but not binary networks. Notably, our approach based on matching
attention maps is much simpler and shown to be effective for the case of binary networks.

Our data-driven channel re-scaling approach, described in Sub-section 4.3, is related to the channel
re-scaling approach of XNOR-Net and that of (Xu & Cheung, 2019; Bulat & Tzimiropoulos, 2019)
which propose to learn the scale factors discriminatively through backpropagation. Contrary to (Xu
& Cheung, 2019; Bulat & Tzimiropoulos, 2019), our method is data-driven and avoids using fixed
scale factors learnt during training. Contrary to XNOR-Net, our method discriminatively learns how
to produce the data-driven scale factors so that they are optimal for the task in hand.

3 BACKGROUND

This section reviews the binarization process proposed in (Courbariaux et al., 2016) and its improved
version from (Rastegari et al., 2016) which is the method of choice for neural network binarization.

1There is also a large amount of work on using other low-bit quantization strategies but a review of these
techniques goes beyond the scope of this section.
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We denote by W ∈ Ro×c×k×k and A ∈ Rc×win×hin the weights and input features of a CNN
layer, where o and c represent the number of output and input channels, (k, k) the width and height
of the convolutional kernel, and win and hin represent the spatial dimension of the input features
A. In (Courbariaux et al., 2016), both weights and activations are binarized using the sign function
and then convolution is performed as A ∗ W ≈ sign(A)©∗ sign(W) where©∗ denotes the binary
convolution which can be implemented using bit-wise operations.

However, this direct binarization approach introduces a high quantization error that leads to low
accuracy. To alleviate this, XNOR-Net (Rastegari et al., 2016) proposes to use real-valued scaling
factors to re-scale the output of the binary convolution as

A ∗W ≈ (sign(A)©∗ sign(W))�Kα, (1)

where � denotes the element-wise multiplication, α and K are the weight and activation scaling
factors, respectively, calculated in Rastegari et al. (2016) in an analytic manner. More recently,
Bulat & Tzimiropoulos (2019) proposed to fuse α and K into a single factor Γ that is learned via
backpropagation resulting in further accuracy gains.

4 METHOD

This section firstly introduces our strong baseline. Then, we present two ways to improve the ap-
proximation of Eq. (1): Firstly, we use a loss based on matching attention maps computed from
the binary and a real-valued network (see Sub-section 4.2 ). Secondly, we make the scaling factor a
function of the real-valued input activations A (see Sub-section 4.3).

4.1 BUILDING A STRONG BASELINE

Currently, almost all works on binary networks use XNOR-Net and BNN as baselines. In this
section, we show how to construct a strong baseline by incorporating insights and techniques de-
scribed in recent works as well as standard optimization techniques. We show that our baseline
already achieves state-of-the-art accuracy. We believe that this is an important contribution towards
understanding the true impact of proposed methodologies and towards assessing the true gap with
real-valued networks.

Following prior work in binary networks, we based our method on the ResNet-18 architecture and
apply the improvements listed below:

Block structure: It is well-known that a modified ResNet block must be adapted to provide optimal
results when training binary networks. We used the widely-used setting where the operations are
ordered as BatchNorm→ Binarization→ BinaryConv→ Activation. The skip connection is to the
last operation of the block (Rastegari et al., 2016).

Residual learning: We used double skip connections, as in (Liu et al., 2018).

Activation: We used PReLU (He et al., 2015), which is known to facilitate the training of binary
networks (Bulat et al., 2019).

Scaling factors: We used discriminatively learnt scaling factors via backpropagation as in (Bulat &
Tzimiropoulos, 2019).

Downsample layers: We used real-valued downsample layers, and found the reported large accu-
racy boost (around 3 − 4% top-1 improvement on ImageNet) to be consistent across our experi-
ments (Liu et al., 2018).

We used the following training strategies to train our strong baseline:

Initialization: When training binary networks, it is crucial to use a 2-stage optimization strategy.
In particular, we adopted the strategy of binarizing the activations first, and then using the resulting
model as initialization to train a network with both weights and activations binarized (Bulat et al.,
2019).

Weight decay: Setting up weight decay carefully is surprisingly important. We use 1e− 5 on stage
1, and set it to 0 on stage 2 (Bethge et al., 2019).
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Data augmentation: For CIFAR-100 we use the standard random crop, random horizontal flip and
random rotation (±15◦). For ImageNet, we found that random cropping, flipping and colour jitter
augmentation worked the best. However, colour jitter is disabled for stage 2.

Mix-up: We found that mix-up (Zhang et al., 2017) is crucial for CIFAR100, while it slightly hurts
performance for ImageNet – this is due to the higher risk of overfitting on CIFAR100.

Warm-up: We used warm-up for 5 epochs during stage 1, and no warm-up for stage 2.

Optimizer: We used Adam (Kingma & Ba, 2014) with a stepwise scheduler. The learning rate is
set to 1e − 3 for stage 1, and 2e − 4 for stage 2. For CIFAR-100, we trained for 350 epochs, with
steps at epochs 150, 250 and 320. For ImageNet, we train for 75 epochs, with steps at epochs 40, 60
and 70. Batch sizes are 256 for ImageNet and 128 for CIFAR-100.

4.2 REAL-TO-BINARY ATTENTION MATCHING

We make the reasonable assumption that if a binary network is trained so that the output of each
binary convolution more closely matches the output of a real convolution in the corresponding layer
of a real-valued network, then significant accuracy gains can be obtained. Notably, a similar as-
sumption was made in (Rastegari et al., 2016) where analytic scale factors were calculated so that
the error between binary and real convolutions is minimized. Instead, and inspired by the attention
transfer method of Zagoruyko & Komodakis (2017), we propose to enforce such a constraint via a
loss term at the end of each convolutional block between attention maps calculated from the binary
and real-valued activations. Such supervisory signals provide the binary network with much-needed
extra guidance, as it is well-known that backpropagation for binary networks is not as effective as
for real-valued ones. By introducing such loss terms at the end of each block, gradients do not have
to traverse the whole network and suffer a degraded signal.

Assuming that attention matching is applied at a set of J transfer points within then network, the
total loss can be expressed as:

Latt =

J∑
j=1

‖
Qj

S

‖Qj
S‖2
−
Qj

T

‖Qj
T ‖2
‖, (2)

where Qj =
∑c

i=1 |Ai|2 and Ai is the i−th channel of activation map A. Moreover, at the end of
the network, we apply standard logit matching (Hinton et al., 2015).

Multi-stage training: We observed that teacher and student having as similar architecture as possi-
ble is very important in our case. We thus devise a multi-stage teacher-student optimization strategy
that creates a sequence of teacher-student pairs that bridge the differences between the real network
and the binary network in small increments:
Stage 0: The teacher is the real-valued network with the standard ResNet architecture. The student
is another real-valued network, but with the same architecture as the binary ResNet-18 (e.g. double
skip connection, layer ordering, PReLU, etc). Furthermore, a soft binarization (a Tanh function) is
applied to the activations so that the resulting network more closely resembles a network with binary
activations.
Stage 1: The network resulting from Stage 0 is used as teacher. A network with binary activations
and real-valued weights is the student.
Stage 2: The network resulting from Stage 1 is the teacher. A network with binary weights and
activations is the student. In this stage, only logit matching is used.

4.3 DATA-DRIVEN CHANNEL RE-SCALING

While the approach of the previous section provides better guidance for the training of binary net-
works, the representation power of binary convolutions is still limited, hindering its capacity to
approximate the real-valued network. Here we describe how to boost the representation capability
of a binary neural network while incurring in a negligible increment on the number of real-valued
operations.

Previous works have shown the effectiveness of re-scaling binary convolutions with the goal of better
approximating real convolutions and in turn achieving large accuracy gains. XNOR-Net (Rastegari
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et al., 2016) proposed to compute these scale factors analytically while (Bulat & Tzimiropoulos,
2019; Xu & Cheung, 2019) proposed to learn them discriminatively in an end-to-end manner, show-
ing additional accuracy gains. For the latter case, during training, the optimization aims to find a
set of fixed scaling factors that minimize the average expected loss for the training set. We propose
instead to go beyond this and obtain input-dependent scaling factors – thus, at test time, these scaling
factors will not be fixed but rather inferred from data.

Let us first recall what the signal flow is when going through a binary block. The activations entering
a binary block are actually real-valued. Batch normalization centers the activations, which are then
binarized, thus losing a large amount of information. Binary convolution, re-scaling and eventually
PReLU follow. We propose to use the full-precision activation signal, prior to the large information
loss incurred by the binarization operation, to predict the scaling factors used to re-scale the output of
the binary convolution channel-wise. Specifically, we propose to approximate the real convolution
as follows:

A ∗W ≈ (sign(A)©∗ sign(W))�G(A;WG), (3)

where WG are the parameters of the gating function G. Such function computes the scale factors
used to re-scale the output of the binary convolution, and uses the pre-convolution real-valued ac-
tivations as input. Fig. 1 shows our implementation of function G. The design is inspired by Hu
et al. (2018), but we use the gating function to predict ahead rather than performing a self-referential
attention mechanism.

Why is this important?: An optimal mechanism to modulate the output of the binary convolution
clearly should not be the same for all examples as in Bulat & Tzimiropoulos (2019) or Xu & Cheung
(2019). Note that in Rastegari et al. (2016) the computation of the scale factors depends on the input
activations. However the analytic calculation is sub-optimal with respect to the task at hand. To
circumvent the aforementioned problems, our method learns, via backpropagation for the task at
hand, to predict the modulating factors using the real-valued input activations. By doing so, more
than 1/3 of the remaining gap with the real-valued network is bridged.

4.4 COMPUTATIONAL COST ANALYSIS

Table 1 details the computational cost of the different baseline binary network methodologies. We
differentiate between the number of binary and floating point operations, including operations such
as skip connections, pooling layers, etc. It is possible to see that our method leaves the number of
binary operations constant, and that the FLOPs increases by only a 1% of the total floating point
operation count. To put this into perspective, the magnitude is similar to the operation increase
incurred by the XNOR-Net with respect to its predecessor, BNN. Similarly, the double skip connec-
tions proposed in (Liu et al., 2018) adds again a comparable amount of operations.

Method BOPS FLOPS
BNN (Courbariaux et al., 2016) 1.695×109 1.314×108

XNOR-Net (Rastegari et al., 2016) 1.695×109 1.333×108

Double Skip ((Liu et al., 2018) 1.695×109 1.351×108

Bi-Real (Liu et al., 2018) 1.676×109 1.544×108

Ours 1.676×109 1.564×108

Full Precision 0 1.826×109

Table 1: Breakdown of floating point and binary operations for variants of binary ResNet-18.

5 RESULTS

In this section, we present two main sets of experiments. We used ImageNet (Russakovsky et al.,
2015) as a benchmark to compare our method against other state-of-the-art approaches in Sec. 5.1.
ImageNet is the most widely used dataset to report results on binary networks and, at the same time,
allows us to show for the first time that binary networks can perform competitively on a large-scale
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dataset. We further used CIFAR-100 (Krizhevsky & Hinton, 2009) to perform a set of ablation
studies (Sec. 5.2).

5.1 COMPARISON WITH THE STATE-OF-THE-ART

Table 2 shows a comparison between our method and relevant state-of-the-art methods, including
low-bit quantization methods.

Vs. other binary networks: Our strong baseline already comfortably achieves state-of-the art
results, surpassing the previously best-reported result by about 1% Wang et al. (2019). Our full
method further improves over the state-of-the-art by 5.5% top-1 accuracy. When comparing to
binary models that scale the capacity of the network (second set of results on Tab. 2), only Zhuang
et al. (2019) outperforms our method, surpassing it by 0.9% top-1 accuracy - yet, this is achieved
using 4 times the number of binary blocks.

Vs. real-valued networks: Our method reduces the performance gap with its real-valued counter-
part to ∼ 4% top-1 accuracy, or ∼ 5% if we compare against a real-valued network trained with
attention transfer.

Vs. other low-bit quantization: Table 2 also shows a comparison to the state-of-the-art for low-bit
quantization methods (first set of results). It can be seen that our method surpasses the performance
of all methods, except for TTQ (Zhu et al., 2016), which uses 2-bit weights and full-precision acti-
vations - thus incurring a computational cost several times larger than ours.

ImageNet
Method Bitwidth (W/A) Top-1 Top-5
BWN (Rastegari et al., 2016) 1/32 60.8 83.0
TTQ (Zhu et al., 2016) 2/32 66.6 87.2
HWGQ (Cai et al., 2017) 1/2 59.6 82.2
LQ-Net (Zhang et al., 2018) 1/2 62.6 84.3
SYQ (Faraone et al., 2018) 1/2 55.4 78.6
DOREFA-Net (Zhou et al., 2016) 2/2 62.6 84.4
ABC-Net (Lin et al., 2017) (1/1)×5 65.0 85.9
Circulant CNN (Liu et al., 2019) (1/1)×4 61.4 82.8
Struct Appr (Zhuang et al., 2019) (1/1)×4 64.2 85.6
Struct Appr** (Zhuang et al., 2019) (1/1)×4 66.3 86.6
Ensemble (Zhu et al., 2019) (1/1)×6 61.0 –
BNN (Courbariaux et al., 2016) 1/1 42.2 69.2
XNOR-Net (Rastegari et al., 2016) 1/1 51.2 73.2
Trained Bin (Xu & Cheung, 2019) 1/1 54.2 77.9
Bi-Real Net (Liu et al., 2018)** 1/1 56.4 79.5
CI-Net (Wang et al., 2019) 1/1 56.7 80.1
XNOR-Net++ (Bulat & Tzimiropoulos, 2019) 1/1 57.1 79.9
CI-Net (Wang et al., 2019)** 1/1 59.9 84.2
Strong Baseline (ours)** 1/1 60.9 83.0
Real-to-Bin (ours)** 1/1 65.4 86.2
Real valued 32/32 69.3 89.2
Real valued T-S 32/32 70.7 90.0

Table 2: Comparison with SOTA methods on Binary Networks on ImageNet. ** indicates the use of
real-valued downsample. The second column indicates the number of bits used to represent weights
and activations. Methods include low-bit quantization (upper section), and methods multiplying
the capacity of the network (second section). For the latter case, the second column includes the
multiplicative factor of the network capacity used.

5.2 ABLATION STUDIES

In order to conduct a more detailed ablation study we provide results on CIFAR-100.
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Multi-Stage Teacher Student: We trained a ResNet-18 full precision network to serve as the real-
valued baseline, and further trained another version using ResNet-34 as its teacher. The use of
teacher supervision on CIFAR-100 yields ∼ 1% top-1 accuracy increase. Instead, our multi-stage
teacher-student strategy yields∼ 5% top-1 accuracy gain, showing that it is a fundamental tool when
training binary networks.

Performance gap: We observe that, for CIFAR-100, we close the gap with real-valued networks
to about 2% when comparing with the full-precision ResNet-18, and to about 3% when comparing
with full-precision using teacher supervision. The gap is consistent to that on ImageNet, where the
error rate of our method increases 13% relative to a real-valued network, while on CIFAR-100 the
increase is of 10% relative error.

Binary downsample: We also show that the performance increase respect to the baseline is 6.4%
top-1 accuracy when using binary downsample, compared to an improvement of 6.6% when using
real-valued downsample. It is also noticeable that the gating mechanism is less effective when
using binary downsampling. This is reasonable given that, when using real-valued downsample, the
activations have a path through skip connections that avoids binary convolutions altogether. In this
way, the activation signal used by the gating function as input has better quality.

Scaling factors without attention matching: It is also remarkable that the gating module is less
effective in the absence of attention matching. It seems clear from this result that both are inter-
connected: the extra supervisory signal is necessary to properly guide the training, while the extra
flexibility added through the gating mechanism boosts the capacity of the network to mimic the
attention map.

Stage 1 Stage 2
Method Top-1 / Top-5 Top-1 / Top-5 ∆Top-1
Strong Baseline 69.31 / 88.70 66.32 / 88.62 –
SB + Att Trans 72.18 / 90.39 70.31 / 90.87 +3.99
SB + Att Trans + HKD 73.05 / 91.23 71.07 / 90.94 +4.75
SB + G 67.20 / 87.01 63.19 / 84.98 -3.13
SB + Multi-Stage TS 73.77 / 91.49 72.34 / 89.80 +6.02
Real-to-Bin 74.98 / 92.16 72.68 / 91.57 +6.36
Strong Baseline** 72.14 / 89.92 69.56 / 89.20 –
SB + Att Trans** 74.34 / 91.25 72.64 / 91.37 +3.08
SB + Att Trans + HKD** 75.43 / 92.15 73.93 / 91.24 +4.37
SB + G** 72.01 / 89.78 70.86 / 89.26 +1.30
SB + Multi-Stage TS** 75.72 / 92.11 74.62 / 91.79 +5.06
Real-to-Bin** 76.49 / 92.81 76.15 / 92.67 +6.59
Full Precision (our impl.) 78.28 / 93.63
Full Precision + TS (our impl.) 79.26 / 94.38

Table 3: Top-1 and Top-5 classification accuracy using ResNet-18 on CIFAR-100. ** indicates
real-valued downsample layers. G indicates that the gating function of Sec. 4.3 is used.

6 CONCLUSION

In this work we showed how to train binary networks to within a few percent points of their real-
valued counterpart, turning binary networks from hopeful research into a compelling alternative to
real-valued networks. We did so by training a binary network to not only predict training labels,
but also mimic the behaviour of real-valued networks. To this end, we devised a multi-stage atten-
tion matching strategy to drive optimization, and combined it with a gating strategy for scaling the
output of binary convolutions to increase representation power of the convolutional block. The two
strategies combine perfectly to boost the state-of-the-art of binary networks by 5.5% performance
top-1 accuracy.
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