
Under review as a conference paper at ICLR 2020

CONSTANT CURVATURE GRAPH CONVOLUTIONAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Interest has been rising lately towards methods representing data in non-Euclidean
spaces, e.g. hyperbolic or spherical. These geometries provide specific inductive
biases useful for certain real-world data properties, e.g. scale-free or hierarchical
graphs are best embedded in a hyperbolic space. However, the very popular class
of graph neural networks is currently limited to model data only via Euclidean
node embeddings and associated vector space operations. In this work, we bridge
this gap by proposing mathematically grounded generalizations of graph convo-
lutional networks (GCN) to (products of) constant curvature spaces. We do this
by i) extending the gyro-vector space theory from hyperbolic to spherical spaces,
providing a unified and smooth view of the two geometries, ii) leveraging gyro-
barycentric coordinates that generalize the classic Euclidean concept of the center
of mass. Our class of models gives strict generalizations in the sense that they
recover their Euclidean counterparts when the curvature goes to zero from either
side. Empirically, our methods outperform different types of classic Euclidean
GCNs in the tasks of node classification and minimizing distortion for symbolic
data exhibiting non-Euclidean behavior, according to their discrete curvature.

1 INTRODUCTION

Euclidean geometry in ML. In machine learning (ML), data is most often represented in a Eu-
clidean space for various reasons. First, some data is intrinsically Euclidean, such as positions in 3D
space in classical mechanics. Second, intuition is easier in such spaces, as they possess an appealing
vectorial structure allowing basic arithmetic and a rich theory of linear algebra. Finally, a lot of
quantities of interest such as distances and inner-products are known in closed-form formulae and can
be computed very efficiently on the existing hardware. These operations are the basic building blocks
for most of today’s popular machine learning models. Thus, the powerful simplicity and efficiency of
Euclidean geometry has led to numerous methods achieving state-of-the-art on tasks as diverse as
machine translation Bahdanau et al. (2014); Vaswani et al. (2017), speech recognition Graves et al.
(2013), image classification He et al. (2016) or recommender systems He et al. (2017).

Riemannian ML. In spite of this success, certain types of data have been shown to be better
represented by other types of geometries Bronstein et al. (2017); Nickel & Kiela (2017), leading in
particular to the rich theories of manifold learning Roweis & Saul (2000); Tenenbaum et al. (2000)
and information geometry Amari & Nagaoka (2007). The mathematical framework in vigor to
manipulate non-Euclidean geometries is known as Riemannian geometry Spivak (1979). We briefly
discuss some concepts of this machinery in appendix B. Although its theory leads to many strong
and elegant results, some of its basic quantities such as the distance function d(·, ·) are in general not
available in closed-form, which can be prohibitive to many computed-based methods.

Geometries of Constant Curvature. An interesting trade-off between general Riemannian mani-
folds and the Euclidean space is given by manifolds of constant sectional curvature. They define
together what are called hyperbolic geometry (negative curvature), elliptic geometry (positive curva-
ture) and Euclidean geometry (zero curvature). One of their advantage is that most of the quantities
of interest for machine learning methods are known in closed-form formulae: distance, geodesics,
exponential map, parallel transport, as well as their gradients. These geometries also possess their

1

Under review as a conference paper at ICLR 2020

own partial analogues to the Euclidean vector space formalism, with formulae for weighted centroids
such as barycentric coordinates.

Figure 1: Euclidean space
quickly "runs out of space"
when fitting exponentially
volume growing data such
as trees. This issue is for-
malised in appendix C.

The hyperbolic space can be intuitively understood as a continuous
tree: the volume of a ball grows exponentially with its radius, similarly
as how the number of nodes in a binary tree grows exponentially with
its depth. Its tree-likeness properties have long been studied mathemat-
ically Gromov (1987); Hamann (2017); Ungar (2008), were related to
heterogeneous properties of complex networks Krioukov et al. (2010)
and used to visualize large hierarchies Lamping et al. (1995). Recently,
in machine learning, hyperbolic representations outperformed their Eu-
clidean analogues in a number of embedding and classification tasks
Cho et al. (2019); De Sa et al. (2018); Ganea et al. (2018a); Gu et al.
(2019); Nickel & Kiela (2018; 2017); Tifrea et al. (2019). Several
important tools or methods found their hyperbolic counterparts, such
as variational autoencoders Mathieu et al. (2019); Ovinnikov (2019),
attention mechanisms Gulcehre et al. (2018), matrix multiplications,
recurrent units and multinomial logistic regression Ganea et al. (2018b).

Similarly, spherical geometry provides benefits for modeling certain
types of data Matousek (2013); Davidson et al. (2018); Xu & Durrett
(2018); Gu et al. (2019); Grattarola et al. (2018); Wilson et al. (2014).

Graph Embeddings. The Euclidean space has certain limitations of
embedding various types of graphs without large distortion. In some of these cases (e.g. scale-free
graphs and complex networks Krioukov et al. (2010)), the hyperbolic and spherical spaces do not
suffer from this representational bottleneck and can provide a better inductive bias for the specific
data types. We detail this discussion in appendix C.

"Linear Algebra" of Constant Curvature Spaces – Gyrovector Spaces. The hyperbolic space
is especially useful in Einstein’s special relativity theory where particles’ velocities are mathematically
represented as vectors in the Poincaré ball model. In order to study this geometry in analogy with
the vector space formalism of the Euclidean geometry, Ungar (1999; 2005; 2008; 2016) proposed
the elegant non-associative algebraic formalism of gyrovector spaces 1. Relativistic composition of
velocities now becomes the gryo-addition. Recently, Ganea et al. (2018b) have generalized matrix
multiplication and pointwise non-linearities to gyro spaces, allowing them to stack these building
blocks for generalizing classic deep learning models to operate with hyperbolic data representations.

However, it remains unclear how to extend in a principled manner the gyrovector space theory
to spaces of constant positive curvature (spherical). By leveraging Euler’s formula and complex
analysis, as far as we know, we present the first unified gyro framework that smoothly interpolates
between geometries of constant curvatures irrespective of their signs. Tools especially important
for machine learning such as exponential map, geodesics, parallel transport, distance, barycentric
coordinates have efficient closed form expressions in these spaces and converge to their Euclidean
variants when the curvature vanishes from both positive and negative regimes. This further allows us
to develop deep learning architectures in products of constant curvature spaces.

Graph Neural Networks. Kipf & Welling (2016) recently proposed a scalable approach to train
deep network models directly on graphs, sharing parameters in a manner that is consistent with
the geometry of the graph. As the weight sharing scheme is inspired from graph convolutions,
involving the graph Laplacian, they were coined graph convolutional networks (GCN). The proposed
architecture is essentially made of interpolating node embeddings via a (symmetrically) normalized
adjacency matrix, while this weight sharing can be understood as an efficient diffusion-like regularizer.
Similar works Abu-El-Haija et al. (2018); Hamilton et al. (2017); Defferrard et al. (2016); Klicpera
et al. (2019); Veličković et al. (2018) showed success at a number of tasks including link prediction
Zhang & Chen (2018), graph classification Xu et al. (2019) and node classification Kipf & Welling
(2017); Klicpera et al. (2019); Veličković et al. (2018). We describe GCN and discuss some related
work in more detail in appendix A, but a broader overview is given by Wu et al. (2019).

1https://en.wikipedia.org/wiki/Gyrovector_space

2

https://en.wikipedia.org/wiki/Gyrovector_space

Under review as a conference paper at ICLR 2020

Figure 2: Geodesics in the Poincaré disk (left) and the stereographic projection of the sphere (right).

How should one adapt graph neural networks to non-flat geometries of constant curvature?

In this work, we propose to let GCN manipulate data via node embeddings lying in spaces of constant
curvature or product of those, instead of a Euclidean space, in order to combine the representational
power of these geometries with the effectiveness of GCNs. Our contributions are as follows:

• We extend the gyro-vector space theory from hyperbolic to spherical spaces using complex
analysis. This gives unified and computationally efficient expressions for important Riemannian
geometric tools needed in machine learning, e.g. matrix multiplication and barycentric coordinates.
Our models are smooth deformations of the Euclidean vector space machinery.
• We leverage this apparatus to develop mathematically grounded adaptations of GCN to (products

of) spaces of constant curvature.
• We empirically show the benefit of our models on several real and synthetic node classification

and distortion minimization benchmarks.

2 THE GEOMETRY OF CONSTANT CURVATURE SPACES

Riemannian Geometry. A manifoldM of dimension d is a generalization to higher dimensions
of the notion of surface, and is a space that locally looks like Rd. At each point x ∈M,M can be
associated a tangent space TxM, which is a vector space of dimension d that can be understood as a
first order approximation ofM around x. A riemannian metric g is given by an inner-product gx(·, ·)
at each tangent space TxM, gx varying smoothly with x. A given g defines the geometry ofM,
because it can be used to define the distance between x and y as the infimum of the lengths of smooth
paths γ : [0, 1]→M from x to y, where the length is defined as `(γ) :=

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt .

Under certain assumptions, a given g also defines curvature. We detail these concepts in appendix B.

The Poincaré model. We choose to work in the Poincaré model of the hyperbolic geometry
because it can be continuously deformed to the Euclidean space. For a curvature −c < 0, the
Poincaré model of dimension d ≥ 2 is defined as Pdc := {x ∈ Rd | c‖x‖2 < 1} equipped with its
Riemannian metric gPx = 4

(1−c||x||2)2 I = (λcx)2I. What is convenient however, is that the distance
induced by g between x, y ∈ Pdc is given by the formula:

dcP(x, y) =
1√
c

cosh−1

(
1 +

2
c ||x− y||

2

(1
c − ||x||2)(1

c − ||y||2)

)
Notice that here it holds that dcP(x, y)

c−→0−−−→ 2||x− y||, so in the limit we recover Euclidean geometry
as desired.

Gyrovector spaces and Riemannian geometry of the Poincaré ball. As discussed in section 1,
the gryovector space formalism is used to generalize vector spaces to hyperbolic geometry. In
addition, important quantities from Riemannian geometry can be rewritten in terms of the Möbius
vector addition and scalar-vector multiplication Ganea et al. (2018b). We define and detail gyrovector
spaces in appendix D.

For x, y ∈ Pdc , the Möbius addition is given by:

x⊕cM y =
(1 + 2cxT y + c||y||2)x+ (1− c||x||2)y

1 + 2cxT y + c2||x||2||y||2
∈ Pdc

3

Under review as a conference paper at ICLR 2020

For s ∈ R and x ∈ ⊗cM, the scalar multiplication in the Poincaré model Pdc is given by:

s⊗cM x =
1√
c

tanh (s · tanh−1(
√
c||x||)) x

||x||
∈ Pdc

One can show that Möbius addition and scalar multiplication in Pdc form a gyrovector space Ungar
(2008) which is detailed in appendix D. We can use the Möbius addition to rewrite the distance
formula as dcP(x, y) = 2√

c
tanh−1(

√
c|| − x ⊕cM y||). This model is smoothly deformed to the

Euclidean model in the curvature limit as dcP(x, y)
c−→0−−−→ 2‖x − y‖. For x, y ∈ Pdc , the geodesic

γx−→y : R −→ Pdc , connecting x and y is given by

γx−→y(t) = x⊕cM (t⊗cM (−x⊕cM y))

Finally, the exponential and logarithmic map are written in closed form Ganea et al. (2018b):
For x, y ∈ Pdc and v 6= 0, y 6= x, the exponential map expx : TxPdc −→ Pdc and the log map
logx : Pdc −→ TxPdc are given by

expcx(v) = x⊕cM
(

tanh (
√
c
λcx||v||

2
)
v

||v||

)
; logcx(y) =

2√
cλcx

tanh−1(
√
c||−x⊕cMy||)

−x⊕cM y

|| − x⊕cM y||

Gyrovector spaces of the Spherical Spaces. The gyrovector space formalism was so far, to
our knowledge, only described for hyperbolic spaces. So, how can we extend it to spaces of
constant positive curvature (spherical) K ? It turns out that replacing c by −K in the above
equations of the Poincaré model suffices. However, that implies that all occurrences of

√
c would

be replaced by i
√
K where i is the imaginary unit. This will still give only real functions if one

uses Euler’s formula eix = cos(x) + i sin(x) and the resulting identities tan(ix) = i tanh(x) and
tan−1(ix) = i tanh−1(x). In this case, all the above equations will recover the corresponding
quantities from the space of constant curvature obtained by isometrically projecting the sphere Sdc
into Rd, i.e. the stereographic projection of the sphere. Moreover, the gyrovector space definition
list would be fully satisfied as well. We denote this gyrospace and the two resulting Möbius gyro
operations by (G = Rd,⊕cG,⊗cG). We discuss this in detail in appendix D.

As a consequence, we have a unified formalism that interpolates smoothly between all three geome-
tries of constant curvature.

3 HYPERBOLIC & SPHERICAL GCNS

We start by introducing the methods upon which we build. For space reasons, we will here detail
just our proposed hyperbolic GCN. However, generalizations to spherical and cartesian products of
constant curvature spaces Gu et al. (2019) are straightforward given the previous discussion about
universality of gyrovector spaces.

3.1 GRAPH CONVOLUTIONAL NETWORKS

The problem of node classification on a graph has long been tackled with explicit regularization
using the graph Laplacian Weston et al. (2012). Namely, for a directed graph with adjacency matrix
A, by adding the following term to the loss:

∑
i,jAij‖f(xi) − f(xj)‖2 = f(X)TLf(X), where

L = D−A is the (unnormalized) graph Laplacian, Dii :=
∑
k Aik defines the (diagonal) degree

matrix, f contains the trainable parameters of the model and X = (xji)ij the node features of the
model. Such a regularization is expected to improve generalization if connected nodes in the graph
tend to share labels; node i with feature vector xi is represented as f(xi) in a Euclidean space.

With the aim to obtain more scalable models, Kipf et al. propose to make this regularization implicit
by incorporating it into what they call graph convolutional networks Kipf & Welling (2016), which
they motivate as a first order approximation of spectral graph convolutions, yielding the following
layer architecture (detailed in appendix A):

H(t+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(t)W(t)

)
, (1)

4

Under review as a conference paper at ICLR 2020

where Ã = A + I has added self-connections, D̃ii =
∑
k Ãik defines its diagonal degree matrix, σ

is a non-linearity such as sigmoid, tanh or ReLU = max(0, ·), and W(t) and H(t) are the parameter
and activation matrices of layer t respectively, with H(0) = X the input feature matrix.

3.2 TOOLS FOR A HYPERBOLIC GCN

Learning a parametrized function fθ that respects hyperbolic geometry has been studied in Ganea et al.
(2018b). More precisely, the authors consider feed forward neural networks as well as recurrent neural
networks and derive hyperbolic counterparts to essential building blocks such as dense layers and
logits in hyperbolic space. We leverage their results in order to generalize Graph Neural Networks.

3.3 HYPERBOLIC RIGHT MATRIX MULTIPLICATION

The first needed ingredient is a definition of right matrix multiplication XW, where X ∈ Rn×d
denotes the embedding and W ∈ Rd×e are the weights. We assume that each row Xi• ∈ Pd holds
the hyperbolic embedding of node i and W is an Euclidean weight matrix. Let us first understand
what a right matrix multiplication is doing in Euclidean space. The Euclidean right multiplication
can be written column-wise (XW)•i as follows:

(XW)•i =

X
T
1•W•i

...
XT
n•W•i

 =

X11W1i + · · ·+X1dWdi

...
Xn1W1i + · · ·+XndWdi

 = W1iX•1 + · · ·+WdiX•d

This leads to a new feature (XW)•i by linear combining the features of X using the weights
W1i, . . . ,Wdi. The features viewed as vectors X•j are not elements of hyperbolic space but rather
elements of Rd. It hence makes sense to lift this operation to the tangent space T0Pd ∼= Rd, as
suggested by Ganea et al. (2018b):

Definition 3.1. Given an embedding X ∈ Rn×d holding hyperbolic embeddings in its rows and
weights W ∈ Rd×e, the hyperbolic right matrix multiplication is defined as

(X⊗cMW)i• = expc0 ((logc0(X)W)i•) =
1√
c

tanh

(
||(XW)i•||
||Xi•||

tanh−1(
√
c||X•i||)

)
(XW)i•
||(XW)i•||

where expc0 and logc0 denote the exponential and logarithmic map in the Poincaré model.

This definition is in perfect agreement with the hyperbolic scalar multiplication, which can also be
written as r⊗Mx = expc0(r logc0(x)). This multiplication has the following desirable properties Ganea
et al. (2018b). Another important element of any feed forward neural network is the application
of a non-linearity. This is solved in a similar fashion in Ganea et al. (2018b). Given any map
σ : Rd −→ Rd, x 7→ σ(x), we define its hyperbolic dual as σM : Pd −→ Pd, x 7→ expc0(σ(logc0(x))).

3.4 HYPERBOLIC LEFT MATRIX MULTIPLICATION, LINEAR COMBINATIONS AND MIDPOINTS

For graph neural networks we also need the notion of message passing among neighboring nodes.
We hence need an operation that combines different node embeddings and is permutation invariant.
In Euclidean space this operation was achieved by the left multiplication of the embedding with
the preprocessed adjacency Â: H(l+1) = σ

(
ÂZ(l)

)
where Z(l) = H(l)W(l) Let us consider the

left multiplication in more detail. For ease of notation we denote the preprocessed adjacency as
A ∈ Rn×n. The matrix product is then

(AX)i• = Ai1X1• + · · ·+AinXn•

This means that the new representation of node i is obtained by calculating the linear combination of
all the other node embeddings, weighted by the i-th row of A. Notice that we have already seen this
when studying the architecture of GCN on the node level.
To adapt GCNs to hyperbolic space we hence need a notion of taking a weighted linear combination
or barycentric coordinates. Obviously, the Euclidean operation will not suffice as it is not respecting
the underlying geometry nor restricted to Pdc .

5

Under review as a conference paper at ICLR 2020

Figure 3: Left: Euclidean Linear combination αx+ βy. Middle: Poincaré gyromidpoints (red dots)
of two points for different weights on the left and Poincaré gyromidpoints in a hyperbolic triangle on
the right with two equal and one free weight. Right: Möbius gyromidpoint in the Poincaré model
defined by Ungar (2008) and alternatively, here in definition 3.2.

In order to introduce a hyperbolic linear combination, let us first look at the Euclidean version for
only two vectors x, y ∈ Rd and weights α, β ∈ R: z = αx+βy This operation is visualized in fig. 3:

The resulting sum αx+βy is actually the weighted midpointmE(x, y;α, β) = α
α+βx+ β

α+β y scaled
by the factor α+ β. Scaling a vector in Euclidean space has the effect that the length of the vector is
scaled by the same factor but the direction remains unchanged.
We can achieve the same scaling behaviour in hyperbolic space using the hyperbolic scalar multipli-
cation ⊗cM since it has the similar property ||r⊗cM x||M = dMc (0, r⊗cM x) = r||x||M. Since geodesics
through 0 are straight lines in the Poincaré model we also are not changing the direction. We hence
reduced the problem to finding a notion of a weighted midpoint in hyperbolic space.

We will use the notion of a weighted midpoint arising from gyro theory, introduced in Ungar (2010):
Definition 3.2. For {x1, . . . , xn} ⊂ Pdc and weights {α1, . . . , αn} ⊂ R the weighted gyromidpoint
in the Poincaré model is given by

mc
M(x1, . . . , xn;α1, . . . αn) =

1

2
⊗cM

(
n∑
i=1

αiλ
c
xi∑n

j=1 αj(λ
c
xj
− 1)

xi

)

Note that this definition of weighted midpoint implicitly performs a normalization by the term∑n
i=1 αi and we will also assume this for the Euclidean weighted mean. As can be seen in fig. 3,

the gyromidpoints respect hyperbolic geometry as they follow the geodesics. This midpoint also has
some analogous properties to the Euclidean version, as seen in Ungar (2010):
Lemma 1. For {x1, . . . , xn} ⊂ Pdc and y ∈ Pdc and weights {α1 . . . , αn} ⊂ R it holds:

• mc
M(y ⊕cM x1, . . . , y ⊕cM xn;α1, . . . αn) = y ⊕cM mc

M(x1, . . . , xn;α1, . . . αn)

• dcM(x1,m
c
M(x1, x2; 1

2 ,
1
2)) = 1

2d
c
M(x1, x2)

• mc
M(x1, . . . , xn;α1, . . . αn)

c−→0−−−→ mE(x1, . . . , xn;α1, . . . αn)

We are now ready to define the hyperbolic linear combination in the Poincaré model.
Definition 3.3. For {x1, . . . , xn} ⊂ Pdc and weights {α1, . . . , αn} ⊂ R, the hyperbolic linear
combination in the Poincaré model is given by: (

∑n
i=1 αi)⊗cM mc

M(x1, . . . , xn;α1, . . . αn).

We can further introduce the left matrix multiplication in the Poincaré model:
Definition 3.4. Given X ∈ Rn×d with rows Xi• ∈ Pdc and A ∈ Rn×n, the hyperbolic left matrix
multiplication Z = A⊗cM X is defined row-wise via

Zi• = (

n∑
j=1

Aij)⊗cM mc
M(X1•, . . . ,Xn•;Ai1, . . . Ain)

6

Under review as a conference paper at ICLR 2020

Lemma 2. Given X ∈ Rn×d with rows Xi• ∈ Pdc , A ∈ Rn×n and r ∈ R, the hyperbolic left matrix
multiplication satisfies: i) I⊗cMX = X; ii) r⊗cM (A⊗cMX) = (rA)⊗cMX; iii) A⊗cMX

c−→0−−−→ AX.

3.5 HYPERBOLIC LOGITS

Finally, we need the logit and softmax layer, a neccessity for any classification task. We here use the
model of Ganea et al. (2018b). More details are given in appendix E.

3.6 HYPERBOLIC GCN

We are now ready to introduce a hyperbolic version of GCN Kipf & Welling (2017), denoted by
Hc-GCN. Assume we are given a graph with node level features G = (V,A,X) where X ∈ Rn×d
with each row Xi• ∈ Pdc and adjacency A ∈ Rn×n. We first perform a preprocessing step by
mapping the Euclidean features to the Poincaré ball via the projection X 7→ X

2
√
c||X||max

, where
||X||max denotes the maximal norm among all hyperbolic embeddings in X. For l ∈ {0, . . . , L− 2},
the (l + 1)-th layer of Hc −GCN is given by

H(l+1) = σM
(
Â⊗cM

(
H(l) ⊗cM W(l)

))
where H(0) = X, σ is some non-linearity and Â = D̃−

1
2 ÃD̃−

1
2 . The final layer is a hyperbolic

logit layer:
H(L) = softmax

(
Â logit

(
H(L−1),W(L−1)

))
A very important property of Hc −GCN is that its architecture recovers the Euclidean GCN when
we let curvature go to zero: Hc-GCN c−→0−−−→ GCN.

3.7 GCNS IN PRODUCT OF CONSTANT CURVATURE SPACES

The extension of the above approach to spherical spaces and products of spaces of constant curvature
is rather straightforward. For clarity, we detail it in appendix F.

4 EXPERIMENTS

We evaluate the architectures introduced in the previous sections on the tasks of node classification
and minimizing embedding distortion for several synthetic as well as real datasets.

More details are give in appendix G.

Minimizing Distortion Our first goal is to evaluate the graph embeddings learned by our GCN
models on the representation task of fitting the graph metric in the embedding space. We desire to

minimize the average distortion defined similarly as in Gu et al. (2019): 1
n2

∑
i,j

((
d(xi,xj)
dG(i,j)

)2

− 1

)2

,

where d(xi, xj) is the distance between the embeddings of nodes i and j, while dG(i, j) is their graph
distance (shortest path length).

We create three synthetic datasets as follows. Tree: a balanced tree of depth 5 and branching factor 4
consisting of 1365 nodes and 2728 edges. Torus: We sample points (nodes) from the (planar) torus,
i.e. from the unit connected square; two nodes are connected by an edge iff their toroidal distance (the
warped distance) is smaller than a fixed R = 0.01; this gives 1000 nodes and 30626 edges. Spherical
Graph: we sample points (nodes) from S2, connecting nodes iff their distance is smaller than 0.2,
leading to 1000 nodes and 17640 edges.

For the GCN models, we use 1-hot initial node features. We use two GCN layers with dimensions 16
and 10. The non-Euclidean models do not use additional non-linearities between layers. All euclidean
parameters are updated using the ADAM optimizer with learning rate 0.01. Curvatures are learned
using (stochastic) gradient descent and learning rate of 0.0001. All models are trained for 10000
epochs and we report the minimal achieved distortion. The results shown in table 1 reveal the benefit
of our models. One can notice that estimated curvatures correspond to our geometric knowledge
about these specific datasets.

7

Under review as a conference paper at ICLR 2020

Model Tree Toroidal Graph Spherical Graph
GCN (Linear) 0.045 0.0607 0.0415
GCN (ReLU) 0.0502 0.0603 0.0409
H10-GCN 0.0029 0.272 0.267
S10-GCN 0.473 0.0485 0.0337

H5 ×H5-GCN 0.0048 0.112 0.152
S5 × S5-GCN 0.51 0.0464 0.0359(
H2
)4

- GCN 0.025 0.084 0.062(
S2
)4

- GCN 0.312 0.0481 0.0378

Table 1: Minimum achieved average distortion of the different models. H and S denote hyperbolic
and spherical models respectively.

Figure 4: Histogram of Curvatures from "Deviation of Parallogram Law"

4.1 NODE CLASSIFICATION

We consider the popular node classification datasets Citeseer Sen et al. (2008), Cora-ML McCallum
et al. (2000) and Pubmed Namata et al. (2012) which are citation networks. Node labels correspond
to the particular subfield the published document is associated with. Dataset statistics and training
details are deffered to the appendix G due to the lack of space.

Curvature Estimations of Datasets To understand how far are the real graphs of the above datasets
from the Euclidean geometry, we first estimate the graph curvature of the four studied datasets using
the deviation from the Parallelogram Law Gu et al. (2019). This is detailed in appendix H.
Curvature histograms are shown in fig. 4. It can be noticed that the datasets are mostly non-Euclidean.
Thus, we have a good motivation to apply our constant-curvature GCN architectures.

Node classification results. These are shown in table 2. It can be seen that our models sometimes
outpeform the two Euclidean GCN considered (with or without non-linearities), showcasing the
benefit of our proposed architecture.

5 CONCLUSION

In this paper, we introduced natural extensions of graph neural networks to the non-Euclidean setting.
To this end, we studied product of spaces of constant sectional curvature and equipped them with

Model Citeseer Cora-ML Pubmed MS Academic
GCN (ReLU) 75.7 ± 0.36 83.31 ± 0.36 79.05 ± 0.52 92.14 ± 0.25
GCN (Linear) 76.28 ± 0.30 83.81 ± 0.35 78.94 ± 0.50 92.3 ± 0.21
H64

1 -GCN 76.29 ± 0.3 83.6 ± 0.34 79.01 ± 0.58 92.06±0.22
S64

1 -GCN 76.18 ± 0.37 83.97 ± 0.31 79.04 ± 0.5 92.1±0.31
Prod-GCN 75.91 ± 0.34 82.9 ± 0.6 78.7 ± 0.53 91.9 ± 0.40

Table 2: Node classification: Average accuracy across 10 splits with estimated uncertainties at 95
percent confidence level via bootstrapping on our datasplits. H and S denote hyperbolic (Poincaré
ball model) and spherical (stereographic projection) models respectively.

8

Under review as a conference paper at ICLR 2020

additional structure in the form of gyrovector spaces and matrix multiplications. Empirically we
showed the benefit of our model on several real and synthetic datasets.

REFERENCES

Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-GCN: Multi-scale Graph
Convolution for Semi-supervised Node Classification. International Workshop on Mining and
Learning with Graphs (MLG), 2018.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. American
Mathematical Soc., 2007.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, 2013.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. ICLR, 2018.

Hyunghoon Cho, Benjamin DeMeo, Jian Peng, and Bonnie Berger. Large-margin classification in
hyperbolic space. AISTATS, 2019.

Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tomczak. Hyperspherical
Variational Auto-Encoders. Uncertainty in Artificial Intelligence (UAI), 856- 865, 2018.

Christopher De Sa, Albert Gu, Christopher Ré, and Frederic Sala. Representation tradeoffs for
hyperbolic embeddings. 2018. URL https://www.cs.cornell.edu/~cdesa/papers/
arxiv2018_hyperbolic.pdf.

Michaël Defferrard, Xavier Bresson, and Pierre Vand ergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems
(NIPS), 2016.

Michel Deza and Monique Laurent. Geometry of Cuts and Metrics. Springer, Vol. 15, 1996.

F. Ficken. The Riemannian and affine differential geometry of product-spaces. Annals of Mathematics,
pp. 892–913, 1939.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for learning
hierarchical embeddings. Proceedings of the thirty-fifth international conference on machine
learning (ICML), 2018a.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In Advances
in Neural Information Processing Systems, 2018b.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for
learning hierarchical embeddings. In International Conference on Machine Learning (ICML),
2018a.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In
Advances in Neural Information Processing Systems (NIPS), 2018b.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
Message Passing for Quantum Chemistry. Proceedings of the International Conference on Machine
Learning, 2017.

Daniele Grattarola, Daniele Zambon, Cesare Alippi, and Lorenzo Livi. Learning graph embeddings
on constant-curvature manifolds for change detection in graph streams. stat, 1050:16, 2018.

9

https://www.cs.cornell.edu/~cdesa/papers/arxiv2018_hyperbolic.pdf
https://www.cs.cornell.edu/~cdesa/papers/arxiv2018_hyperbolic.pdf

Under review as a conference paper at ICLR 2020

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing,
pp. 6645–6649. IEEE, 2013.

Mikhael Gromov. Hyperbolic groups. In Essays in group theory, pp. 75–263. Springer, 1987.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations
in product spaces. 2019.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations
in products of model spaces. ICLR, 2019.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al. Hyperbolic attention
networks. arXiv preprint arXiv:1805.09786, 2018.

Matthias Hamann. On the tree-likeness of hyperbolic spaces. Mathematical Proceedings of the
Cambridge Philosophical Society, pp. 1–17, 2017. doi: 10.1017/S0305004117000238.

Matthias Hamann. On the tree-likeness of hyperbolic spaces. Mathematical Proceedings of the
Cambridge Philo- sophical Society, pp. 117, 2017.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. In Advances in Neural Information Processing Systems, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182. International World Wide Web Conferences Steering Committee, 2017.

Christopher Hopper and Ben Andrews. The ricci flow in riemannian geometry. 2010.

Svante Janson. Riemannian geometry: some examples, including map projections . 2015.

Diederik P. Kingma and Jimmy Ba. ADAM: A method for stochastic optimization. ICLR, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. ICLR, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: graph
neural networks meet personalized pagerank. ICLR, 2019.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.
Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.

John Lamping, Ramana Rao, and Peter Pirolli. A focus+ context technique based on hyperbolic
geometry for visualizing large hierarchies. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 401–408. ACM Press/Addison-Wesley Publishing Co., 1995.

Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota Tomioka, and Yee Whye Teh. Hierarchical
representations with poincar\’e variational auto-encoders. arXiv preprint arXiv:1901.06033, 2019.

Jiri Matousek. Lecture notes on metric embeddings. 2013.

Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the construction
of internet portals with machine learning. Information Retrieval, 3(2):127–163, 2000.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven Active Surveying for
Collective Classification. International Workshop on Mining and Learning with Graphs (MLG),
2012.

10

Under review as a conference paper at ICLR 2020

Maximilian Nickel and Douwe Kiela. Poincare embeddings for learning hierarchical representations.
Advances in Neural Information Processing Systems, pp. 6341–6350, 2017.

Maximilian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In International Conference on Machine Learning, 2018.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
In Advances in Neural Information Processing Systems, pp. 6341–6350, 2017.

Ivan Ovinnikov. Poincar\’e wasserstein autoencoder. arXiv preprint arXiv:1901.01427, 2019.

Joel Robbin and Dietmar Salamon. Introduction to differential geometry. ETH, Lecture Notes, 2011.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
science, 290(5500):2323–2326, 2000.

Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. International Symposium
on Graph Drawing, pp. 355–366. Springer„ 2011.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lisa Getoor, Brian Gallagher, and T. Eliassi-Rad.
Collective Classification in Network Data. AI Magazine, 29(3):93–106, 2008.

Michael Spivak. Comprehensive introduction to differential geometry. volume four, 1979.

Michael Spivak. A comprehensive introduction to differential geometry. volume four. 1979.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincaré glove: Hyperbolic word
embeddings. 2019.

Pavan Turaga and Anuj Srivastava. Riemannian computing in computer vision. Springer, 2016.

Abraham Ungar. A gyrovector space approach to hyperbolic geometry. Synthesis Lectures on
Mathematics and Statistics, 1(1):1–194, 2008.

Abraham Ungar. Barycentric Calculus in Euclidean and Hyperbolic Geometry. World Scientific,
ISBN 9789814304931, 2010.

Abraham A Ungar. The hyperbolic pythagorean theorem in the poincaré disc model of hyperbolic
geometry. The American mathematical monthly, 106(8):759–763, 1999.

Abraham A Ungar. Analytic hyperbolic geometry: Mathematical foundations and applications.
World Scientific, 2005.

Abraham Albert Ungar. A gyrovector space approach to hyperbolic geometry. Synthesis Lectures on
Mathematics and Statistics, 1(1):1–194, 2008.

Abraham Albert Ungar. Novel tools to determine hyperbolic triangle centers. In Essays in Mathemat-
ics and its Applications, pp. 563–663. Springer, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua.
Bengio. Graph Attention Networks. ICLR, 2018.

Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via semi-
supervised embedding. In Neural Networks: Tricks of the Trade, pp. 639–655. Springer, 2012.

Richard C Wilson, Edwin R Hancock, Elżbieta Pekalska, and Robert PW Duin. Spherical and
hyperbolic embeddings of data. IEEE transactions on pattern analysis and machine intelligence,
36(11):2255–2269, 2014.

11

Under review as a conference paper at ICLR 2020

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. arXiv
preprint arXiv:1808.10805, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks. ICLR, 2019.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances in
Neural Information Processing Systems, 2018.

12

Under review as a conference paper at ICLR 2020

A GCN - A BRIEF SURVEY

A.1 CONVOLUTIONAL NEURAL NETWORKS ON GRAPHS

One of the pioneering works on neural networks in non-Euclidean domains was done by Defferrard
et al. (2016). Their idea was to extend convolutional neural networks for graphs using tools from
graph signal processing.

Given a graphG = (V,A), where A is the adjacency matrix and V is a set of nodes, we define a signal
on the nodes of a graph to be a vector x ∈ Rn where xi is the value of the signal at node i. Consider
the diagonalization of the symmetrized graph Laplacian L̃ = UΛUT , where Λ = diag(λ1, . . . , λn).
The eigenbasis U allows to define the graph Fourier transform x̂ = UTx ∈ Rn.
In order to define a convolution for graphs, we shift from the vertex domain to the Fourier domain:

x ?G y = U
((
UTx

)
�
(
UTy

))
Note that x̂ = UTx and ŷ = UTy are the graph Fourier representations and we use the element-wise
product � since convolutions become products in the Fourier domain. The left multiplication with U
maps the Fourier representation back to a vertex representation.
As a consequence, a signal x filtered by gθ becomes y = Ugθ(Λ)UTx where gθ = diag(θ) with
θ ∈ Rn constitutes a filter with all parameters free to vary. In order to avoid the resulting complexity
O(n), Defferrard et al. (2016) replace the non-parametric filter by a polynomial filter:

gθ(Λ) =

K−1∑
k=0

θkΛk

where θ ∈ RK resulting in a complexity O(K). Filtering a signal is unfortunately still expensive
since y = Ugθ(Λ)UTx requires the multiplication with the Fourier basis U, thus resulting in
complexity O(n2). As a consequence, Defferrard et al. (2016) circumvent this problem by choosing
the Chebyshev polynomials Tk as a polynomial basis, gθ(Λ) =

∑K
k=0 θkTk(Λ̃) where Λ̃ = 2Λ

λmax
−

I. As a consequence, the filter operation becomes y =
∑K
k=0 θkTk(L̂)x where L̂ = 2L

λmax
− I. This

led to a K-localized filter since it depended on the K-th power of the Laplacian. The recursive
nature of these polynomials allows for an efficient filtering of complexity O(K|E|), thus leading
to an computationally appealing definition of convolution for graphs. The model can also be built
in an analogous way to CNNs, by stacking multiple convolutional layers, each layer followed by a
non-linearity.

A.2 GRAPH CONVOLUTIONAL NETWORKS

Kipf & Welling (2017) extended the work of Defferrard et al. (2016) and inspired many follow-up
architectures Chen et al. (2018); Hamilton et al. (2017); Abu-El-Haija et al. (2018); Wu et al. (2019).
The core idea of Kipf & Welling (2017) is to limit each filter to 1-hop neighbours by setting K = 1,
leading to a convolution that is linear in the Laplacian L̂:

gθ ? x = θ0x + θ1L̂x

They further assume λmax ≈ 2, resulting in the expression

gθ ? x = θ0x− θ1D
− 1

2AD−
1
2x

To additionally alleviate overfitting, Kipf & Welling (2017) constrain the parameters as θ0 = −θ1 = θ,
leading to the convolution formula

gθ ? x = θ(I + D−
1
2AD−

1
2)x

Since I+D−
1
2AD−

1
2 has its eigenvalues in the range [0, 2], they further employ a reparametrization

trick to stop their model from suffering from numerical instabilities:

gθ ? x = θD̃−
1
2 ÃD̃−

1
2x

where Ã = A + I and D̃ii =
∑n
j=1 Ãij .

13

Under review as a conference paper at ICLR 2020

Rewriting the architecture for multiple features X ∈ Rn×d1 and parameters Θ ∈ Rd1×d2 instead of
x ∈ Rn and θ ∈ R, gives

Z = D̃−
1
2 ÃD̃−

1
2XΘ ∈ Rn×d2

The final model consists of multiple stacks of convolutions, interleaved by a non-linearity σ:

H(k+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(k)Θ(k)

)
where H(0) = X and Θ ∈ Rn×dk .

The final output H(K) ∈ Rn×dK represents the embedding of each node i as hi = Hi• ∈ RdK and
can be used to perform node classification:

Ŷ = softmax
(
D̃−

1
2 ÃD̃−

1
2H(K)W

)
∈ Rn×L

where W ∈ RdK×L, with L denoting the number of classes.

In order to illustrate how embeddings of neighbouring nodes interact, it is easier to view the architec-
ture on the node level. Denote by N (i) the neighbours of node i. One can write the embedding of
node i at layer k + 1 as follows:

h
(k+1)
i = σ

Θ(l)
∑

j∈Ni∪{i}

h
(k)
j√

|N (j)||N (i)|


Notice that there is no dependence of the weight matrices Θ(l) on the node i, in fact the same
parameters are shared across all nodes.
In order to obtain the new embedding h

(k+1)
i of node i, we average over all embeddings of the

neighbouring nodes. This Message Passing mechanism gives rise to a very broad class of graph
neural networks Kipf & Welling (2017); Veličković et al. (2018); Hamilton et al. (2017); Gilmer et al.
(2017); Chen et al. (2018); Klicpera et al. (2019); Abu-El-Haija et al. (2018).

To be more precise, GCN falls into the more general category of models of the form

z
(k+1)
i = AGGREGATE(k)({h(k)

j : j ∈ N (i)};W (k))

h
(k+1)
i = COMBINE(k)(h

(k)
i , z

(k+1)
i ;V (k))

Models of the above form are deemed Message Passing Graph Neural Networks and many choices
for AGGREGATE and COMBINE have been suggested in the literature Kipf & Welling (2017);
Hamilton et al. (2017); Chen et al. (2018).

B MANIFOLDS AND RIEMANNIAN GEOMETRY

In this section, we give an overview over the mathematical tools from differential geometry leveraged
in this paper. More precisely, the notion of a manifold and Riemannian geometry will be discussed
with a special emphasis on spherical geometry, hyperbolic space and its various models. For a deeper
treatment of differential geometry we refer to Robbin & Salamon (2011); Spivak (1979); Hopper &
Andrews (2010).

B.1 MANIFOLDS AND THEIR SUBCLASSES

Informally stated, manifolds are spaces that locally look like Euclidean space. An intuitive example
is given by the sphere S2 = {x ∈ R3 : ||x|| = 1}. For someone standing on the Earth, space seems
flat and therefore Euclidean. This only holds locally; globally the Earth obeys a different geometry as
one can notice by watching ships disappear towards the horizon.
This resemblance with Euclidean space allows for many translations of important concepts from
calculus to more general notions in manifolds. This locality property can be formalized:
Definition B.1. A topological manifoldM of dimension n is a Hausdorff, connected, topological
space which is locally homeomorphic to Rn. In other words, for every point p ∈M, one can find a
neighbourhood Vp ⊂M containing p and a homeomorphism φ, such that U = φ(Vp) ⊂ Rn.

14

Under review as a conference paper at ICLR 2020

Figure 5: Two charts onM and their transition functions

There exist further subclasses of this definition of a manifold, each allowing for more additional
structure. The class of manifolds that are mainly of interest in this work are smooth manifolds. In
order to define this mathematical object, the notion of charts and atlases needs to be introduced.
Definition B.2. A chart is a pair (V, ψ) where V is an open neighbourhood inM and ψ : V −→
U = ψ(V) is a homeomorphism onto U ⊂ Rn.
Definition B.3. A collection of charts A = {(Ui, ψi)}i∈I is called Cr-atlas forM if:

• M = ∪i∈IUi

• The transition functions ψij = ψi◦ψ−1
j restricted to the intersection Ui∩Uj are Cr-differentiable.

With these definitions at hand, the smooth manifold can be introduced:
Definition B.4. A smooth manifoldM is a topological manifold equipped with an equivalence class
of atlases, whose transition functions are all smooth.

These definitions are easier digested when accompanied with an example:
Example 1. The 2-sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} is an example of a smooth
manifold. One can see this by the following construction of an atlas:

Define the open set
U+
z = {(x, y, z) ∈ R3 : z > 0}

and the open unit disk in R2:

Ωx,y = {(x, y, z) ∈ R3 : x2 + y2 < 1}
Further define the projection

pz : U+
z ∩ S2 −→ Ωx,y , (x, y, z) 7→ pz(x, y, z) = (x, y)

with the inverse given by

p−1
z : Ωx,y −→ U+

z ∩ S2 , (x, y) 7→ p−1
z (x, y) = (x, y,

√
1− x2 − y2)

Both functions are smooth, hence pz constitutes a coordinate chart on S2. We can extend the same
arguments to the other open sets U−z , U

+
x , U

−
x , U

+
y , U

−
y with the appropriate disk and projection

15

Under review as a conference paper at ICLR 2020

chosen to obtain 5 more charts. The union of these sets cover S2 and we thus have an atlas. We hence
have proven that S2 is a topological manifold.
Consider now the transition functions given by f±i,j = p±i ◦ (p±j)−1

For example

f+
x,y = p+

x ◦ (p+
y)−1 : U+

x ∩ U+
y 7→ Ωx,z , (x, y, z) −→ (

√
1− x2 − z2, z)

Again, one easily sees that this is a smooth map and one can further verify that this holds for any f±i,j .
As a result, S2 is a smooth manifold.

B.2 RIEMANNIAN MANIFOLDS

A very powerful subclass of smooth manifolds is given by Riemannian manifolds. The additional
required structure is given by the so-called Riemannian metric. To understand this concept, we
need to first visit the notion of tangent space.

B.2.1 TANGENT SPACE

In differential geometry, there are usually two ways of looking at manifolds. The first way is viewing
the manifold as an object embedded in an ambient space – extrinsic view. Again, the easiest example
is the sphere S2 embedded in Euclidean space R3. The second view (intrinsic) is studying the
manifold as an object itself, without relying on any ambient space. The second view is the preferred
one in abstract differential geometry as it is mathematically more appealing to separate the manifold
from its surrounding space and investigate it intrinsically. For machine learning, the first view is to be
favored as one wants to use tools from Euclidean geometry which are present in the ambient space.
As a result, there are two ways of introducing tangent spaces and for the aforementioned reasons.
However, only the definition arising from the extrinsic point of view will be discussed here.
Definition B.5. ConsiderM ⊂ Rn a smooth manifold and a point p ∈ M. A vector v ∈ Rn is
called tangential to p if and only if there exists a smooth curve γ : R 7→ M fulfilling:

• γ(0) = p

• γ̇(0) = v

We denote by TpM = {γ̇(0) : γ : R 7→ M is smooth, γ(0) = p} the tangent space at p.

This definition is extrinsic in the sense that it relies on the embedding space Rn by letting the tangent
vectors "stick out" from the manifold (consider fig. 6 for instance). We will use the concept of tangent
spaces to define the Riemannian metric.

B.2.2 RIEMANNIAN METRIC

A Riemannian metric induces for every point p ∈M an inner product in the tangent space TpM,
meaning a map gp : TpM×TpM−→ R which is symmetric and positive definite:

• gp(x, y) = gp(y, x) for every x, y ∈ TpM
• gp(x, x) ≥ 0 for every x ∈ TpM

Moreover, the collection of inner products varies smoothly in the location of the tangent space p. The
best known example of a Riemannian metric is given by Euclidean space Rn. The tangent space at p
is given by TpRn ∼= Rn and is equipped with the standard inner product gp(x, y) = xT y. We will
usually identify gp with its matrix representation. The Riemannian metric allows for the extension of
many mathematical tools to Riemannian manifolds that are needed in order to study machine learning
in non-Euclidean spaces.

B.3 MATHEMATICAL TOOLS

Given a Riemannian metric g on a manifoldM, one is able to define many quantities analogous to
Euclidean space.

16

Under review as a conference paper at ICLR 2020

B.3.1 DISTANCE FUNCTION

Given a curve γ : [0, 1] −→M, we can use the metric g to calculate the length of it:

l(γ) =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt

Given now two points x, y ∈ M, we can define the distance between the two by calculating the
infimum of the length over all curves γ fulfilling γ(0) = x and γ(1) = y:

d(x, y) = inf
γ
l(γ) = inf

γ

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt (2)

Notice that in the example ofM = Rn, this formula reduces to

d(x, y) = inf
γ

∫ 1

0

||γ̇(t)||dt = ||y − x||

where the second equality can be shown by the formalism of Euler-Lagrange. The curve that achieves
the infimum in (2.1) is called geodesic. It is the natural extension of straight lines in Euclidean space,
as they are also the distance minimizing curves between two points.

B.3.2 GRADIENTS IN THE TANGENT SPACES OF RIEMANNIAN MANIFOLDS

In order to be able to perform optimization, we need to compute gradients of a cost function. Again,
we have to move to tangent spaces to overcome this problem. Given parameters z ∈M, we want to
calculate a gradient that indicates the best direction we should take in order to reduce the value of
the cost function L and update the parameters z of our model correspondingly. One could naively
calculate the Euclidean gradient and perform the update

z ←− z − η∇Ez L

There are two flaws in this scheme:

• The Euclidean gradient does not take into account the geometry of the manifold. We need the
Riemannian gradient, that applies a correction according to the metric tensor:

∇Rz = g−1
z ∇Ez

• The notion of a step is not well-defined onM since there is no guarantee that the result of the
subtraction lies again inM. We hence need a manifold-specific way of taking a step.

The correct way of taking a step on a manifold is given by the exponential map, introduced in the
next section.

B.3.3 EXPONENTIAL AND LOGARITHMIC MAP

Consider a point p ∈M and v ∈ TpM. The unit speed geodesic starting from x in direction v is the
unique geodesic γx,v with γ(0) = x and γ̇(0) = v. The exponential map expp(v) allows to map
from the tangent space TpM to the manifoldM and is defined as follows:

expp : TpM 7→M, v −→ expp(v) = γp,v(1)

Its inverse, logp : M 7→ TpM is called logarithmic map. Notice that the definition of the expo-
nential map depends on the unit speed geodesic. Unfortunately, closed-formulas for the latter are
rather seldom or computationally very expensive. As a result, one sometimes has to rely on cheaper
approximations to the exponential map, called retractions.
Finally, observe that forM = Rn, it holds that expx(v) = x+ v and logx(y) = y − x.
The combination of the two previous sections leads to Riemannian optimization Bonnabel (2013).

17

Under review as a conference paper at ICLR 2020

Figure 6: The exponential map on S2 applied to a tangential vector v ∈ TpS2

B.3.4 RIEMANNIAN OPTIMIZATION

Denote by L a loss function and by z ∈ M parameters constrained to live on the manifold. The
vanilla gradient descent step in Euclidean space is given by:

z ←− z − η∇Ez L
In Riemannian optimization Bonnabel (2013), one replaces this update scheme by

z ←− expz(−η∇Mz L)

Note that for M = Rn, we recover again the vanilla gradient descent step. If calculating the
exponential map is not possible or feasible, it is replaced by the aforementioned retraction Rz . For
intuition, the Riemannian gradient∇Mz indicates the best direction in the tangent space TzM and we
map the resulting direction in the tangent space down to the manifold, ensuring z ∈M.

B.4 AN EXAMPLE: THE SPHERE Sn−1
R

In order to provide further understanding and intuition for the introduced quantities, we will study
the Riemannian manifold Sn−1

R = {x ∈ Rn : ||x|| = R} equipped with the metric tensor gp = 1
inherited from the ambient space Rn. For p ∈ Sn−1

R the tangent space at p is given by

TpSn−1
R = {x : xT p = 0}

This holds because for any smooth curve γ on Sn−1, we have ||γ(t)||2 = γ(t)T γ(t) = R, hence
γ(t)T γ̇(t) = 0 and thus for t = 0 : pT v = 0.

Next consider the unit speed geodesics on Sn−1
R . Notice that although the metric tensor is the

Euclidean one, the infimum in (2.1) is taken over less curves γ since we are restricted to the sphere.
In particular, straight lines are not included in the set of allowed curves. The minimum is achieved by
so-called great circles, parametrized by

γx,v(t) = cos

(
||v||
R

t

)
x+R sin

(
||v||
R

t

)
v

||v||
The induced distance on the sphere is given by

dSnR(x, y) = R arccos

(
1

R2
xT y

)
which corresponds to the arc length of the great circle connecting the points x, y ∈ Sn−1. Using the
equation for the unit speed geodesic, one easily arrives at the formula for the exponential map:

expx(v) = x cos

(
1

R
||v||

)
+R sin

(
1

R
||v||

)
v

||v||

18

Under review as a conference paper at ICLR 2020

The logarithmic map is given by:

logx(y) = arccos(RxT y)
y − 1

R2x
T yx

||y − 1
R2xT yx||

One important observation is the following. Intuitively, one would expect that we recover Euclidean
space again when the radius R of the sphere goes to infinity. This is due to the vanishing curvature
c = 1

R2 , since space starts to feel more flat the bigger the sphere gets. The problem is that the
formulas for the distance, exponential map and all other quantities do not recover their Euclidean
counterpart. This follows from the chosen parametrization, which lets the point on the manifold
implicitly depend on the curvature c through the hard constraint ||x|| = 1√

c
, making a recovery

impossible. Convergence to Euclidean space will be important for the machine learning algorithms
studied in this paper and as a result, we will work with a different isometric model of the sphere
Sn−1.

C GRAPH EMBEDDINGS IN NON-EUCLIDEAN GEOMETRIES

In this section we will motivate non-Euclidean embeddings of graphs and show why the underlying
geometry of the embedding space can be very beneficial for its representation. We first introduce a
measure of how well a graph is represented by some embedding f : V −→ X , i 7→ f(i):

Definition C.1. Given an embedding f : V −→ X , i 7→ f(i) of a graph G = (V,A) in some metric
space X , we call f a D-embedding for D ≥ 1 if there exists r > 0 such that

r · dG(i, j) ≤ dX (f(i), f(j)) ≤ D · r · dG(i, j)

The infimum over all such D is called the distortion of f .

The r in the definition of distortion allows for scaling of all distances. Note further that a perfect
embedding is achieved when D = 1.

C.1 TREES AND HYPERBOLIC SPACE

Trees are graphs that do not allow for a cycle, in other words there is no node i ∈ V for which there
exists a path starting from i and returning back to i without passing through any node twice. The
number of nodes increases exponentially with the depth of the tree. This is a property that prohibits
Euclidean space from representing a tree accurately. What intuitively happens is that "we run out of
space". Consider the trees depicted in fig. 7. Here the yellow nodes represent the roots of each tree.
Notice how rapidly we struggle to find appropriate places for nodes in the embedding space because
their number increases just too fast.

Moreover, graph distances get extremely distorted towards the leaves of the tree. Take for instance
the green and the pink node. In graph distance they are very far apart as one has to travel up all
the way to the root node and back to the border. In Euclidean space however, they are very closely
embedded in a L2-sense, hence introducing a big error in the embedding.

This problem can be very nicely illustrated by the following theorem:

Theorem 2. Consider the tree K1,3 (also called 3-star) consisting of a root node with three children.
Then every embedding {x1, . . . , x4} with xi ∈ Rk achieves at least distortion 2√

3
for any k ∈ N.

Proof. We will prove this statement by using a special case of the so called Poincaré-type inequali-
ties Deza & Laurent (1996):

For any b1, . . . , bk ∈ R with
∑k
i=1 bi = 0 and points x1, . . . , xk ∈ Rn it holds that

k∑
i,j=1

bibj ||xi − xj ||2 ≤ 0

19

Under review as a conference paper at ICLR 2020

Figure 7: Euclidean embeddings of trees of different depths. All the four most inner circles are
identical. Ideal node embeddings should match in distance the graph metric, e.g. the distance between
the pink and green nodes should be the same as their shortest path length. Notice how we quickly run
out of space, e.g. the pink and green nodes get closer as opposed to farther. This issue is resolved
when embedding trees in hyperbolic spaces.

Consider now an embedding of the tree x1, . . . , x4 where x1 represents the root node. Choosing
b1 = −3 and bi = 1 for i 6= 1 leads to the inequality

||x2 − x3||2 + ||x2 − x4||2 + ||x3 − x4||2 ≤ 3||x1 − x2||2 + 3||x1 − x3||2 + 3||x1 − x4||2

The left-hand side of this inequality in terms of the graph distance is

dG(2, 3)2 + dG(2, 4)2 + dG(3, 4)2 = 22 + 22 + 22 = 12

and the right-hand side is

3 · dG(1, 2)2 + 3 · dG(1, 3)2 + 3 · dG(1, 4)2 = 3 + 3 + 3 = 9

As a result, we always have that the distortion is lower-bounded by
√

12
9 = 2√

3

Euclidean space thus already fails to capture the geometric structure of a very simple tree. This
problem can be remedied by replacing the underlying Euclidean space by hyperbolic space.

Consider again the distance function in the Poincaré model, for simplicity with c = 1:

dP(x, y) = cosh−1

(
1 + 2

||x− y||2

(1− ||x||2)(1− ||y||2)

)
Assume that the tree is embedded in the same way as in fig. 7, just restricted to lie in the disk of
radius 1√

c
= 1. Notice that as soon as points move closer to the boundary (||x|| −→ 1), the fraction

explodes and the resulting distance goes to infinity. As a result, the further you move points to the
border, the more their distance increases, exactly as nodes on different branches are more distant to
each other the further down they are in the tree. We can express this advantage in geometry in terms
of distortion:
Theorem 3. There exists an embedding x1, . . . , x4 ∈ P2 for K1,3 achieving distortion 1 + ε for
ε > 0 arbitrary small.

Proof. Since the Poincaré distance is invariant under Möbius translations we can again assume that
x1 = 0. Let us place the other nodes on a circle of radius r. Their distance to the root is now given as

dP(xi, 0) = cosh−1

(
1 + 2

||xi||2

1− ||xi||2

)
= cosh−1

(
1 + 2

r2

1− r2

)
By invariance of the distance under centered rotations we can assume w.l.o.g. x2 = (r, 0). We further
embed

• x3 =
(
r cos(2

3π), r sin(2
3π)
)

=
(
− r2 ,

√
3

2 r
)

• x4 =
(
r cos(4

3π), r sin(4
3π)
)

=
(
− r2 ,

√
3

2 r
)

.

20

Under review as a conference paper at ICLR 2020

This procedure gives:

dP(x2, x3) = cosh−1

1 + 2
||
(

3r
2 ,
−
√

3
2 r

)
||2

(1− r2)2

 = cosh−1

(
1 + 2

3r2

(1− r2)2

)
If we let the points now move to the border of the disk we observe that

cosh−1
(

1 + 2 3r2

(1−r2)2

)
cosh−1

(
1 + 2 r2

1−r2

) r−→1−−−→ 2

But this means in turn that we can achieve distortion 1 + ε for ε > 0 arbitrary small. QED.

The tree-likeliness of hyperbolic space has been investigated on a deeper mathematical level. Sarkar
(2011) show that a similar statement as in Theorem 2 holds for a very general class of trees. The
interested reader is referred to Hamann (2017); Sarkar (2011) for a more in-depth treatment of the
subject.

Cycles are the subclasses of graphs that are not allowed in a tree. They consist of one path that
reconnects the first and the last node: (v1, . . . , vn, v1). Again there is a very simple example of a
cycle, hinting at the limits Euclidean space incurs when trying to preserve the geometry of these
objects Matousek (2013).
Theorem 4. Consider the cycle G = (V,E) of length four. Then any embedding (x1, . . . , x4) where
xi ∈ Rk achieves at least distortion

√
2.

Proof. Denote by x1, x2, x3, x4 the embeddings in Euclidean space where x1, x3 and x2, x4 are the
pairs without an edge. Again using the Poincaré-type inequality with b1 = b3 = 1 and b2 = b4 = −1
leads to the short diagonal theorem Matousek (2013):

||x1 − x3||2 + ||x2 − x4||2 ≤ ||x1 − x2||2 + ||x2 − x3||2 + ||x3 − x4||2 + ||x4 − x1||2

The left hand side of this inequality in terms of the graph distance is dG(1, 3)2 + dG(2, 4)2 =
22 + 22 = 8 and the right hand side is 12 + 12 + 12 + 12 = 4.
Therefore any embedding has to shorten one diagonal by at least a factor

√
2.

It turns out that in spherical space, this problem can be solved perfectly in one dimension for any
cycle.
Theorem 5. Given a cycleG = (V,E) of length n, there exists an embedding {x1, . . . , xn} achieving
distortion 1.

Proof. We model the one dimension spherical space as the circle S1. Placing the points at angles 2πi
n

and using the arclength on the circle as the distance measure leads to an embedding of distortion 1 as
all pairwise distances are perfectly preserved.

Notice that we could also use the exact same embedding in the two dimensional stereographic
projection model with c = 1 and we would also obtain distortion 1. The difference to the Poincaré
disk is that spherical space is finite and the border does not correspond to infinitely distant points. We
therefore have no ε since we do not have to pass to a limit.

D GYROVECTOR SPACES

Euclidean space is so popular because it allows for a lot of structure. We have well-defined operations
such as addition of vectors or scalar multiplication between a real number and a vector, which obey
certain rules. Those operations are the building blocks for more sophisticated concepts like matrix
multiplication, which in turn are the building blocks for many machine learning models. In order to
have a principled extension of the algorithms of interest, we need a translation of these quantities to
the non-Euclidean setting. Gyrovector spaces Ungar (2008) offer such a generalization and will be
studied in the following section.

21

Under review as a conference paper at ICLR 2020

D.1 VECTOR SPACES AND GYROVECTOR SPACES

We wish to extend the notion of Euclidean vector spaces.

For the Euclidean space Rd, the addition and scalar multiplication are given by the well-known
component-wise vector addition and scalar multiplication. The inner product is given by the usual
dot product xT y. It is clear that we have to give up on some part of the structure, as any real vector
space of dimension d is isomorphic to Rd. In order to answer how much we can retain, we first need
to introduce a mathematical object residing on a deeper level, namely the equivalent to a group. This
dual group will be the foundation for the extension of a vector space. It turns out that we already
have to give up on some of the structure on the group level, as can be seen by the definition of a so
called gyrogroup Ungar (2008):

Definition D.1. A gyrogroup is a set G with well-defined binary operation⊕ satisfying the following
axioms:

1. There exists at least one 0 ∈ G such that for every g ∈ G: 0⊕ g = g

2. For every g ∈ G there exists 	g ∈ G such that 	g ⊕ g = 0

3. For any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such that a ⊕ (b ⊕ c) =
(a⊕ b)⊕ gyr[a, b]c

4. The map c −→ gyr[a, b]c is an automorphism satisfying gyr[a, b] = gyr[a⊕ b, b]

We see that we lose the associative law and replace it by the weaker notion stated in 3 and 4.
Equipped with this definition, we introduce the concept of a real gyrovector space Ungar (2008):

Definition D.2. A real inner product gyrovector space is the triple (G,⊕,⊗) where (G,⊕) is a
gyrocommutative gyrogroup fullfilling the following axioms:

1. G is a subset of a real inner product space V, inheriting the inner product 〈x, y〉 which is
invariant under gyrations: 〈gyr[x, y]a, gyr[x, y]b〉 = 〈x, y〉

2. There exists 1 ∈ G such that 1⊗ x = x for any x ∈ G (Identity)

3. (s1 + s2)⊗ x = s1 ⊗ x⊕ s2 ⊗ x (Scalar Distributive Law)

4. (s1s2)⊗ x = s1 ⊗ (s2 ⊗ x) (Scalar Associativity)

5. |s|⊗x
||s⊗x|| = x

||x|| (Scaling)

6. gyr[x, y](s⊗ z) = s⊗ gyr[x, y]z

7. gyr[s1 ⊗ x, s2 ⊗ x] = id

8. ||G|| = {±||a|| : a ∈ G} with ⊕ and ⊗ forms a vector space.

9. ||r ⊗ x|| = |r| ⊗ ||x|| (Homogeneity)

10. ||x⊕ y|| ≤ ||x|| ⊕ ||y|| (Gyrotriangle inequality)

Note that we define ⊕ and ⊗ for the norms of a ∈ G as seen in 9 and 10 in perfect analogy to the
vectorized version, by treating the scalars as one dimensional vectors. In the following sections we
will study two particular examples of manifolds that give rise to a gyrostructure, namely hyperbolic
and spherical space. Together with Euclidean space, they are the only manifolds inducing a geometry
with constant sectional curvature.

D.2 HYPERBOLIC SPACE AND ITS GYROSTRUCTURE

There are several isometric models of hyperbolic geometry. Each model offers some advantages and
disadvantages in its parametrization. It is important to notice that these advantages and disadvantages
only arise through the chosen parametrizations, all the models being isometric.

22

Under review as a conference paper at ICLR 2020

In this work, we chose to work with the Poincaré model. Its conformality property and the pioneer-
ing work in this model by Nickel & Kiela (2017); Ganea et al. (2018a;b) facilitated the extension of
the algorithms of consideration to the non-Euclidean setting.

D.2.1 GYROVECTOR SPACE IN THE POINCARÉ BALL

This section is based on the extensive research of Ungar (2008) on hyperbolic space and its underlying
gyrovector structure, as well as Ganea et al. (2018b) who connected gyro theory and machine learning
in their work. For proofs of the introduced results, we hence refer to the aforementioned sources.

Inspired by general relativity and relativistic velocity addition, Ungar (2008) discovered the notion
of gyro theory. General relativity and hyperbolic space are very tightly related and it turns out that
the relativistic velocity addition is exactly the gyro addition ⊕E in the Klein model:

v ⊕cE w =
1

1 + cvTw

(
v(1 + c

γv
1 + γv

vTw) + v
1

γv

)
This addition can be translated to the Poincaré ball, leading to the so called Möbius addition:

Definition D.3. For x, y ∈ Pdc , the Möbius addition is given by:

x⊕cM y =
(1 + 2cxT y + c||y||2)x+ (1− c||x||2)y

1 + 2cxT y + c2||x||2||y||2
∈ Pdc

Notice that as desired, x⊕cM y
c−→0−−−→ x+ y recovering Euclidean addition in the limit. We can further

define a scalar multiplication:

Definition D.4. For s ∈ R and x ∈ ⊗cM, the scalar multiplication in the Poincaré model is given by:

s⊗cM x =
1√
c

tanh (s · tanh−1(
√
c||x||)) x

||x||
∈ Pdc

Again observe that in the limit s ⊗cM x
c−→0−−−→ sx. One can show that Möbius addition and scalar

multiplication in Pdc form a gyrovector space Ungar (2008) as introduced in Definition D.2.

We will now list various results, illustrating how the role of Möbius addition and scalar multiplication
mimics the one observed in Euclidean geometry with component-wise addition and multiplication.

We can use the Möbius addition to rewrite the distance formula:

Lemma 3. dcP(x, y) = 2√
c

tanh−1(
√
c|| − x⊕cM y||)

Notice how the distance depends on x and y only through || − x⊕cM y||, as is the case for Euclidean
geometry where ⊕cM becomes +. This model is smoothly deformed to the Euclidean model in the
curvature limit as dcP(x, y)

c−→0−−−→ 2‖x− y‖. Moreover, the introduced operations interact naturally
with the underlying geometry, as can be seen by the following properties Ungar (2008):

Corollary 5.1. For x, y, z ∈ Pdc and n ∈ N, it holds:

• dcP(x⊕cM z, y ⊕cM z) = dcP(x, y)

• ||r ⊗cM x||P = r||x||P where ||x||P = dcP(x, 0)

• n⊗cM x = x⊕cM . . .⊕cM x, where the addition is performed n times.

One can see that Möbius translations leave the distance invariant and Möbius scaling on the other
hand transforms the norm ||x||P appropriately, in perfect duality to the Euclidean world. We can also
write the formula for geodesics in the Poincaré model in an intuitive manner Ungar (2008):

Lemma 4. For x, y ∈ Pdc , the geodesic γx−→y : R −→ Pdc , connecting x and y is given by

γx−→y(t) = x⊕cM (t⊗cM (−x⊕cM y))

23

Under review as a conference paper at ICLR 2020

Figure 8: Geodesics in the Poincaré disk (left) and in the stereographic projection model of the sphere
S2 (right).

This is in direct analogy to the Euclidean geodesics parametrized by γx−→y(t) = x+ t(y− x), where
one simply replaces all Möbius operations by the Euclidean ones. As a consequence of this formula,
we recover again the Euclidean geodesics for c −→ 0.

Finally, we also obtain the exponential and logarithmic map in closed form Ganea et al. (2018b):
Lemma 5. For x ∈ Pdc and v 6= 0, the exponential map expx : TxPdc −→ Pdc is given by

expcx(v) = x⊕cM
(

tanh (
√
c
λcx||v||

2
)
v

||v||

)
Moreover for y 6= x, logx : Pdc −→ TxPdc can be expressed via

logcx(y) =
2√
cλcx

tanh−1(
√
c|| − x⊕cM y||) −x⊕

c
M y

|| − x⊕cM y||

Observe that we obtain the Euclidean counterparts in the limit: expcx(v)
c−→0−−−→ x + v and

logcx(v)
c−→0−−−→ y − x.

D.3 SPHERICAL SPACE AND ITS GYROSTRUCTURE

We would like to work in a model of constant positive curvature that would recover the Euclidean
space operations when the curvature goes to 0. Unfortunately, the parameterization of standard
spherical geometry given by Sdc = {x ∈ Rd+1 | c‖x‖2 = 1} does not give achieve this goal. As a
consequence, we will work in a different spherical model (still isometric with the standard one).

D.3.1 STEREOGRAPHIC PROJECTION MODEL OF THE SPHERE

In the following we construct a model by isometrically projecting the Sdc to Rd (in perfect duality to
the construction of the Poincaré model which is the isometric projection of the Lorentz model).
Fix the south pole z = (0,− 1√

c
). The stereographic projection is then the map:

Φ : Sdc −→ Rd, x′ 7→ x =
1

1 +
√
cx′d+1

x′1:d

with the inverse given by

Φ−1 : Rd −→ Sdc , x 7→ x′ =

(
ηxx,

1√
c
(ηx − 1)

)
where we define ηx = 2

1+c||x||2 .
Again we take the image of the sphere SdR under the extended projection Φ((0, . . . , 0,− 1

c)) = 0,
leading to the stereographic model of the sphere. The metric tensor transforms as Janson (2015):

gGij = η2
xδij

24

Under review as a conference paper at ICLR 2020

Notice that the metric tensor of the Poincaré model and the stereographic model agree exactly if
written in terms of the curvature K and not its absolute value c. The metric tensor in turn induces the
distance between x, y ∈ Rd Janson (2015):

dcG(x, y) =
1√
c

cos−1

(
1−

2
c ||x− y||

2

(1
c + ||x||2)(1

c + ||y||2)

)
This model is smoothly deformed to the Euclidean model in the curvature limit as dcG(x, y)

c−→0−−−→
2‖x− y‖. Moreover, replacing c 7→ −c with the identification

√
−c = i

√
c and the application of

Euler’s formula eix = cos(x) + i sin(x), recovers exactly the Poincaré distance.

D.3.2 GYROVECTOR SPACE IN THE STEREOGRAPHIC MODEL

As in the Poincaré model, we can again define an addition in the stereographic model:

Definition D.5. For x, y ∈ Rd, the stereographic addition is given by:

x⊕cG y =
(1− 2cxT y − c||y||2)x+ (1 + c||x||2)y

1− 2cxT y + c2||x||2||y||2
∈ Rd

Notice that as desired, x ⊕cG y
c−→0−−−→ x + y, recovering Euclidean addition. Moreover, replacing

c 7→ −c recovers Möbius addition. Actually, one can write both additions in a unified function of the
sectional curvature K as

x⊕K y =
(1− 2KxT y −K||y||2)x+ (1 +K||x||2)y

1− 2KxT y +K2||x||2||y||2

Inserting K = −c leads to Möbius addition, whereas K = c results in the steregraphic addition. We
hence have an addition that interpolates smoothly between all three geometries.

Moreover we can define a scalar multiplication:

Definition D.6. For s ∈ R and x ∈ Rd, the scalar multiplication in the stereographic model is given
by:

s⊗cG x =
1√
c

tan (s tan−1(
√
c||x||)) x

||x||
∈ Rd

Notice that we have a perfect correspondence as well by using Euler’s identity and the formulas
tan(ix) = i tanh(x) and tan−1(ix) = i tanh−1(x).

Furthermore, we state the following theorem:

Theorem 6. The triple (Rd,⊕cG,⊗cG) equipped with the metric tensor gx = η2
xI defines a gyrovector

space.

Proof is by algebraic verification of the identities in definition D.2.

In the following, we will introduce the statements dual to the ones in the Poincaré ball and obtain
formulas for the exponential and logarithmic map. As in Lemma 3, we can rewrite the distance
formula more elegantly:

Lemma 6. For x, y ∈ Rd, the distance dcG(x, y) can be written as:

dcG(x, y) =
2√
c

tan−1
(√
c|| − x⊕cG y||

)
Corollary 6.1. For x, y, z ∈ Rd and n ∈ N, it holds:

• dcG(z ⊕cG x, z ⊕cG y) = dcG(x, y)

• ||r ⊗cG x||G = |r|||x||G where ||x||G = dcG(x, 0)

• n⊗cG x = x⊕cG . . .⊕cG x where the addition is performed n times.

25

Under review as a conference paper at ICLR 2020

Notice how Corollary 6.1 is the exact analog to Corollary 5.1, again showing how natural the defined
operations interact with the geometry.

For the exponential map, we first derive an expression using the Egregium theorem and the known
formulas for unit speed geodesics on the sphere Sdc . This leads to a closed formula not involving any
stereographic operations. We then proceed to rewrite this expression in terms of ⊕cG, leading to a
term that is easily invertible and hence providing us with the logarithmic map.
Corollary 6.2. For x ∈ Rd and v ∈ TxRd the exponential map can be recast as

expx(v) = x⊕cG
(

tan

(√
cηx||v||

2

)
v√
c||v||

)
Moreover for y 6= x, logx : Rd −→ TxRd the logarithmic map is given by

logx(y) =
2√
cηx

arctan (
√
c|| − x⊕cG y||)

−x⊕cG y
|| − x⊕cG y||

As expected, expcx(v)
c−→0−−−→ x + v, converging to the Euclidean exponential map. For the proof

we again use the same arguments as in the proof of theorem 6. Once more, observe the perfect
correspondence between the Poincaré (Lemma 5) and the stereographic models.

E HYPERBOLIC LOGITS

The final element missing in the hyperbolic neural network is the logit layer, a neccessity for any
classification task. We here use the formulation of Ganea et al. (2018b). Denote by {1, . . . ,K} the
possible labels and let ak ∈ Rd, bk ∈ R and x ∈ Rd. The output of a feed forward neural network
for classification tasks is usually of the form

p(y = k|x) = softmax(〈ak, x〉 − bk)

In order to generalize this expression to hyperbolic space, the authors of Ganea et al. (2018b) realized
that the term in the softmax can be rewritten as

〈ak, x〉 − bk = sign(〈ak, x〉 − bk)||ak||d(x,Hak,bk)

where Ha,b = {x ∈ Rd : 〈x, a〉 − b} = {x ∈ Rd : 〈−p+ x, a〉} = H̃a,p with p ∈ Rd.
As a first step, they define the hyperbolic hyperplane as

H̃c
a,p = {x ∈ Pdc : 〈−p⊕cM x, a〉}

where now a ∈ TpPdc and p ∈ Pdc . They then proceed with the following lemma:

Lemma 7. dMc (x, H̃a,p) = 1√
c

sinh−1
(

2
√
c|〈−p⊕c

Mx,a〉|
(1−c||−p⊕c

Mx||2)||a||

)
Using this equation, they were able to obtain the following expression for the logit layer:
Definition E.1. The logits in hyperbolic space are defined as

p(y = k|x) = softmax
(
||ak||√
c

sinh−1

(
2
√
c〈−pk ⊕cM x, ak〉

(1− c|| − pk ⊕cM x||2)||ak||

))
where ak ∈ T0Pdc ∼= Rd, x ∈ Pdc and pk ∈ Pdc .

Combining all these operations leads to the definition of a hyperbolic feed forward neural network.
Notice that the weight matrices W and the normal vectors ak live in Euclidean space and hence can
be optimized by standard methods such as ADAM Kingma & Ba (2015).

F GCNS IN PRODUCT OF CONSTANT CURVATURE SPACES

Inspired by Gu et al. (2019), we can now take the model one step further and study graph neural
networks in a product of spaces consisting of spherical and hyperbolic components.

26

Under review as a conference paper at ICLR 2020

Figure 9: Intuition as to why S1 × S1 6∼= S2

More precisely, we study spaces of the form

X = Md1
c−1
× · · · ×Mdm

c−m
×Gb1

c+1
× · · · ×Gbl

c+l

where we denote by Md
c− the Poincaré representation of Hdc− and by Gbc+ the stereographic represen-

tation of Sbc+ .
For v ∈ X , write

v = (v1, . . . , vm, ṽ1, . . . , ṽl)

where each vi ∈Mdi and ṽi ∈ Gbi represents a hyperbolic and spherical component.
It can be shown that X is again a Riemannian manifold equipped with a distance function, an
exponential map and a logarithmic map decomposing as follows Ficken (1939); Turaga & Srivastava
(2016):
Lemma 8. For x, y ∈ X , the distance between the two points is given by:

d2
X (x, y) =

m∑
i=1

d2
Mdi

(xi, yi) +

l∑
i=1

d2
Gbi

(x̃i, ỹi)

Moreover for v ∈ TxX , the exponential map expx : TxX −→ X decomposes as

expXx (v) = (expMd1

x1
(v1), . . . , expMdm

xm
(vm), expGb1

x̃1 (ṽ1), . . . , expGbl

x̃l (ṽl))

Finally, for y ∈ X , the logarithmic map logx : X −→ TxX takes the form

logXx (y) =
(

logMd1

x1 (y1), . . . , logMdm

xm (ym), logGb1

x̃1 (ỹ1), . . . , logGbl

x̃l (ỹl)
)

One may ask why we are also splitting the hyperbolic and spherical components into products.
After all, for Euclidean components it is a well-known fact that for any n,m ∈ N, we have that
Rn ×Rm = Rn+m. This property does not hold anymore for both spherical and hyperbolic products
of spaces. Consider for instance S1×S1. It turns out that this product of two circles is not isomorphic
to the 2-sphere S2 but rather two the torus T2. The reader may check this statement by calculating
the fundamental groups of both S1 × S1 and S2 and observe that they are not identical.
Thus splitting both hyperbolic and spherical components leads to a more general class of models.

F.1 GYROSTRUCTURE IN PRODUCTS OF GYROVECTOR SPACES

It turns out that we can again equip X with a gyrovector space structure, inheriting the structure from
all the smaller components:
Theorem 7. For x, y ∈ X , define the addition ⊕X and the scalar multiplication ⊗X as:

• x⊕X y = (x1 ⊕Md1 y
1, . . . , xm ⊕Mdm ym, x̃1 ⊕Gb1 ỹ

1, . . . , x̃l ⊕Gbl ỹ
l)

27

Under review as a conference paper at ICLR 2020

• r ⊗X x = (r ⊗Md1 x
1, . . . , r ⊗Mdm xm, r ⊗Gd1 x̃

1, . . . , r ⊗Gdl x̃
m)

Moreover for the norms ||x|| and ||y|| where x, y ∈ X we define:

• ||x|| ⊕X ||y|| =
√∑m

i=1(||xi|| ⊕X i ||yi||)2 +
∑l
i=1 ||x̃i|| ⊕iX ||ỹi||)2

• r ⊗X ||x|| =
√∑m

i=1(r ⊗X i ||xi||)2 +
∑l
i=1(r ⊗X i ||x̃i||)2

Then the triple (X ,⊕X ,⊗X) defines a gyrovector space. Moreover, we have the following two
invariances:

• ||r ⊗X x||X = dX (r ⊗X x, 0) = r||x||X

• dX (b⊕X x, b⊕X y) = dX (x, y)

The gyrovector space over X allows us again to extend all the quantities derived in the previous
chapter to the more general framework of products of Riemannian spaces of constant sectional
curvature.

F.2 RIGHT MATRIX MULTIPLICATION IN PRODUCT OF SPACES

Given an embedding X ∈ Rn×(d1+···+dm+b1+···+bl) where each row Xi• ∈ X and a weight matrix
W ∈ R(d1+···+dm+b1+···+bl)×(e1+···+em+f1+···+fl), we want to define again the notion of a right
matrix multiplication, leading to a mixing of the different features. First express the embedding
through its different components:

X =

 X1
1• . . . Xm

1• X̃1
1• . . . X̃ l

1•
...

X1
n• . . . Xm

n• X̃1
1• . . . X̃ l

1•

 = [X1, . . . , Xm, X̃1, . . . , X̃ l]

where Xj
i• ∈ Bdj

c−j
, x̃ji• ∈ Bbj

c+j
, Xi ∈ Rn×di and X̃i ∈ Rn×bi . Moreover, express the weight matrix

W as

W =



W 1
•1 W 1

•2 . . . w1
•n

...
...

...
Wm
•1 Wm

•2 . . . Wm
•n

W̃ 1
•1 W̃ 1

•2 . . . W̃ 1
•n

...
...

...
W̃ l
•1 W̃ l

•2 . . . W̃ l
•n


=



W 1

...
Wm

W̃ 1

...
W̃ l


where W i ∈ Rdi×(e1+···+em) and W̃ i ∈ Rbi×(f1+···+fl).

Definition F.1. The right matrix multiplication in the product of Riemannian manifolds of constant
sectional curvatures X is given by

X ⊗X W = expX0 (logX0 (X)W)

Let us examine the behaviour of ⊗X a bit more closely using the notation introduced above.

We first look at the inner term of the matrix multiplication:

Z =
(

logMd1

0 (X1), . . . , logGdm

0 (Xm), logGb1

0 (X̃1), . . . , logGbl

0 (X̃ l)
)

=
(
Z1, . . . , Zm, Z̃1, . . . , Z̃l

)
Now the right multiplication with W can be expressed as the sum over the smaller matrices:

ZW = Z1W 1 + · · ·+ ZmWm + Z̃1W̃ 1 + · · ·+ Z̃lW̃ l ∈ Rn×(e1+···+em+f1+...fl)

28

Under review as a conference paper at ICLR 2020

Notice that here a mixing of the different feature components is happening in the respective tangent
spaces at zero. Hence this operation is not simply decomposing and the different components interact
with each other. This interaction is then mapped back to the product manifold using the exponential
map.

Applications of non-linearities can also again be defined using exponential and logarithmic maps:
Definition F.2. Given any map σ : Rd1+···+dm+b1+···+bl −→ Rd1+···+dm+b1+···+bl , x 7→ σ(x), we
define its product space dual as

σX : X −→ X , x 7→ expX0 (σ(logX0 (x)))

F.3 PRODUCT LOGITS

One could be tempted to extend the logits through a combination of the ideas from this section and
the previous one. More precisely, one could try to define a hyperplane as

H̃c
a,p = {x ∈ X : 〈−p⊕X x, a〉 = 0}

Then one could again leverage the component-wise nature of ⊕X and the linearity of 〈〉 in order to
arrive at an expression decomposing over the components:

H̃c
a,p = {x ∈ X :

m∑
i=1

〈−pi ⊕c
−
i

M xi, ai〉 +

k∑
i=1

〈−p̃i ⊕c
+
i

G x̃i, ãi〉 = 0}

This expression is unfortunately not easy to handle as one cannot write this as the product of the
smaller hyperplanes in each component. Especially obtaining the minimal distance of a point x ∈ X
to this hyperplane is not a simple task. Fortunately, it turns out that there is an easier approach:
Definition F.3. The logits in the product of Riemannian manifold of constant sectional curvature are
defined as

p(y = k|x; a, p) =

m∑
i=1

pMdi

c
−
i

(yi = k|xi; ai, pi) +

k∑
i=1

pGbi

c
+
i

(ỹi = k|x̃i; ãi, p̃i)

where a ∈ TxX ∼= Tx1Bd1
c−1
× · · · × TxmBdm

c−m
× Tx̃1Rb1 × · · · × Tx̃mRbm and p ∈ X .

Notice that in the limit where all curvatures c−i and c̃+i go to zero, we recover the expression

m∑
i=1

4〈−pi + xi, ai〉+

l∑
i=1

4〈−p̃i + x̃i, ãi〉 = 4〈−p+ x, a〉

which are exactly the logits in the Euclidean space Rd1+···+dm+b1+···+bl scaled by the factor 4.
We hence again recover the Euclidean counterpart when using Definition F.3 for the logits.

F.4 LEFT MATRIX MULTIPLICATION AND MIDPOINTS

Again, the missing ingredient for the definition of a left matrix multiplication is the notion of taking
an average. As we will see in the following, the gyromidpoint can be easily extended component-wise
while still preserving the desirable properties of its one-component counterpart.
Definition F.4. For {x1, . . . , xn} ⊂ X and weights {α1, . . . , αn} ⊂ R the weighted gyromidpoint
in the product manifold model is given by

mX (x1, . . . xn;α1, . . . , αn) =

(
mMd1

c
−
1

(x1
1, . . . x

1
n;α1, . . . , αn), . . . ,mMdm

c
−
m

(xm1 , . . . x
m
n ;α1, . . . , αn),

mGb1

c
+
1

(x̃1
1, . . . x̃

1
n;α1, . . . , αn), . . . ,mGbl

c
+
l

(x̃l1, . . . x̃
l
n;α1, . . . , αn)

)
We recover very similar properties to the Poincaré and spherical gyromidpoint:

29

Under review as a conference paper at ICLR 2020

Lemma 9. For {x1, . . . , xn} ⊂ X , z ∈ X and weights {α1, . . . , αn} ⊂ R it holds that:

• mX (z ⊕X x1, . . . , z ⊕X xn; α1, . . . , αn) = z ⊕X mX (x1, . . . , xn; α1, . . . , αn)

• dX (x1,m
c
X (x1, x2; 1

2 ,
1
2)) = 1

2d
c
X (x1, x2)

• mX (x1, . . . , xn;α1, . . . αn)
c−1 ,..., c

−
m, c

+
1 ,..., c

+
l −→0

−−−−−−−−−−−−−−−→ mE(x1, . . . , xn;α1, . . . αn)

Being already equipped with a scalar multiplication, we are thus ready to introduce the left matrix
multiplication:

Definition F.5. Given X ∈ Rn×(d1+···+dm+b1+···+bl) with rows Xi• ∈ X and A ∈ Rn×n, the
product left matrix multiplication Z = A⊗X X is defined row-wise via

Zi• = (

n∑
j=1

Aij)⊗X mX (X1•, . . . , Xn•;Ai1, . . . Ain)

Moreover, Z can be written in terms of the left matrix multiplications of its components:

Z = (A⊗Md1

c
−
1

X1, . . . , A⊗Mdm

c
−
m

Xm, A⊗Gb1

c
+
1

X̃1, . . . , A⊗Gbl

c
+
l

X̃ l)

Notice how in contrast to the right matrix multiplication, the left matrix multiplication decomposes
over the factors independently.

F.5 PRODUCT GCN

Having gathered all needed tools in the previous section, we can introduce the architecture of the
product GCN.

Assume we are given a graph with node level features G = (V,A,X) where X ∈ Rn×d and
adjacency A ∈ Rn×n. In order to map the Euclidean features X to the product manifold we apply
the projection X 7→ X

2
√
c||X||max

component-wise for the hyperbolic components and the identity for
the spherical components. Notice that we hence need to split the feature dimension into the separate
components by writing d =

∑k
i=1 di +

∑l
i=1 bi, therefore deciding in advance what features belong

to what component.

We thus obtain a preprocessed first embedding X̃ = projX (X) ∈ Rn×(d1+···+dm+b1+···+bl) where
each row X̃i• ∈ X lives now in the product manifold.

For l ∈ {0, . . . , L− 2}, the (l + 1)-th layer of the product GCN is given by

H(l+1) = σX
(
Â⊗X

(
H(l) ⊗X W (l)

))
where H(0) = X̃ , σ is some non-linearity and Â = D̃−

1
2 ÃD̃−

1
2 .

The final layer is a product logit layer:

H(L) = softmax
(
Â logit

(
H(L−1),W (L−1)

))
Notice how this architecture generalizes H-GCN and S-GCN since we obtain those by only using
one hyperbolic or spherical component respectively.

G EXPERIMENTAL DETAILS

We here present training details for the node classification experiments.

We closely follow the training and evaluation scheme from previous work, e.g. Klicpera et al. (2019).
We split the data into training, early stopping, validation and test set. Namely we first split the dataset
into a known subset of size nknown and an unknown subset consisting of the rest of the nodes. For
all the graphs we use nknown = 1500 except for MS Academics, where we use nknown = 5000.

30

Under review as a conference paper at ICLR 2020

Dataset Type Classes Features Nodes Edges Label rate Avg sp
Citeseer Citation 6 3703 2110 3668 0.036 9.31

Cora-ML Citation 7 2879 2810 7981 0.047 5.27
Pubmed Citation 3 500 19717 44324 0.003 6.34

MS-Academic Co-author 15 6805 18333 81894 0.0016 5.34

Table 3: Summary statistics for the four datasets, where sp denotes shortest path.

Figure 10: Histogram of node degrees

Figure 11: Histogram of node degrees

The known subset is further split into a training set consisting of 20 data points per label, an early
stopping set of size 500 and a validation set of the remaining nodes. Notice that the whole structure
of the graph and all the node features are used in an unsupervised fashion since the embedding of a
training node might for instance depend on the embedding of a node from the validation set. But
when calculating the loss, we only provide supervision with the training data.
The unknown subset serves as the test data and is only used for the final evaluation of the model.
Hyperparameter-tuning is performed on the validation set. We further use early stopping in all the
experiments. We stop training as soon as the early stopping cross entropy loss has not decreased in
the last npatience = 200 epochs or as soon as we have reached nmax = 2000 epochs. The model
chosen is the one with the highest accuracy score on the early stopping set. For the final evaluation
we test the model on 10 different data splits and report mean accuracy and bootstrapped confidence
intervals. We use the described setup for both the Euclidean and non-Euclidean models to ensure a
fair comparison.

Training details for the Euclidean Baselines We trained the Euclidean models with the hyperpa-
rameters chosen as reported in Klicpera et al. (2019). Namely, for GCN we use one hidden layer of
size 64, dropout on the embeddings and the adjacency of rate 0.5 as well as L2-regularization for the
weights of the first layer with λ = 0.02. Only for Cora-ML we had to adjust the regularization factor
λ to 0.002 to ensure similar scores as achieved in Klicpera et al. (2019).

Summary of training details. All Non-Euclidean models use biased-L2 regularization with α =
10 and λ = 2e− 2. Euclidean models used L2 regularization with the same parameter λ. We used a
combination of dropout and dropconnect for the non-Euclidean models. All models have the same
number of parameters. We use 2 GCN layers, hidden dimension 64. Product models split hidden
dimension into [32, 32] and also input features equally. Non-Euclidean models do not use additional

31

Under review as a conference paper at ICLR 2020

non-linearities. Euclidean parameters use a learning rate of 0.01 for all models using ADAM. The
curvatures are learned using gradient descent with lr 0.01 as well. We use early stopping: we first train
for a maximum of 2000 epochs, then we check every 200 epochs for improvement in the validation
cross entropy loss; if that is not observed, we stop.

Learned curvatures .
Citeseer:
Hyp GCN: Trained curvature, average curvature over all runs: -1.057 +-0.03
Sphr GCN: Trained curvature, average curvature over all runs: 0.951 +-0.019
Prod GCN: Trained curvatures, average curvatures: [1.331, -0.91]

Cora
Hyp GCN: Trained curvature, average curvature: -1.127 +-0.011
Sphr GCN: Trained curvature, average curvature: 0.857+-0.013
Prod GCN: Trained curvature, average curvature: [-1.03, -1.01]

Pubmed:
Hyp GCN: Trained curvature, average curvature: 1.123 +- 0.01
Sphr GCN: Trained curvature, average curvature: 0.896 +- 0.008
Prod GCN: Not training curvature, fixed to [-1, -1]

Ms-Academic
Hyp GCN: Trained curvature, average curvature: 1.26 +- 0.09
Sphr GCN: Trained curvature, average curvature: 0.8 +- 0.07
Prod GCN: Not training curvature, fixed to [-1, -1]

H GRAPH CURVATURE ESTIMATION ALGORITHM

1. Fix a node m ∈ G and sample two neighbouring nodes a, b ∈ G uniformly. Further sample
an additional reference node c ∈ G uniformly (again avoiding m = c).

2. Calculate ψ(m; a, b; c) = 1
2dG(a,b)

(
d2
G(a,m) +

d2G(b,c)
4 −

(
d2G(a,b)+d2G(a,c)

2

))
3. Reiterate the above sampling niter times and obtain an average curvature at node m.
4. Do this procedure for every node m ∈ G.

32

	Introduction
	The Geometry of Constant Curvature Spaces
	Hyperbolic & Spherical GCNs
	Graph Convolutional Networks
	Tools for a Hyperbolic GCN
	Hyperbolic Right Matrix Multiplication
	Hyperbolic Left Matrix Multiplication, Linear Combinations and Midpoints
	Hyperbolic Logits
	Hyperbolic GCN
	GCNs in Product of Constant Curvature Spaces

	Experiments
	Node Classification

	Conclusion
	GCN - A Brief Survey
	Convolutional Neural Networks on Graphs
	Graph Convolutional Networks

	Manifolds and Riemannian Geometry
	Manifolds and their Subclasses
	Riemannian Manifolds
	Tangent Space
	Riemannian Metric

	Mathematical tools
	Distance function
	Gradients in the Tangent Spaces of Riemannian Manifolds
	Exponential and Logarithmic Map
	Riemannian Optimization

	An Example: The Sphere SRn-1

	Graph Embeddings in Non-Euclidean Geometries
	Trees and Hyperbolic Space

	Gyrovector Spaces
	Vector Spaces and Gyrovector Spaces
	Hyperbolic Space and its Gyrostructure
	Gyrovector Space in the Poincaré Ball

	Spherical Space and its Gyrostructure
	Stereographic Projection Model of the Sphere
	Gyrovector Space in the Stereographic Model

	Hyperbolic Logits
	GCNs in Product of Constant Curvature Spaces
	Gyrostructure in Products of Gyrovector spaces
	Right Matrix Multiplication in Product of Spaces
	Product Logits
	Left Matrix Multiplication and Midpoints
	Product GCN

	Experimental details
	Graph Curvature Estimation Algorithm

