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ABSTRACT

In this paper, we propose a generative model, called ROOTS (Representation
of Object-Oriented Three-dimension Scenes), for unsupervised object-wise 3D-
scene decomposition and and rendering. For 3D scene modeling, ROOTS bases
on the Generative Query Networks (GQN) framework, but unlike GQN, provides
object-oriented representation decomposition. The inferred object-representation
of ROOTS is 3D in the sense that it is viewpoint invariant as the full scene repre-
sentation of GQN is so. ROOTS also provides hierarchical object-oriented repre-
sentation: at 3D global-scene level and at 2D local-image level. We achieve this
without performance degradation. In experiments on datasets of 3D rooms with
multiple objects, we demonstrate the above properties by focusing on its abilities
for disentanglement, compositionality, and generalization in comparison to GQN.

1 INTRODUCTION

The shortcomings of contemporary deep learning such as interpretability, sample efficiency, ability
for reasoning and causal inference, and transferability and compositionality, are where the symbolic
Al has traditionally shown its strengths. One of the grand challenges in machine learning is thus to
make deep learning embrace the benefits of symbolic representation so that symbolic entities can
emerge from a high-dimensional observation like a visual scene.

Particularly, for learning from visual observations of the physical world, such representation should
consider the following criteria. First, it should focus on objects (and their relations). Objects and
relations are the foundational entities of the physical world and can be considered as the basic unit
for which we can build a factorized model. Representation supporting such object-wise factoriza-
tion will help compositionality and transferability by making the object representation a reusable
module. Second, being three-dimensional (3D) is a decisive property of physical world and thus the
representation should also reflect it. We humans, equipped with such 3D representation in our brain,
can retain consistency on the identity of an observed object even if it is observed from different view-
points which result in quite different appearances of the object. Besides, we can infer and imagine
the whole scene from these limited partial perspectives. Lastly, learning such representation should
be unsupervised. Although there have been remarkable advances in supervised approaches to object
perception (Redmon et al,[2016;|Ren et al.; 2015;|Long et al.| 2015)), it should be learned without su-
pervision as we humans do. This unsupervised approach not only avoids expensive labeling efforts,
but also allows adaptability and flexibility to downstream task’s goals. This is important because
the definition of “objectness” itself can vary depending on the situation. In addition, unsupervised
learning should help better generalization for new types of objects.

In this paper, we propose a probabilistic generative model that can learn, without supervision, object-
oriented representation from partial 2D observations of a 3D scene. We call the proposed model
ROOTS (Representing Object-Oriented Three-dimensional Scenes). To this end, we base our model
on the Generative Query Networks (GQN) (Eslami et al., [2018). The GQN, as a conditional latent
variable model, provides the methodological framework to learn a latent representation of a 3D scene
from 2D observations and the corresponding viewpoints. However, unlike GQN which provides a
representation encoding a whole 3D scene into a single continuous vector, the scene representation of
ROOTS is factorized into object representations per object exiting in the 3D scene while modeling
a background representation separately for the remaining part. Thus, from 2D images containing
multiple objects with occlusion and partial observation, ROOTS can extract and build a model of
an object that is interpretable, composible, and transferable. In addition, ROOTS also provides the
object-factorized representation hierarchically: one for a global 3D scene and another for local 2D
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images. In experiments, we show the above abilities of ROOTS for the 3D-Room dataset which
contains images of 3D rooms with several objects with different colors and shapes.

The contributions of the paper are: (i) We proposed a generative model that detects objects, ex-
tract background, and learn representation of object-wise 3D model from 2D partial observations.
(i1) This is the first unsupervised model that can identify objects in a 3D scene. (iii) We demon-
strate various advantages of the extracted and learned object representation including interpretabil-
ity, transferability, and compatibility.

2  PRELIMINARY: GENERATIVE QUERY NETWORKS

Generative Query Networks (GQN) is a conditional latent variable model mapping an query view-
point, z € R% _ to its corresponding 2D projections, y € R%, under 3D settings. For example,
given a set of context observations C' = (X¢,Yc) = {(%¢,ye)}eez(c) and Target observations
D = (X,Y) = {(%i,4:) }icz(D)» GQN is asked to model a conditional prior on the latent variable
p(z|C, x). Here, Z(S) stands for the set of data-point indices in a dataset S. For brevity, we however
assume in the following that D contains only one pair (z,y) unless mentioned otherwise. Gener-
alization to the multi-instance case is straightforward. Then, the generative process can be written
as follows: p(y|z,C) = [ p(y|2)p(z|C,x)dz. In the dataset {(C, D)}, a pair of context C' and
target D are assumed to be sampled from the same 3D scene while different pairs are sampled from
different 3D scenes. The design principle underlying this modeling is to infer the target scene from
the context in such a way that sampling z from P(z|C, x) corresponds to a representation explaining
the scene. Due to the intractable posterior, the model is trained via variational approximation which
gives the following evidence lower bound (ELBO) objective:

1ng9(y|$, C) > Eq¢(z\C,D) [logpg(y|a:, Z)] - KL(Q¢(Z|C7 D) || p9(2’|0)) (D
This ELBO is optimized using the reparameterization trick (Kingma & Welling| [2013).

In the original GQN, the prior is conditioned on the query viewpoint in addition to the context, i.e.,
p(z|z,rc), and thus results in inconsistent samples across different viewpoints when modeling un-
certainty in the scene. The Consistent GQN (Kumar et al.,2018) (CGQN) resolved this by removing
the dependency on the query viewpoint from the prior. This encourage z to be a summary of a full
3D scene independent of the query viewpoint. Hence, it is consistent across viewpoints and more
similar to the original Neural Processes. For the remainder of the proposal, we use the abbreviation
GON for CGQN unless stated otherwise.

Due to the complexity of 3D scenes, inferring the latent representation of a 3D scene requires more
model complexity. For this, GQN uses ConvDRAW (Gregor et al., 2016)), an auto-regressive den-
sity estimator performing p(z|C) = HzL:1 p(2'|2<!,rc) where L is the number of auto-regressive
rollouts and r¢ is a pooled context representation ZceI(C) fr(xc,yc) with f, an context encoding.

3 ROOTS: REPRESENTATION OF OBJECT-ORIENTED 3D SCENES

As we seek learning 3D representations that can generate a scene observation for any given view-
point (although the representation is object-oriented), we base our model on the GQN framework.
The main advancements of our proposed model are two-fold. First, instead of an encoding compress-
ing the whole scene, we obtain a representation of a scene factorized into objects and background.
Second, the object-wise representation is hierarchically structured at two-levels: from global-3D
representation to local-2D representation, and then from the local-2D representation to image pix-
els. The generative process can be explained from these perspectives.

3.1 GENERATIVE PROCESS

Object-Wise Factorization is a process obtaining object-factorized representation z = {zk}le
for K objects present in a target 3D space. Because the number of objects K is a random variable,
the conditional prior can be written as follows: p(z|C) = p(K|C) Hle p(2x|C). To implement
such model with variable number of objects, AIR (Eslami et al., 2016]) proposed to use an RNN that
rolls out K steps, processing one object per step. However, according to our preliminary results and
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Figure 1: Overview of ROOTS. (A) The context observations are first fed into an encoder and obtain the scene-
volume map. (B) The scene-volume map has a cell of z, = zE7¢%, 2P°% 22"t for each spatial volume cell of
the target environment. (C) After obtaining zE"°°, 22°°, we obtain z2"** by finding object patches from context
and then clustering them for each object. The resulting representation z*%! is not a 3D-representation. (D)
Decoding process p(xz|s)p(s|z, z). The representation is rearranged according to query viewpoint by using
fap—2p(25°°, x) and then projected to a target 2D image. In (D), left-bottom is an example of 3D full view.
A projection camera is shown on the left corner. On the right, we perform 2 steps of projections: (1) converting

the coordinate with respect to the projection camera (bottom) and (2) projecting onto 2D canvas (up).

other works (Crawford & Pineaul, 2019)), it turns out that this is computationally inefficient due to
the sequential nature and shows performance degradation as the number of objects increases beyond
a few objects.

As a better approach would process objects in a spatially parallel way, we instead introduce the
scene-volume map. The scene-volume map, denoted by Z, is a tensor of (H x W x L)-dimension
that represents the actual volume of the target 3D space by N = H x W x L unit cells. Here,
H, W, and L are the three axes (height, width, and layer) of the 3D space, respectively. Our goal is
then to associate each volume cell n € Z with a latent vector z,, = (2275, 2205 zwhat) where zPres
a binary variable indicating the presence of an object in the cell, z2°° an object’s center coordinates
in the 3D space, and z%"** a d-dimension vector for representing the appearance of an object. Note

that 22°% and 22" are defined only when zE7¢% = 1.

One key idea here is that introducing a presence variable per volume cell is to reflect the inductive
bias of physics: two objects cannot co-exist at the same position. This helps remove the sequential
object processing as dealing with an object does not need to consider other objects if the features
are already from spatially distant areas. With this parallelization, learning is easier and faster. Note
also that the presence variable represents the existence of a center point in a volume cell, not the full
volume of an object. Thus, the actual volume of an object can still exist across neighboring cubes.

This results in the following prior model p(z|C) = p(K|C) Hszl p(zk|C) =
N N
[1 pGalC) = TT pErsIO)p(E5 (O, 287 ) pl2p ! | C, 27, 250°) 2)
n=1 n=1

where p(2£05|0, Zgres) — p(zgos‘c)zzﬂs and p(zﬁhaqca Zﬁres, Zﬁos) — P(Z}fh“t|C, Zgos)zﬁras’
and we have K = 25:1 z .

Hierarchical Object-Oriented Representation. In ROOTS, the representation is not only fac-
torized object-wise but also hierarchical. That is, at the first level of the hierarchy, we obtain the
object-wise 3D representation, which is viewpoint-invariant, for a global-3D scene. This is global
as we model here all existing objects in the target 3D space regardless of any specific viewpoint. At
the second level, we then introduce the local-2D object-wise representation s = {s,,} which is the
latent factors of the generated image and thus viewpoint-dependent. Because of this, some global
object n may not present in the local-2D representation s, i.e., if the object is out of the view field
from a given viewpoint. Then, the full generative process of ROOTS can be written as:

N N
p(y: 5, 2|7, C) = py|s)p(s|z, 2)p(2|C) = p(yls) [ ] psnlz, ) [ p(2a]C). 3)
n=1 n=1
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3.2 NEURAL IMPLEMENTATION

Global 3D Representation. The implementation of global representation consists of three steps:
(1) scene encoding, (ii) object gathering, and (ii) object encoding. For scene encoding, we first
perform order-invariant encoding of the context C' at image-level (not explicitly aware of objects in
it yet) and obtain D-dimensional global scene-encoding e,, for each cell n in Z. We then infer the
presence for each cell by sampling a Bernoulli distribution z27¢* ~ Bern( fus(e5,)) and, if 2P7¢° = 1,
the 3-dimension coordinate for the center position of the object in the 3D space by using a neural
network, i.e., 25°° ~ N(f2°*(en), f2°*(en)). The main challenge of our model is in the next step,
i.e., learning 2%, Because we want a viewpoint-invariant 3D representation of a specific object n,
it has to gather the object from context: detect, segment, and extract only the target object of interest
from the context images where multiple objects coexist with occlusion and partial observability and
some objects may not be observed due to the viewpoint. Once we crop out and gather these object-
wise segments for each existing object, we perform object-encoding to build the 3D-representation
corresponding to that specific object.

To implement object gathering, we first notice that, using the 3D-to-2D coordinates projection oper-
ation fip_,op, we can compute the center location of an object existing in a context image. Specifi-
cally, we can deterministically convert a 3D position 22°¢ in the global 3D coordinate system into a
2D position s29; in a 2D image y. € Yc, i.e., s = fip_op(25°°, ) where sL9; refers to the 2D
position of object n within context image y.. For more details on the coordinate projection, refer
to Appendix. Besides local center position, we also predict the bounding box scale of the object by
sfc,‘fle = fscale (S22, €n, ), thus we know how large is the portion of the object being projected in
the context image. We extract the patch y. ,, C y. which is a segmentation in y,. corresponding to ob-
ject n, by using the spatial transformer. Gathering all patches {y..», }. corresponding to object n, we
perform object-encoding to obtain the viewpoint-invariant 3D-representation of appearance 2"
for a specific object n. This is done by an order-invariant object encoder r,, = forder-invar-obj ({¥e,n }¢)
and then sampling from p(z*"?|r,,). Thus, our encoding process contains two order-invariant en-
coders, one for global scene-level and another for object-level which is shared across different ob-

jects.

Local 2D Representation. For hierarchical object-awareness, the local representation p(s|z,x) =
[T,cp p(shres, shose, swhat|z ) is implemented as follows. For each global object z,, whose pres-
ence is t rue, we predict whether it also exists in the target 2D image y given r, together with s2°
and s5¢?® obtained in the same way as mentioned above. If it exists (i.e., mapped on the image y),
we predict appearance s;"fflat. Finally, the appearance is obtained by an object-level GQN decoder

using ConvDraw, s%" = ConvDRAW (2" ).

Rendering. The main challenge in rendering the local object-oriented representation s = {s,, }_;
into the image canvas, i.e., p(y|s), is to deal with the occlusion. In ROOTS, this problem can easily
be dealt with by noticing that the coordinate projection function f3p_op(22°%, x) actually trans-
forms a 3D coordinate to another 3D coordinate in which the last dimension becomes the distance
between the observer’s viewpoint  and the object (and thus can be ignored in 2D projection). The
idea is that this distance can be interpreted as object depth from viewer’s perspective. Then, during
reconstruction we can sort objects according to depth and drawing with occlusion becomes easy. To
handle the foreground and background segmentation, we learn the background separately in image
level and learn an object-wised mask using GQN decoder. Details of implementations are provided

in Appendix[A.1]

3.3 LEARNING AND INFERENCE

Because of intractable posterior p(z, s|C, D), we train ROOTS using variational inference with
posterior approximation g4 (z, s|C, D) = g4(2|C, D)g4(s|z, C, D). For continuous latent variables
such as the pose and appearance, we can use reparameterization trick (Kingma & Welling| 2013))
and for the discrete variables on the presence, a continuous relaxation using Gumbel-Softmax trick
(Jang et al.,|2016) or other methods based on the REINFORCE algorithm (Williams| [1992; Tucker
et al., 2017; |Grathwohl et al., 2017) can be used. Implementation of the approximate posterior
q(z|C, D) and ¢(s|z, C, D) is made easier by sharing the parameters of ¢ with that of conditional
prior p(z|C): we only need to provide additional data D to the order-invariant encoder. The objective
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is to maximize the following evidence lower bound (ELBO): L(¢, ¢; C, D) =
Es,2~q, [logpo(ylz, s) — KL[gs(s|z, C, D) || po(s|z, 2)]] — KL[gy(2|C, D) || po(2|C)]. (4

Combining Unconditional Prior. One difficulty in using the conditional prior of GQN is the fact
that, because the prior is now learned, we are more limited in reflecting our prior knowledge into the
prior distribution than the unconditioned prior. In fact, in our experiments, it turns out that biasing
the posteriors of some variables like zP"¢® towards the values of our prior preference is helpful in
stabilizing the model. To implement this, in our training, we use the following objective that has
some additional KL terms between the posterior and unconditioned prior.

L = L(0,¢;C, D) + KL[gy("**, 5°°'|C, D) || N(0,1)]
+7KL[gs(2""*|C, D) || Geom(p)] + YE:nq, [KL[gy (s |27, C, D) || Geom(p)]]
where the p and + is hyperparameters and we set them to 0.999 and 7 during training. This auxiliary

loss can be derived if we replace our conditional prior by the product of expert prior p(z|C)p(z)
divided by the posterior ¢(z|C).

&)

4 RELATED WORKS

Neural processes (NP) (Garnelo et al., [2018) and generative query networks (GQN) (Eslami et al.,
2018) are important works to our proposed methods. More details on NP and GQN is described in
Section [2| Although to our knowledge there is no previous work on unsupervised object-oriented
representation learning for 3D, there have been several literature on its 2D problems. The first is
the Attend, Infer, Repeat (AIR) model (Eslami et al., 2016). AIR uses spatial transformer (Jader-
berg et al., |2015) to crop an object patch and uses an RNN to sequentially generate next object
conditioning on the previous objects. In|Crawford & Pineaul (2019), the authors showed that this
RNN-based rollout is inefficient and can degrades performance as the number of objects increases.
The authors proposed the SPAIR model inspired by YOLO (Redmon et al.| [2016). However, un-
like YOLO, SPAIR does not require bounding box labels. Although applying spatially invariant
attentions, the main limitation of SPAIR is to infer the latents sequentially. Neural Expectation
Maximization (NEM) (Greff et al.,|2017) considers the observed image as a pixel-level mixture of
K objects, and an image per object is generated and combined according to the mixture probabil-
ity. A differentiable variation of an EM algorithm is introduced. In|Greff et al.|(2019)), the authors
proposed a more efficient version of NEM, called IODINE, using iterative inference Marino et al.
(2018), and in MONET (Burgess et al., [2019) an RNN drawing a scene component at each time
step is used. Unlike AIR and SPAIR, the representations in NEM, IODINE, and MONET do not
explicitly provide natural disentanglement like presence and pose per object.

5 EXPERIMENTS

We evaluate ROOTS quantitatively and qualitatively. We train ROOTS with the same hyper param-
eters for all datasets. We first briefly describe the datasets. For more details of the dataset generation
and network architecture, refer to Appendix[A.3]and Appendix[A.T] We use MuJoCo to simulate 3D
scenes. Specifically, we generate three different datasets with scenes with 1-3 objects, 2-4 objects
and 3-5 objects, respectively. We set the image size to 64 x 64 x 3 pixels. For each object, we
randomly choose its position, shape, size and color. Although we put all objects on the floor, we
still predict {x,y, z} coordinates for zP°% because objects have different sizes. We generate 60K
different scenes for each dataset and split them into 50k for training, 5k for validation, and 5k for
test.

5.1 QUALITATIVE EVALUATION

We provide several generation samples comparing our model with GQN for the same scene under
the same query cameras. As seen in Figure[2] ROOTS has clearer generations than GQN. To provide
a further understanding of the advantages of object-orientated representation, we present decompo-
sitions generated from ROOTS. As shown in Figure[3] ROOTS can generate clean background, clear
foreground and detailed occlusion mask. We also show that the learned global representation is good
enough to recover angle and pose of an object under different viewpoints.
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Figure 2: Examples of generations from two different scenes together with ground truth placed in the first row
for each scene.
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Figure 3: A: Generated examples of decomposition for a scene visualized as 2d images captured by cameras.
For example, GoodNet segments a scene into foreground and background first and decompose foreground into
each individual object further, which are green sphere, blue cylinder, partially observed cube and yellow cube
as shown in the first example. We also show the depth mask obtained through object’s reconstruction and its
distance from camera. B: Generations of one object from different cameras.

Object-wise disentanglement: Generations from random viewpoints after changing object po-
sitions. In this section and the following sections, we use ROOTS trained on the 2-4 object dataset
for visualization unless otherwise stated. To have a better understanding of the structured latent
variable learned by ROOTS through context images, we plan to modify the zP°° of one object in the
scene. As a good disentangled latent representation, this modification should not affect the position,
existence and appearance of other objects concurrent in the scene. More importantly, we should
be able to change either the = or y coordinate independently and this change should be consistent
across viewpoints. To demonstrate this, after changing one dimension of 2P°* of the red cylinder as
shown in Figure@ we feed this modified 2P°° back to ROOTS. Then, we sample their gscale  gpres
and 2"t in the same way as we do during testing. Generations from 4 different cameras are shown
in Figure ] We can see that ROOTS has a strong ability to learn disentangled representations and
occlusions have been handled well due to this advantage.

Compositionality. Another advantage with object-orientated representations is that a new scene can
be easily be built with object components, since every scene can be naturally decomposed into sev-
eral independent objects. Thus, by simple combination, we can build novel scenes. To demonstrate
this, we first provide several context images from three different scenes and save the object docu-
mentary for each scene, {2P°%, 2P"¢5 2whatl Then we swap an object between the first two scenes
and add an additional object to the third scene as shown in Figure 5] We can see that the position
of each selected object stays the same after this manipulation. Also, by adding one new object, we
make a scene with 5 objects, which does not exist in the training dataset.
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Figure 4: Visualization of changing 2P°*® and 2P°*'Y of the red cylinder in a scene through generations from
4 different cameras. We also simulated the 3D scene in the center. Cameras are shown as an example. We put
walls for readers to better understand the relative height of cameras. There is no wall in the real dataset.
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Figure 5: TOP: Original generations from three different scenes, icons on right side highlights objects in the
each scene. Each column shows 2D image captured from one camera. Bottom: Manipulated generations from

the same three scenes under the same cameras. We switched green cylinder from scene 1 with purple sphere
from scene 2 and we copied green sphere from scene 2 and put it in scene 3.

Partial Observations. We know that the successful generations of ROOTS, even with only partial
observations provided, is coming from object gathering across viewpoints. Because if an object is
missing from one camera, ROOTS can learn it from other cameras. Here, we want to push the partial
observation into the extreme case, where one object is totally unobserved by all context cameras. In
this case, ROOTS should not be able to correctly predict its existence, just like humans observing
the true physical world. To show this, we manually select some images from a scene that have one
object missing and the rest serve as targets for ROOTS to generate. We show the results in Figure[6]

5.2 QUANTITATIVE EVALUATION

NLL and MSE. In this section, we compare the quantitative results of ROOTS and GQN on negative
log-likelihood (NLL) and the mean squared error (MSE) on the test set. We approximate NLL using
importance sampling with K = 50 samples and report the image NLL normalized by the number of
pixels in an image in Table [T Both GQN and ROOTS are trained for 120 epochs on each dataset.
We see that, although learning interpretable object-factorized representations, ROOTS achieves NLL
comparable to CGQN and MSE which is slightly better than GQN.

1-3 objects 2-4 objects 3-5 objects

NLL MSE NLL MSE NLL MSE
ROOTS 09199 15.16 0.9205 2537 09213 29.82
GQN 09196 15.28 0.9201 26.86 0.9204 32.66

Table 1: Negative log-likelihood and mean squared error

Object Detection Quality. We provide precision and recall results as object detection evaluation of
ROOTS. To estimate the true positive prediction, we first filter out predictions that are too far away
from any ground truth by applying a radius threshold. The distance is calculated as the euclidean
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Figure 6: Left: Context images provided to ROOTS, we select images that do not have green sphere projected.
Middle: Target images, from which we can see that, there is one green sphere existed. Right: Generations from
ROOTS given context images from the left.

distance between two center points. Then we assign the predicted object to the ground truth object to
which it has the nearest distance. Multi-association is not allowed in our calculation. We normalize
the coordinate value to [—1, 1], thus, the average object size is 0.3. We provide the precision and
recall result under different threshold in Table |2} Besides precision and recall, we also provide the
counting accuracy of ROOTS.

1-3 objects 2-4 objects 3-5 objects

Threshold 0.1 0.15 035 0.1 0.15 035 0.1 0.15 035

Precision  76.82 91.56 98.68 66.76 86.07 9829 66.64 86.09 96.65
Recall 75.56  90.15 97.40 65.53 84.57 9593 6691 86.47 97.10

Count Acc. 93.18 88.16 82.21
Table 2: Precision and Recall

6 CONCLUSION

We proposed ROOTS, an unsupervised 3D scene decomposition and 3D object detection network.
ROOTS can learn object-oriented interpretable and hierarchical 3D scene representation. We showed
the generation, decomposition and detection ability of ROOTS and we also showed that, due to the
factorization of structured representation, new scenes can be easily built up by reusing components
from 3D scenes. Interesting future directions would be to learn the knowledge of the 3D world in a
sequential manner as we humans do and update the inferred knowledge through time.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Here, we give the details of the implementation of ROOTS. We first outline the generation and infer-
ence process for one object, indexed with n. Parallelizing it to multiple objects is straight forward.
Then, we will give details of important modules in subsequent sections. Note that Z(C), Z(D) and
Z(S) are representing the index for context set, target set and whole sequence set, respectively.

Generation Below, we outline the implementation of the generative model. The SceneRepNet is
the module we use for scene level order invariant encoder. The ObjectRepNet is the module we use
for object level order invariant encoder. All the DRAW modules has hidden state of channel number
128.
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ro — Z SceneRepNet, (¢, y.) (Encode scene level context)
ceZ(C)
(6)
zP%% ~ DRAW,”* (r¢) (Sample 3D position for object n)
(7
2P ~ CONVy(r¢) (Sample global presence for object n)
8)
sfﬁfle ~ DRAW (re, ), i € Z(S) (Sample size for object n under context c)
)
i < fapo2p (2877, 2i),i € I(S) (Convert 3D position into pixel location)
(10)
Yt STN(ye, [sP%, s5%¢]), ¢ € Z(C) (Crop object patch) (11)
Tn,C Z ObjectRepNet(ys't, z.),c € Z(C) (Encode object level context)
ceC
(12)
zy hat DRAW@”W (rn,c) (Sample global what for object n)
(13)
Sim .~ CONVg(28" 1y 0, 5),1 € Z(D) (Sample local presence for object n)
(14)
gett o't + Rendererg (22", x;,i € I(D)) (Decode the object patch and object mask)
(15)
Gin = STN-INV (of'ty x g7, [s75, s34, i € (D) (Generate objects) (16)
i < STN-INV (o [s097, 5391, i € Z(D) (17)
agy « depthy, x o, == min(depth, X a;,),i € Z(D) (Obtain occlusion mask pixel-wisely)
(18)
y{g — Z(afc,f X Gin X 870 °),1 € Z(D) (Generate foreground) (19)
al? Z(am x age x 871 °%),i € I(D) (Generate foreground mask)
(20)
229 ~ DRAWZQ (ro) (Sample background) (21)
Qf 9« BgDecoder (2%, ;) (Decode background) (22)
Ui gjlfg +(1-— a{g) X Qfg (Render generations) (23)

Inference The inference model is paralleled with generative model. We only highlight the differ-
ent part below.
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64x64x3 22x22x256 22x22x128 8x8x(256+7) 4x4x128 2x2x256 1x1x256 3x1x3x256

@ ﬁ
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Figure 7: Scene Representation Network
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—_—
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p=2 p=1
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Figure 8: Object Representation Network
rp Z SceneRepNet, (z;, y;) (Encode scene level context) (24)
i€I(D)
zb%% ~ DRAW, (1, 1p) (Sample 3D position for object n) (25)
2P ~ CONVy(re,rp) (Sample global presence for object n)  (26)
sffr‘jle ~ DRAW“(re, rp, x),i € I(S) (Sample size for object n) (27)
Sim < f3p—2p (207, 2:),1 € I(S) (Convert 3D position into pixel location) (28)
yfff + STN(y;, [sff;f, sfﬁfle]),i € I(D) (Crop object patch) (29)
Tn,D 4 Z ObjectRepNet(y{"t! , ;) (Encode object level context) (30)
i€ie€D
zwhat  DRAWY " (r, 0,70 D) (Sample global what for object n) 31)
sp " ~ CONVy(rn,c,rmn ;i) i € Z(D) (Sample local presence for object n) (32)
209 ~ DRAWZg (re,rp) (Sample background) (33)

A.2 DETAILS OF COMPONENT MODULES

Scene Representation Network: The Scene Representation Network is modified bases on Repre-
sentation Network in GQN.

Object Representation Network: The objcet Representation Network, we design a branch to pass
low level feature to provide richer conv-features. The dimension d in the second input, which is
concatenation of {2P"¢, ss¢ale  sPos} and parameters of STN, will be clarified in Table

12
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Sufficient Statistics Networks: We list the configuration of all the Sufficient Statistics Networks in
Table used during generation. For 22%%, 2t and sfﬁ‘;le, we use auto-regressive scheme to learn
the sufficient statistics for each latent variable distributions given hidden state of a ConvLSTM.
Specifically, we just apply several convolutional layers, which take the hidden state of ConvLSTM
as input, to learn sufficient statistics for target distributions. For 2£"* and s}7”, we only use reg-
ular convolutional layers. Here, we give the details of Sufficient Statistic Networks for each latent
variable. In the third column, we give the kernel size of first convolutional layer, the remaining are
Conv3D1XI1 layers. If the kernel size is 3, we have one zero paddings, stride is 1 to keep the spa-
tial size unchanged. The Draw Rollouts column shows the number of DRAW steps we apply. The
Concat column specify how we we use sampled latent value for subsequent process, for example,

concatenating z',for | < L or only taking 2.

Table 3: Configuration of Sufficient Statistic Networks

Latent Variable Channel Numbers K | Draw Rollouts Concate
zPos [128, 128, 64, 32, 3] 3 2 last step
z}fh“t [128, 128, 64, 32, 4] 1 4 concatenate
sfi‘jle [128, 128, 64, 32, 2] 1 4 last step
Zbres [256, 256, 128, 64, 1] 3 - -
sTTeE [271, 256, 128, 64,32, 1] | 1 -
209 [128, 4] 3 2 last step

GOQN Implementation: We strictly follow the paper for implementation details. The only difference
is we enhance the decoder in the renderer by adding two more convolutional layers.

A.3 DATASET DETAILS

The size of objects are randomly chosen from 0.56 to 0.66. Each object is put on the floor of 3D
space with range of [—2, 2] along both x-axis and y-axis. We have three different types of object,
cube, sphere and cylinder with 6 different colors. For each dataset, we first randomly choose the
number objects in a scene, then randomly object type, color and their positions ( and y coordinates).
For each scene, we have 30 cameras put at a radius of 3, pointing at a squared area located at the
center, thus, the camera would not always look at the center point. The pitch is randomly chosen
from [—7 /6., —m/7.] and the yaw is randomly chosen from [—m, 7].
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