
Under review as a conference paper at ICLR 2020

BEHAVIOR REGULARIZED OFFLINE REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning (RL) research, it is common to assume access to direct
online interactions with the environment. However in many real-world applications,
access to the environment is limited to a fixed offline dataset of logged experience.
In such settings, standard RL algorithms have been shown to diverge or otherwise
yield poor performance. Accordingly, much recent work has suggested a number of
remedies to these issues. In this work, we introduce a general framework, behavior
regularized actor critic (BRAC), to empirically evaluate recently proposed methods
as well as a number of simple baselines across a variety of offline continuous control
tasks. Surprisingly, we find that many of the technical complexities introduced
in recent methods are unnecessary to achieve strong performance. Additional
ablations provide insights into which design choices matter most in the offline RL
setting.

1 INTRODUCTION

Offline reinforcement learning (RL) describes the setting in which a learner has access to only a
fixed dataset of experience. In contrast to online RL, additional interactions with the environment
during learning are not permitted. This setting is of particular interest for applications in which
deploying a policy is costly or there is a safety concern with updating the policy online (Li et al.,
2015). For example, for recommendation systems (Li et al., 2011; Covington et al., 2016) or health
applications (Murphy et al., 2001), deploying a new policy may only be done at a low frequency after
extensive testing and evaluation. In these cases, the offline dataset is often very large, potentially
encompassing years of logged experience. Nevertheless, the inability to interact with the environment
directly poses a challenge to modern RL algorithms.

Issues with RL algorithms in the offline setting typically arise in cases where state and actions spaces
are large or continuous, necessitating the use of function approximation. While off-policy (deep) RL
algorithms such as DQN (Mnih et al., 2013), DDPG (Lillicrap et al., 2015), and SAC (Haarnoja et al.,
2018) may be run directly on offline datasets to learn a policy, the performance of these algorithms
has been shown to be sensitive to the experience dataset distribution, even in the online setting when
using a replay buffer (Van Hasselt et al., 2018; Fu et al., 2019). Moreover, Fujimoto et al. (2018a)
and Kumar et al. (2019) empirically confirm that in the offline setting, DDPG fails to learn a good
policy, even when the dataset is collected by a single behavior policy, with or without noise added to
the behavior policy. These failure cases are hypothesized to be caused by erroneous generalization of
the state-action value function (Q-value function) learned with function approximators, as suggested
by Sutton (1995); Baird (1995); Tsitsiklis & Van Roy (1997); Van Hasselt et al. (2018). To remedy
this issue, two types of approaches have been proposed recently: 1) Agarwal et al. (2019) proposes to
apply a random ensemble of Q-value targets to stabilize the learned Q-function, 2) Fujimoto et al.
(2018a); Kumar et al. (2019); Jaques et al. (2019); Laroche & Trichelair (2017) propose to regularize
the learned policy towards the behavior policy based on the intuition that unseen state-action pairs
are more likely to receive overestimated Q-values. These proposed remedies have been shown
to improve upon DQN or DDPG at performing policy improvement based on offline data. Still,
each proposal makes several modifications to the building components of baseline off-policy RL
algorithms, and each modification may be implemented in various ways. So a natural question to
ask is, which of the design choices in these offline RL algorithms are necessary to achieve good
performance? For example, to estimate the target Q-value when minimizing the Bellman error,
Fujimoto et al. (2018a) uses a soft combination of two target Q-values, which is different from TD3

1

Under review as a conference paper at ICLR 2020

(Fujimoto et al., 2018b), where the minimum of two target Q-values is used. This soft combination
is maintained by Kumar et al. (2019), while further increasing the number of Q-networks from two
to four. As another example, when regularizing towards the behavior policy, Jaques et al. (2019)
uses Kullback-Leibler (KL) divergence with a fixed regularization weight while Kumar et al. (2019)
proposes to use Maximum Mean Discrepancy (MMD) with an adaptively trained regularization
weight. Are these design choices crucial to success in offline settings? Or are they simply the result
of multiple, human-directed iterations of research?

In this work, we aim at evaluating the importance of different algorithmic building components as well
as comparing different design choices in offline RL approaches. We focus on behavior regularized
approaches applied to continuous action domains, encompassing many of the recently demonstrated
successes (Fujimoto et al., 2018a; Kumar et al., 2019). We introduce behavior regularized actor
critic (BRAC), a general algorithmic framework which covers existing approaches while enabling
us to compare the performance of different variants in a modular way. We find that many simple
variants of the behavior regularized approach can yield good performance, while previously suggested
sophisticated techniques such as weighted Q-ensembles and adaptive regularization weights are not
crucial. Experimental ablations reveal further insights into how different design choices affect the
performance and robustness of the behavior regularized approach in the offline RL setting.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

We consider the standard fully-observed Markov Decision Process (MDP) setting (Puterman, 1990).
An MDP can be represented asM = (S,A, P,R, γ) where S is the state space, A is the action
space, P (·|s, a) is the transition probability distribution function, R(s, a) is the reward function
and γ is the discount factor. The goal is to find a policy π(·|s) that maximizes the cumulative
discounted reward starting from any state s ∈ S. Let Pπ(·|s) denote the induced transition distri-
bution for policy π. For later convenience, we also introduce the notion of multi-step transition
distributions as Pπt , where Pπt (·|s) denotes the distribution over the state space after rolling out
Pπ for t steps starting from state s. For example, Pπ0 (·|s) is the Dirac delta function at s and
Pπ1 (·|s) = Pπ(·|s). We use Rπ(s) to denote the expected reward at state s when following policy
π, i.e. Rπ(s) = Ea∼π(·|s) [R(s, a)]. The state value function (a.k.a. value function) is defined by
V π(s) =

∑∞
t=0 γ

tEst∼Pπt (s) [Rπ(st)]. The action-value function (a.k.a. Q-function) can be written
as Qπ(s, a) = R(s, a) + γEs′∼P (·|s,a) [V π(s′)]. The optimal policy is defined as the policy π∗ that
maximizes V π

∗
(s) at all states s ∈ S. In the commonly used actor critic paradigm, one optimizes a

policy πθ(·|s) by alternatively learning a Q-value functionQψ to minimize Bellman errors over single

step transitions (s, a, r, s′), Ea′∼πθ(·|s′)
[(
r + γQ̄(s′, a′)−Qψ(s, a)

)2]
, where Q̄ denotes a target Q

function; e.g., it is common to use a slowly-updated target parameter set ψ′ to determine the target Q
function as Qψ′(s′, a′). Then, the policy is updated to maximize the Q-values, Ea∼π(·|s) [Qψ(s, a)].

2.2 OFFLINE REINFORCEMENT LEARNING

Offline RL (also known as batch RL (Lange et al., 2012)) considers the problem of learning a policy π
from a fixed dataset D consisting of single-step transitions (s, a, r, s′). Slightly abusing the notion of
“behavior”, we define the behavior policy πb(a|s) as the conditional distribution p(a|s) observed in
the dataset distributionD. Under this definition, such a behavior policy πb is always well-defined even
if the dataset was collected by multiple, distinct behavior policies. Because we do not assume direct
access to πb, it is common in previous work to approximate this behavior policy with max-likelihood
over D:

π̂b := argmax
π̂

E(s,a,r,s′)∼D [log π̂(a|s)] . (1)

We denote the learned policy as π̂b and refer to it as the “cloned policy” to distinguish it from the true
behavior policy.

In this work, we focus on the offline RL problem for complex continuous domains. We briefly review
two recently proposed approaches, BEAR (Kumar et al., 2019) and BCQ (Fujimoto et al., 2018a).

2

Under review as a conference paper at ICLR 2020

BEAR Motivated by the hypothesis that deep RL algorithms generalize poorly to actions outside
the support of the behavior policy, Kumar et al. (2019) propose BEAR, which learns a policy to
maximize Q-values while penalizing it from diverging from behavior policy support. BEAR measures
divergence from the behavior policy using kernel MMD (Gretton et al., 2007):

MMD2
k(π(·|s), πb(·|s)) = E

x,x′∼π(·|s)
[K(x, x′)]− 2E x∼π(·|s)

y∼πb(·|s)
[K(x, y)] + E

y,y′∼πb(·|s)
[K(y, y′)] , (2)

whereK is a kernel function. Furthermore, to avoid overestimation in the Q-values, the target Q-value
function Q̄ is calculated as,

Q̄(s′, a′) := 0.75 · min
j=1,...,k

Qψ′j (s
′, a′) + 0.25 · max

j=1,...,k
Qψ′j (s

′, a′), (3)

where ψ′j is denotes a soft-updated ensemble of target Q functions. In BEAR’s implementation, this
ensemble is of size k = 4. BEAR also penalizes target Q-values by an ensemble variance term.
However, their empirical results show that there is no clear benefit to doing so, thus we omit this term.

BCQ BCQ enforces π to be close to πb with a specific parameterization of π:

πθ(a|s) := argmax
ai+ξθ(s,ai)

Qψ(s, ai + ξθ(s, ai)) for ai ∼ πb(a|s), i = 1, . . . , N, (4)

where ξθ is a function approximator with bounded ouptput in [−Φ,Φ] where Φ is a hyperparameter.
N is an additional hyperparameter used during evaluation to compute πθ and during training for
Q-value updates. The target Q-value function Q̄ is calculated as in Equation 3 but with k = 2.

3 BEHAVIOR REGULARIZED ACTOR CRITIC

Encouraging the learned policy to be close to the behavior policy is a common theme in previous
approaches to offline RL. To evaluate the effect of different behavior policy regularizers, we introduce
behavior regularized actor critic (BRAC), an algorithmic framework which generalizes existing
approaches while providing more implementation options.

There are two common ways to incorporate regularization to a specific policy: through a penalty in
the value function or as a penalty solely on the policy. We begin by introducing the former, value
penalty (vp). Similar to SAC (Haarnoja et al., 2018) which adds an entropy term to the target Q-value
calculation, we add a term to the target Q-value calculation that regularizes the learned policy π
towards the behavior policy πb. Specifically, we define the penalized value function as

V πD(s) =
∑∞

t=0
γtEst∼Pπt (s) [Rπ(st)− αD (π(·|st), πb(·|st))] , (5)

where D is a divergence function between distributions over actions (e.g., MMD or KL divergence).
Following the typical actor critic framework, the Q-value objective is given by,

min
Qψ

E(s,a,r,s′)∼D
a′∼πθ(·|s′)

[(
r + γ

(
Q̄(s′, a′)− αD̂ (πθ(·|s′), πb(·|s′))

)
−Qψ(s, a)

)2]
, (6)

where Q̄ again denotes a target Q function and D̂ denotes a sample-based estimate of the divergence
function D. The policy learning objective can be written as,

max
πθ

E(s,a,r,s′)∼D

[
Ea′′∼πθ(·|s) [Qψ(s, a′′)]− αD̂ (πθ(·|s), πb(·|s))

]
. (7)

Accordingly, one performs alternating gradient updates based on (6) and (7). This algorithm is equiv-
alent to SAC when using a single-sample estimate of the entropy for D̂; i.e., D̂(πθ(·|s′), πb(·|s′)) :=
log π(a′|s′) for a′ ∼ π(·|s′).

The second way to add the regularizer is to only regularize the policy during policy optimization.
That is, we use the same objectives in Equations 6 and 7, but use α = 0 in the Q update while using a
non-zero α in the policy update. We call this variant policy regularization (pr). This proposal is
similar to the regularization employed in A3C (Mnih et al., 2016), if one uses the entropy of πθ to
compute D̂.

In addition to the choice of value penalty or policy regularization, the choice of D and how to perform
sample estimation of D̂ is a key design choice of BRAC:

3

Under review as a conference paper at ICLR 2020

Kernel MMD We can compute a sample based estimate of kernel MMD (Equation 2) by drawing
samples from both πθ and πb. Because we do not have access to multiple samples from πb, this
requires a pre-estimated cloned policy π̂b.

KL Divergence With KL Divergence, the behavior regularizer can be written as

DKL (πθ(·|s), πb(·|s)) = Ea∼πθ(·|s) [log πθ(a|s)− log πb(a|s)] .

Directly estimating DKL via samples requires having access to the density of both πθ and πb; as in
MMD, the cloned π̂b can be used in place of πb. Alternatively, we can avoid estimating πb explicitly,
by using the dual form of the KL-divergence. Specifically, any f -divergence (Csiszár, 1964) has a
dual form (Nowozin et al., 2016) given by,

Df (p, q) = Ex∼p [f (q(x)/p(x))] = max
g:X 7→dom(f∗)

Ex∼q [g(x)]− Ex∼p [f∗(g(x))] ,

where f∗ is the Fenchel dual of f . In this case, one no longer needs to estimate a cloned policy
π̂b but instead needs to learn a discriminator function g with minimax optimization as in Nowozin
et al. (2016). This sample based dual estimation can be applied to any f -divergence. In the case of a
KL-divergence, f(x) = − log x and f∗(t) = − log(−t)− 1.

Wasserstein Distance One may also use the Wassertein distance as the divergence D. For sample-
based estimation, one may use its dual form,

W (p, q) = sup
g:||g||L≤1

Ex∼p [g(x)]− Ex∼q [g(x)]

and maintain a discriminator g as in Gulrajani et al. (2017).

Now we discuss how existing approaches can be instantiated under the framework of BRAC.

BEAR To re-create BEAR with BRAC, one uses policy regularization with the sample-based
kernel MMD for D̂ and uses a min-max ensemble estimate for Q̄ (Equation 3). Furthermore, BEAR
adaptively trains the regularization weight α as a Lagriagian multiplier: it sets a threshold ε > 0 for
the kernel MMD distance and increases α if the current average divergence is above the threshold
and decreases α if below the threshold.

BCQ The BCQ algorithm does not use any regularizers (i.e. α = 0 for both value and policy
objectives). Still, the algorithm may be realized by BRAC if one restricts the policy optimization in
Equation 7 to be over parameterized policies based on Equation 4.

KL-Control There has been a rich set of work which investigates regularizing the learned policy
through KL-divergence with respect to another policy, e.g. Abdolmaleki et al. (2018); Kakade (2002);
Peters et al. (2010); Schulman et al. (2015); Nachum et al. (2017). Notably, Jaques et al. (2019) apply
this idea to offline RL in discrete action domains by introducing a KL value penalty in the Q-value
definition. It is clear that BRAC can realize this algorithm as well.

To summarize, one can instantiate the behavior regularized actor critic framework with different
design choices, including how to estimate the target Q value, which divergence to use, whether
to learn α adaptively, whether to use a value penalty in the Q function objective (6) or just use
policy regularization in (7) and so on. In the next section, we empirically evaluate a set of these
different design choices to provide insights into what actually matters when approaching the offline
RL problem.

4 EXPERIMENTS

The BRAC framework encompasses several previously proposed methods depending on specific
design choices (e.g., whether to use value penalty or policy regularization, how to compute the target
Q-value, and how to impose the behavior regularization). For a practitioner, key questions are: How
should these design choices be made? Which variations among these different algorithms actually
matter? To answer these questions, we perform a systematic evaluation of BRAC under different
design choices.

4

Under review as a conference paper at ICLR 2020

Following Kumar et al. (2019), we evaluate performance on four Mujoco (Todorov et al., 2012)
continuous control environments in OpenAI Gym (Brockman et al., 2016): Ant-v2, HalfCheetah-
v2, Hopper-v2, and Walker2d-v2. In many real-world applications of RL, one has logged data
from sub-optimal policies (e.g., robotic control and recommendation systems). To simulate this
scenario, we collect the offline dataset with a sub-optimal policy perturbed by additional noise. To
obtain a partially trained policy, we train a policy with SAC and online interactions until the policy
performance achieves a performance threshold (1000, 4000, 1000, 1000 for Ant-v2, HalfCheetah-v2,
Hopper-v2, Walker2d-v2, respectively, similar to the protocol established by Kumar et al. (2019)).
Then, we perturb the partially trained policy with noise (Gaussian noise or ε-greedy at different
levels) to simulate different exploration strategies resulting in five noisy behavior policies. We collect
1 million transitions according to each behavior policy resulting in five datasets for each environment
(see Appendix for implementation details). We evaluate offline RL algorithms by training on these
fixed datasets and evaluating the learned policies on the real environments.

In preliminary experiments, we found that policy learning rate and regularization strength have a
significant effect on performance. As a result, for each variant of BRAC and each environment, we do
a grid search over policy learning rate and regularization strength. For policy learning rate, we search
over six values, ranging from 3 · 106 to 0.001. The regularization strength is controlled differently
in different algorithms. In the simplest case, the regularization weight α is fixed; in BEAR the
regularization weight is adaptively trained with dual gradient ascent based on a divergence constraint
ε that is tuned as a hyperparameter; in BCQ the corresponding tuning is for the perturbation range
Φ. For each of these options, we search over five values (see Appendix for details). For existing
algorithms such as BEAR and BCQ, the reported hyperparameters in their papers (Kumar et al.,
2019; Fujimoto et al., 2018a) are included in this search range, We select the best hyperparameters
according to the average performance over all five datasets.

Currently, BEAR (Kumar et al., 2019) provides state-of-the-art performance on these tasks, so to
understand the effect of variations under our BRAC framework, we start by implementing BEAR in
BRAC and run a series of comparisons by varying different design choices: adaptive vs. fixed regu-
larization, different ensembles for estimating target Q-values, value penalty vs. policy regularization
and divergence choice for the regularizer. We then evaluate BCQ, which has a different design in the
BRAC framework, and compare it to other BRAC variants as well as several baseline algorithms.

4.1 FIXED V.S. ADAPTIVE REGULARIZATION WEIGHTS

In BEAR, regularization is controlled by a threshold ε, which is used for adaptively training the
Lagrangian multiplier α, whereas typically (e.g., in KL-control) one uses a fixed α. In our initial
experiments with BEAR, we found that when using the recommended value of ε, the learned value of
α consistently increased during training, implying that the MMD constraint between πθ and πb was
almost never satisfied. This suggests that BEAR is effectively performing policy regularization with a
large α rather than constrained optimization. This led us to question if adaptively training α is better
than using a fixed α. To investigate this question, we evaluate the performance of both approaches
(with appropriate hyperparameter tuning for each, over either α or ε) in Figure 1. On most datasets,
both approaches learn a policy that is much better than the partially trained policy1, although we do
observe a consistent modest advantage when using a fixed α. Because using a fixed α is simpler and
performs better than adaptive training, we use this approach in subsequent experiments.

4.2 ENSEMBLE FOR TARGET Q-VALUES

Another important design choice in BRAC is how to compute the target Q-value, and specifically,
whether one should use the sophisticated ensemble strategies employed by BEAR and BCQ. Both
BEAR and BCQ use a weighted mixture of the minimum and maximum among multiple learned
Q-functions (compared to TD3 which simply uses the minimum of two). BEAR further increases the
number of Q-functions from 2 to 4. To investigate these design choices, we first experiment with
different number of Q-functions k = {1, 2, 4}. Results are shown in Figure 2. Fujimoto et al. (2018b)
show that using two Q-functions provides significant improvements in online RL; similarly, we find
that using k = 1 sometimes fails to learn a good policy (e.g., in Walker2d) in the offline setting.

1The partially trained policy is the policy used to collect data without injected noise. The true behavior policy
and behavior cloning will usually get worse performance due to injected noise when collecting the data.

5

Under review as a conference paper at ICLR 2020

Figure 1: Comparing fixed α with adaptively trained α. Black dashed lines are the performance of the
partially trained policies (distinct from the behavior policies which have injected noise). We report
the mean over the last 10 evaluation points (during training) averaged over 5 different random seeds.
Each evaluation point is the return averaged over 20 episodes.

Using k = 4 has a small advantage compared to k = 2 except in Hopper. Both k = 2 and k = 4
significantly improve over the partially trained policy baseline.

Regarding whether using a weighed mixture of Q-values or the minimum, we compare these two
options under k = 2. Results are shown in Figure 3. We find that taking the minimum performs
slightly better than taking a mixture except in Hopper, and both successfully outperform the partially
trained policy in all cases. Due to the simplicity and strong performance of taking the minimum of
two Q-functions, we use this approach in subsequent experiments.

Figure 2: Comparing different number of Q-functions for target Q-value ensemble. We use a weighted
mixture to compute the target value for all of these variants. As expected, we find that using an
ensemble (k > 1) is better than using a single Q-function.

Figure 3: Comparing taking the minimum v.s. a weighted mixture in Q-value ensemble. We find that
simply taking the minimum is usually slightly better, except in Hopper-v2.

4.3 VALUE PENALTY OR POLICY REGULARIZATION

So far, we have evaluated variations in regularization weights and ensemble of Q-values. We found
that the technical complexity introduced in recent works is not always necessary to achieve state-of-
the-art performance. With these simplifications, we now evaluate a major variation of design choices
in BRAC — using value penalty or policy regularization. We follow our simplified version of BEAR:
MMD policy regularization, fixed α, and computation of target Q-values based on the minimum of a
k = 2 ensemble. We compare this instantiation of BRAC to its value penalty version, with results
shown in Figure 4. While both variants outperform the partially trained policy, we find that value
penalty performs slightly better than policy regularization in most cases. We consistently observed
this advantage with other divergence choices (see Appendix Figure 8 for a full comparison).

4.4 DIVERGENCES FOR REGULARIZATION

We evaluated four choices of divergences used as the regularizer D: (a) MMD (as in BEAR), (b) KL
in the primal form with estimated behavior policy (as in KL-control), and (c) KL and (d) Wasserstein

6

Under review as a conference paper at ICLR 2020

Figure 4: Comparing policy regularization (pr) v.s. value penalty (vp) with MMD. The use of value
penalty is usually slightly better.

in their dual forms without estimating a behavior policy. As shown in Figure 5, we do not find any
specific divergence performing consistently better or worse than the others. All variants are able to
learn a policy that significantly improves over the behavior policy in all cases.

In contrast, Kumar et al. (2019) argue that sampled MMD is superior to KL based on the idea that it
is better to regularize the support of the learned policy distribution to be within the support of the
behavior policy rather than forcing the two distributions to be similar. While conceptually reasonable,
we do not find support for that argument in our experiments: (i) we find that KL and Wassertein
can perform similarly well to MMD even though they are not designed for support matching; (ii)
we briefly tried divergences that are explicitly designed for support matching (the relaxed KL and
relaxed Wasserstein distances proposed by Wu et al. (2019)), but did not observe a clear benefit to the
additional complexity. We conjecture that this is because even if one uses noisy or multiple behavior
policies to collect data, the noise is reflected more in the diversity of states rather than the diversity
of actions on a single state (due to the nature of environment dynamics). However, we expect this
support matching vs. distribution matching distinction may matter in other scenarios such as smaller
state spaces or contextual bandits, which is a potential direction for future work.

Figure 5: Comparing different divergences under both policy regularization (top row) and value
penalty (bottom row). All variants yield similar performance, which is significantly better than the
partially trained policy.

4.5 COMPARISON TO BCQ AND OTHER BASELINES

We now compare one of our best performing algorithms so far, kl_vp (value penalty with KL
divergence in the primal form), to BCQ, BEAR, and two other baselines: vanilla SAC (which uses
adaptive entropy regularization) and behavior cloning. Figure 6 shows the comparison. We find that
vanilla SAC only works in the HalfCheetah environment and fails in the other three environments.
Behavior cloning never learns a better policy than the partially trained policy used to collect the
data. Although BCQ consistently learns a policy that is better than the partially trained policy, its
performance is always clearly worse than kl_vp (and other variants whose performance is similar to
kl_vp, according to our previous experiments). We conclude that BCQ is less favorable than explicitly
using a divergence for behavior regularization (BEAR and kl_vp). Although, tuning additional
hyperparameters beyond Φ for BCQ may improve performance.

7

Under review as a conference paper at ICLR 2020

Figure 6: Comparing value penalty with KL divergence (kl_vp) to vanilla SAC, behavior cloning
(bc), BCQ and BEAR. Bottom row shows sampled training curves with 1 out of the 5 datasets. See
Appendix for training curves on all datasets.

4.6 HYPERPARAMETER SENSITIVITY

In our experiments, we find that many simple algorithmic designs achieve good performance under
the framework of BRAC. For example, all of the 4 divergences we tried perform similarly well
when used for regularization. In these experiments, we allowed for appropriate hyperparameter
tuning over policy learning rate and regularization weight, as we initially found that not doing so can
lead to premature and incorrect conclusions. However, some design choices may be more robust to
hyperparameters than others. To investigate this, we also analyzed the sensitivity to hyperparameters
for all algorithmic variants (Appendix Figures 9 and 10). To summarize, we found that (i) MMD
and KL Divergence are similar in terms of sensitivity to hyperparameters, (ii) using the dual form of
divergences (e.g. KL dual, Wasserstein) appears to be more sensitive to hyperparameters, possibly
because of the more complex training procedure (optimizing a minimax objective), and (iii) value
penalty is slightly more sensitive to hyperparameters than policy regularization despite its more
favorable performance under the best hyperparameters.

Figure 7: Correlation between learned Q-values and performance. x-axis is the average of learned
Qψ(s, a) over the last 500 training batches. y-axis is the average performance over the last 10
evaluation points. Each plot corresponds to a (environment, algorithm, dataset) tuple. Different points
in each plot correspond to different hyperparameters and different random seeds.

Although we utilized hyperparameter searches in our results, in pure offline RL settings, testing on
the real environment is infeasible. Thus, a natural question is how to select the best hyperparameter
or the best learned policy among many without direct testing. As a preliminary attempt, we evaluated
whether the Q-values learned during training can be used as a proxy for hyperparameter selection.
Specifically, we look at the correlation between the average learned Q-values (in mini-batches) and the
true performance. Figure 7 shows sampled visualizations of these Q-values. We find that the learned
Q-values are not a good indicator of the performance, even when they are within a reasonable range
(i.e., not diverging during training). A more formal direction for doing hyperparameter selection is to
do off-policy evaluation. However, off-policy evaluation is an open research problem with limited
success on complex continuous control tasks (see Liu et al. (2018); Nachum et al. (2019); Irpan et al.
(2019) for recent attempts), we leave hyperparameter selection as future work and encourage more
researchers to investigate this direction.

8

Under review as a conference paper at ICLR 2020

5 CONCLUSION

In this work, we introduced behavior regularized actor critic (BRAC), an algorithmic framework,
which generalizes existing approaches to solve the offline RL problem by regularizing to the behavior
policy. In our experiments, we showed that many sophisticated training techniques, such as weighted
target Q-value ensembles and adaptive regularization coefficients are not necessary in order to
achieve state-of-the-art performance. We found that the use of value penalty is slightly better than
policy regularization, while many possible divergences (KL, MMD, Wasserstein) can achieve similar
performance. Perhaps the most important differentiator in these offline settings is whether proper
hyperparameters are used. Although some variants of BRAC are more robust to hyperparameters
than others, every variant relies on a suitable set of hyperparameters to train well. Unfortunately,
off-policy evaluation without interacting with the environment is a challenging open problem. While
previous off-policy evaluation work focuses on reducing mean-squared-error to the expected return,
in our problem, we only require a ranking of policies. This relaxation may allow novel solutions, and
we encourage more researchers to investigate this direction in the pursuit of truly offline RL.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. Striving for simplicity in off-policy
deep reinforcement learning. arXiv preprint arXiv:1907.04543, 2019.

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pp. 30–37. Elsevier, 1995.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM conference on recommender systems, pp. 191–198. ACM, 2016.

Imre Csiszár. Eine informationstheoretische ungleichung und ihre anwendung auf beweis der
ergodizitaet von markoffschen ketten. Magyer Tud. Akad. Mat. Kutato Int. Koezl., 8:85–108, 1964.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-learning
algorithms. arXiv preprint arXiv:1902.10250, 2019.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018a.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018b.

Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alexander J Smola.
A kernel approach to comparing distributions. In Proceedings of the National Conference on
Artificial Intelligence, volume 22, pp. 1637. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2007.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in neural information processing systems, pp.
5767–5777, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Alex Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian Ibarz, and Sergey Levine.
Off-policy evaluation via off-policy classification. arXiv preprint arXiv:1906.01624, 2019.

9

Under review as a conference paper at ICLR 2020

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Sham M Kakade. A natural policy gradient. In Advances in neural information processing systems,
pp. 1531–1538, 2002.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. arXiv preprint arXiv:1906.00949, 2019.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pp. 45–73. Springer, 2012.

Romain Laroche and Paul Trichelair. Safe policy improvement with baseline bootstrapping. arXiv
preprint arXiv:1712.06924, 2017.

Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms. In Proceedings of the fourth ACM interna-
tional conference on Web search and data mining, pp. 297–306. ACM, 2011.

Lihong Li, Rémi Munos, and Csaba Szepesvári. Toward minimax off-policy value estimation. 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite-
horizon off-policy estimation. In Advances in Neural Information Processing Systems, pp. 5356–
5366, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Susan A Murphy, Mark J van der Laan, James M Robins, and Conduct Problems Prevention Re-
search Group. Marginal mean models for dynamic regimes. Journal of the American Statistical
Association, 96(456):1410–1423, 2001.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Trust-pcl: An off-policy trust
region method for continuous control. arXiv preprint arXiv:1707.01891, 2017.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. arXiv preprint arXiv:1906.04733, 2019.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in neural information processing systems,
pp. 271–279, 2016.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-Fourth
AAAI Conference on Artificial Intelligence, 2010.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

Richard S Sutton. On the virtues of linear learning and trajectory distributions. In Proceedings of the
Workshop on Value Function Approximation, Machine Learning Conference, pp. 85, 1995.

10

Under review as a conference paper at ICLR 2020

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

John N Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. In Advances in neural information processing systems, pp. 1075–1081, 1997.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

Yifan Wu, Ezra Winston, Divyansh Kaushik, and Zachary Lipton. Domain adaptation with
asymmetrically-relaxed distribution alignment. In International Conference on Machine Learning,
pp. 6872–6881, 2019.

11

Under review as a conference paper at ICLR 2020

A ADDITIONAL EXPERIMENT RESULTS

A.1 ADDITIONAL EXPERIMENT DETAILS

Dataset collection For each environment, we collect five datasets: {no-noise, eps-0.1, eps-0.3,
gauss-0.1, gauss-0.3} using a partially trained policy π. Each dataset contains 1 million transitions.
Different datasets are collected with different injected noise, corresponding to different levels and
strategies of exploration. The specific noise configurations are shown below:

• no-noise : The dataset is collected by purely executing the partially trained policy π without
adding noise.
• eps-0.1: We make an epsilon greedy policy π′ with 0.1 probability. That is, at each step, π′

has 0.1 probability to take a uniformly random action, otherwise takes the action sampled
from π. The final dataset is a mixture of three parts: 40% transitions are collected by π′,
40% transitions are collected by purely executing π, the remaining 20% are collected by a
random walk policy which takes a uniformly random action at every step. This mixture is
motivated by that one may only want to perform exploration in only a portion of episodes
when deploying a policy.
• eps-0.3: π′ is an epsilon greedy policy with 0.3 probability to take a random action. We do

the same mixture as in eps-0.1.
• gauss-0.1: π′ is taken as adding an independent N (0, 0.12) Gaussian noise to each action

sampled from π. We do the same mixture as in eps-0.1.
• gauss-0.3: π′ is taken as adding an independent N (0, 0.32) Gaussian noise to each action

sampled from π. We do the same mixture as in eps-0.1.

Hyperparameter search As we mentioned in main text, for each variant of BRAC and each
environment, we do a grid search over policy learning rate and regularization strength. For policy
learning rate, we search over six values: {3 · 106, 1 · 105, 3 · 105, 0.0001, 0.0003, 0.001}. The
regularization strength is controlled differently in different algorithms:

• In BCQ, we search for the perturbation range Φ ∈ {0.005, 0.015, 0.05, 0.15, 0.5}. 0.05 is
the reported value by its paper (Fujimoto et al., 2018a).
• In BEAR the regularization weight α is adaptively trained with dual gradient ascent

based on a divergence constraint ε that is tuned as a hyperparameter. We search for
ε ∈ {0.015, 0.05, 0.15, 0.5, 1.5}. 0.05 is the reported value by its paper (Kumar et al.,
2019).
• When MMD is used with a fixed α, we search for α ∈ {3, 10, 30, 100, 300}.
• When KL divergence is used with a fixed α (both KL and KL_dual), we search for α ∈
{0.1, 0.3, 1.0, 3.0, 10.0}.
• When Wasserstein distance is used with a fixed α, we search for α ∈
{0.3, 1.0, 3.0, 10.0, 30.0}.

in BEAR the regularization weight is adaptively trained with dual gradient ascent based on a
divergence constraint ε that is tuned as a hyperparameter;

In the simplest case, the regularization weight α is fixed; in BCQ the corresponding tuning is for
the perturbation range Φ. For each of these options, we search over five values (see Appendix for
details). For existing algorithms such as BEAR and BCQ, the reported hyperparameters in their
papers (Kumar et al., 2019; Fujimoto et al., 2018a) are included in this search range, We select the
best hyperparameters according to the average performance over all five datasets.

Implementation details All experiments are implemented with Tensorflow and executed on CPUs.
For all function approximators, we use fully connected neural networks with RELU activations. For
policy networks, we use tanh(Gaussian) on outputs following BEAR (Kumar et al., 2019), except
for BCQ where we follow their open sourced implementation. For BEAR and BCQ we follow
the network sizes as in their papers. For other variants of BRAC, we shrink the policy networks
from (400, 300) to (200, 200) and Q-networks from (400, 300) to (300, 300) for saving computation

12

Under review as a conference paper at ICLR 2020

time without losing performance. Q-function learning rate is always 0.001. As in other deep RL
algorithms, we maintain source and target Q-functions with an update rate 0.005 per iteration. For
MMD we use Laplacian kernels with bandwidth reported by Fujimoto et al. (2018a). For divergences
in the dual form (both KL_dual and Wasserstein), we training a (300, 300) fully connected network
as the critic in the minimax objective. Gradient penalty (one sided version of the penalty in Gulrajani
et al. (2017) with coefficient 5.0) is applied to both KL and Wasserstein dual training. In each training
iteration, the dual critic is updated for 3 steps (which we find better than only 1 step) with learning
rate 0.0001. We use Adam for all optimizers. Each agent is trained for 0.5 million steps with batch
size 256 (except for BCQ we use 100 according their open sourced implementation). At test time we
follow Kumar et al. (2019) and Fujimoto et al. (2018a) by sampling 10 actions from πθ at each step
and take the one with highest learned Q-value.

A.2 VALUE PENALTY V.S. POLICY REGULARIZATION

Figure 8: Comparing policy regularization (pr) v.s. value penalty (vp) with all four divergences. The
use of value penalty is usually slightly better.

13

Under review as a conference paper at ICLR 2020

A.3 FULL PERFORMANCE RESULTS UNDER DIFFERENT HYPERPARAMETERS

Figure 9: Visualization of performance under different hyperparameters. The performance is averaged
over all five datasets.

14

Under review as a conference paper at ICLR 2020

Figure 10: Visualization of performance under different hyperparameters.

15

Under review as a conference paper at ICLR 2020

A.4 ADDITIONAL TRAINING CURVES

Figure 11: Training curves on all five datasets when comparing kl_vp to other baselines.

16

Under review as a conference paper at ICLR 2020

Figure 12: Training curves when comparing different divergences with policy regularization. All
divergences perform similarly.

17

Under review as a conference paper at ICLR 2020

Figure 13: Training curves when comparing different divergences with value penalty. All divergences
perform similarly.

18

Under review as a conference paper at ICLR 2020

A.5 FULL PERFORMANCE RESULTS UNDER THE BEST HYPERPARAMETERS

Environment: Ant-v2 Partially trained policy: 1241
dataset no-noise eps-0.1 eps-0.3 gauss-0.1 gauss-0.3

SAC 0 -1109 -911 -1071 -1498
BC 1235 1300 1278 1203 1240
BCQ 1921 1864 1504 1731 1887
BEAR 2100 1897 2008 2054 2018
MMD_vp 2839 2672 2602 2667 2640
KL_vp 2514 2530 2484 2615 2661
KL_dual_vp 2626 2334 2256 2404 2433
W_vp 2646 2417 2409 2474 2487
MMD_pr 2583 2280 2285 2477 2435
KL_pr 2241 2247 2181 2263 2233
KL_dual_pr 2218 1984 2144 2215 2201
W_pr 2241 2186 2284 2365 2344

Table 1: Evaluation results with tuned hyperparameters. 0 performance means overflow encountered
during training due to diverging Q-functions.

Environment: HalfCheetah-v2 Partially trained policy: 4206
dataset no-noise eps-0.1 eps-0.3 gauss-0.1 gauss-0.3

SAC 5093 6174 5978 6082 6090
BC 4465 3206 3751 4084 4033
BCQ 5064 5693 5588 5614 5837
BEAR 5325 5435 5149 5394 5329
MMD_vp 6207 6307 6263 6323 6400
KL_vp 6104 6212 6104 6219 6206
KL_dual_vp 6209 6087 6359 5972 6340
W_vp 5957 6014 6001 5939 6025
MMD_pr 5936 6242 6166 6200 6294
KL_pr 6032 6116 6035 5969 6219
KL_dual_pr 5944 6183 6207 5789 6050
W_pr 5897 5923 5970 5894 6031

Table 2: Evaluation results with tuned hyperparameters.

19

Under review as a conference paper at ICLR 2020

Environment: Hopper-v2 Partially trained policy: 1202
dataset no-noise eps-0.1 eps-0.3 gauss-0.1 gauss-0.3

SAC 0.2655 661.7 701 311.2 592.6
BC 1330 129.4 828.3 221.1 284.6
BCQ 1543 1652 1632 1599 1590
BEAR 0 1620 2213 1825 1720
MMD_vp 2291 2282 1892 2255 1458
KL_vp 2774 2360 2892 1851 2066
KL_dual_vp 1735 2121 2043 1770 1872
W_vp 2292 2187 2178 1390 1739
MMD_pr 2334 1688 1725 1666 2097
KL_pr 2574 1925 2064 1688 1947
KL_dual_pr 2053 1985 1719 1641 1551
W_pr 2080 2089 2015 1635 2097

Table 3: Evaluation results with tuned hyperparameters.

Environment: Walker-v2 Partially trained policy: 1439
dataset no-noise eps-0.1 eps-0.3 gauss-0.1 gauss-0.3

SAC 131.7 213.5 127.1 119.3 109.3
BC 1334 1092 1263 1199 1137
BCQ 2095 1921 1953 2094 1734
BEAR 2646 2695 2608 2539 2194
MMD_vp 2694 3241 3255 2893 3368
KL_vp 2907 3175 2942 3193 3261
KL_dual_vp 2575 3490 3236 3103 3333
W_vp 2635 2863 2758 2856 2862
MMD_pr 2670 2957 2897 2759 3004
KL_pr 2744 2990 2747 2837 2981
KL_dual_pr 2682 3109 3080 2357 3155
W_pr 2667 3140 2928 1804 2907

Table 4: Evaluation results with tuned hyperparameters.

20

	Introduction
	Background
	Markov Decision Processes
	Offline Reinforcement Learning

	Behavior Regularized Actor Critic
	Experiments
	Fixed v.s. adaptive regularization weights
	Ensemble for target Q-values
	Value penalty or policy regularization
	Divergences for regularization
	Comparison to BCQ and other baselines
	Hyperparameter Sensitivity

	Conclusion
	Additional Experiment Results
	Additional experiment details
	Value penalty v.s. policy regularization
	Full performance results under different hyperparameters
	Additional training curves
	Full performance results under the best hyperparameters

