
Under review as a conference paper at ICLR 2020

ELLIPSOIDAL TRUST REGION METHODS FOR NEURAL
NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the use of ellipsoidal trust region constraints for second-order
optimization of neural networks. This approach can be seen as a higher-order
counterpart of adaptive gradient methods, which we here show to be interpretable as
first-order trust region methods with ellipsoidal constraints. In particular, we show
that the preconditioning matrix used in RMSProp and Adam satisfies the necessary
conditions for provable convergence of second-order trust region methods with
standard worst-case complexities. Furthermore, we run experiments across different
neural architectures and datasets to find that the ellipsoidal constraints constantly
outperform their spherical counterpart both in terms of number of backpropagations
and asymptotic loss value. Finally, we find comparable performance to state-of-
the-art first-order methods in terms of backpropagations, but further advances in
hardware are needed to render Newton methods competitive in terms of time.

1 INTRODUCTION

We consider finite-sum optimization problems of the form

w∗ = arg min
w∈Rd

[
L(w) :=

n∑
i=1

`(f(w,xi,yi))

]
, (1)

which typically arise in neural network training, e.g. for empirical risk minimization over a set of
data points (xi,yi) ∈ Rin × Rout, i = 1, . . . , n. Here, ` : Rout × Rout → R+ is a convex loss and
f : Rin × Rd → Rout represents the neural network mapping parameterized by w ∈ Rd, which
is non-convex due to its multiplicative nature and potentially non-linear activation functions. We
assume that L is twice differentiable, i.e. L ∈ C2(Rd,R). Non-convex optimization problems are
ubiquitous in machine learning. Among the most prominent examples are present-day deep neural
networks, that have achieved outstanding results on core tasks such as collaborative filtering (Wang
et al., 2015), sentence classification (Kim, 2014) and image classification (Krizhevsky et al., 2012).

In the era of big data and deep neural networks, stochastic gradient descent (SGD) is one of the
most widely used training algorithms (Bottou, 2010). What makes SGD so attractive is its simplicity
and per-iteration cost that are independent of the size of the training set (n) and scale linearly in the
dimensionality (d). However, gradient descent is known to be inadequate to optimize functions that
are ill-conditioned (Nesterov, 2013; Shalev-Shwartz et al., 2017) and thus adaptive gradient methods
that employ dynamic, coordinate-wise learning rates based on past gradients—including Adagrad
(Duchi et al., 2011), RMSprop (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2014)—have
become a popular alternative, often providing significant speed-ups over SGD. Yet, there exist no
theoretical proofs that these methods are faster than gradient descent (Li & Orabona, 2018).

From a theoretical perspective, Newton methods provide stronger convergence guarantees by appro-
priately transforming the gradient in ill-conditioned regions according to second-order derivatives. It
is precisely this Hessian information that allows regularized Newton methods to enjoy superlinear
local convergence as well as escape saddle points provably (Conn et al., 2000). While second-order
algorithms have a long-standing history even in the realm of neural network training (Hagan &
Menhaj, 1994; Becker et al., 1988), they were mostly considered as too computationally and memory
expensive for practical applications. Yet, the seminal work of Martens (2010) renewed interest for
their use in deep learning by proposing efficient Hessian-free methods that only access second-order

1

Under review as a conference paper at ICLR 2020

information via matrix-vector products which can be computed at the cost of an additional backprop-
agation (Pearlmutter, 1994; Schraudolph, 2002). Among the class of regularized Newton methods,
trust region (Conn et al., 2000) and cubic regularization algorithms (Cartis et al., 2011) are the most
principled approaches, as they yield the strongest convergence guarantees. Recently, stochastic
extensions have emerged (Xu et al., 2017b; Yao et al., 2018; Kohler & Lucchi, 2017; Gratton et al.,
2017), which suggest their applicability for deep learning.

We here propose a simple modification to make TR methods even more suitable for neural network
training. Particularly, we build upon the following alternative view on adaptive gradient methods:

While gradient descent can be interpreted as a spherically constrained first-order TR method, precon-
ditioned gradient methods—such as Adagrad—can be seen as first-order TR methods with ellipsoidal
trust region constraint.

This observation is particularly interesting since spherical constraints are blind to the underlying
geometry of the problem, but ellipsoids can adapt to local landscape characteristics, thereby allowing
for more suitable steps in regions that are ill-conditioned. We will leverage this analogy and investigate
the use of the Adagrad and RMSProp preconditioning matrices as ellipsoidal trust region shapes
within a fully stochastic second-order TR algorithm named STORM (Chen et al., 2018; Gratton et al.,
2017). While the theory for ellipsoidal TR methods is well-studied (e.g. Conn et al. (2000); Yuan
(2015)), no ellipsoid fits all objective functions and our main contribution thus lies in the identification
of adequate matrix-induced constraints that lead to provable convergence and significant practical
speed-ups for the specific case of deep learning. On the whole, our contribution is threefold:

• We provide a new perspective on adaptive gradient methods that contributes to a better
understanding of their inner-workings. Furthermore, we empirically find that many neu-
ral network problems exhibit diagonally dominated Hessian matrices which suggests the
effectivity of diagonal preconditioning. (Section 3)

• We investigate the first application of ellipsoidal TR methods for deep learning. In Theorem 1
we show that the RMSProp matrix can directly be applied as constraint inducing norm in
second-order TR algorithms while preserving all convergence guarantees. (Section 4)

• Finally, we provide an experimental benchmark across different real-world datasets and
architectures. We also compare against adaptive gradient methods and show results in terms
of backprogations, epochs, and wall-clock time; a comparison we were not able to find in
the literature. (Section 5)

Our main empirical results demonstrate that ellipsoidal constraints prove to be a very effective
modification of the trust region method in the sense that they constantly outperform the spherical TR
method, both in terms of number of backprogations and asymptotic loss value on a variety of tasks.

2 RELATED WORK

First-order methods The prototypical method for optimizing Eq. (1) is SGD (Robbins & Monro,
1951). While the practical success of SGD in non-convex optimization is unquestioned, the theoretical
foundation of this phenomenon is still rather limited. Recent findings suggest the ability of this
method to escape saddle points and reach local minima in polynomial time for general non-convex
problems, but they either need to artificially add noise to the iterates (Ge et al., 2015; Lee et al., 2016)
or make an assumption on the inherent noise of vanilla SGD (Daneshmand et al., 2018). For neural
network training, a recent line of research proclaims the effectiveness of SGD, but the results usually
come at the cost of fairly strong assumptions such as heavy overparametrization and Gaussian inputs
(Du et al., 2017; Brutzkus & Globerson, 2017; Li & Yuan, 2017; Du & Lee, 2018; Allen-Zhu et al.,
2018). Adaptive gradient methods (Duchi et al., 2011; Tieleman & Hinton, 2012; Kingma & Ba,
2014) build on the intuition that larger learning rates for smaller gradient components and smaller
learning rates for larger gradient components balance their respective influences and thereby make
the methods behave as if they were optimizing a more isotropic surface. Such approaches have first
been suggested for neural networks by LeCun et al. (2012). Recently, convergence guarantees for
such methods are starting to appear (Ward et al., 2018; Li & Orabona, 2018). However, these are not
superior to the O(ε−2g) worst-case complexity of standard gradient descent (Cartis et al., 2012b).

2

Under review as a conference paper at ICLR 2020

Regularized Newton methods The most principled class of regularized Newton methods are trust
region (TR) and adaptive cubic regularization algorithms (ARC) (Conn et al., 2000; Cartis et al.,
2011), which repeatedly optimize a local Taylor model of the objective while making sure that the step
does not travel too far such that the model stays accurate. While the former finds first-order stationary
points within O(ε−2g), ARC only takes at most O(ε

−3/2
g). However, simple modifications to the TR

framework allow these methods to obtain the same accelerated rate (Curtis et al., 2017). Both methods
take at most O(ε−3H) iterations to find an εH approximate second-order stationary point (Cartis et al.,
2012a). These rates are optimal for second-order Lipschitz continuous functions (Carmon et al.,
2017; Cartis et al., 2012a) and they can be retained even when only sub-sampled gradient and Hessian
information is used (Kohler & Lucchi, 2017; Yao et al., 2018; Xu et al., 2017b; Blanchet et al., 2016;
Liu et al., 2018; Cartis & Scheinberg, 2017). Furthermore, the involved Hessian information can be
computed solely based on Hessian-vector products, which are implementable efficiently for neural
networks (Pearlmutter, 1994). This makes these methods particularly attractive for deep learning, but
the empirical evidence of their applicability is so far very limited. We are only aware of the works of
Liu et al. (2018) and Xu et al. (2017a), which report promising first results but these are by no means
fully encompassing.

Gauss-Newton methods An interesting line of research proposes to replace the Hessian by (approx-
imations of) the generalized-Gauss-Newton matrix (GGN) within a Levenberg-Marquardt framework1

(LeCun et al., 2012; Martens, 2010; Martens & Grosse, 2015). These methods have been termed
hessian-free since only access to GGN-vector products is required. As the GGN matrix is always pos-
itive semidefinite, they cannot leverage negative curvature to escape saddles and hence, there exist no
second-order convergence guarantees. Furthermore, there are cases in neural network training where
the Hessian is better conditioned than the GGN matrix (Mizutani & Dreyfus, 2008). Nevertheless,
the above works report promising preliminary results, most notably Grosse & Martens (2016) report
that K-FAC can be faster than SGD on a small convnet. On the other hand, recent findings report
performance at best comparable to SGD on the much larger ResNet architecture (Ma et al., 2019).
Moreover, Xu et al. (2017a) reports many cases where TR and GGN algorithms perform similarly.

This line of work is to be seen as complementary to our approach since it is straight forward to replace
the Hessian in the TR framework with the GGN matrix. Furthermore, the preconditioners used in
Martens (2010) and Chapelle & Erhan (2011), namely diagonal estimates of the empirical Fisher and
Fisher matrix, respectively, can directly be used as matrix norms in our ellipsoidal TR framework.

3 AN ALTERNATIVE VIEW ON ADAPTIVE GRADIENT METHODS

Adaptively preconditioned gradient methods update iterates as wt+1 = wt − ηtA−1/2t gt, where gt
is a stochastic estimate of ∇L(wt) and At is a positive definite symmetric pre-conditioning matrix.
In Adagrad, Aada,t is the un-centered second moment matrix of the past gradients computed as

Aada,t := GtG
ᵀ
t + εI, (2)

where ε > 0, I is the d× d identity matrix and Gt = [g1,g2, . . . ,gt]. Building up on the intuition
that past gradients might become obsolete in quickly changing non-convex landscapes, RMSprop
(and Adam) introduce an exponential weight decay leading to the preconditioning matrix

Arms,t :=
(
(1− β)Gt diag(βt, . . . , β0)Gᵀ

t

)
+ εI, (3)

where β ∈ (0, 1). In order to save computational efforts, the diagonal versions diag(Aada) and
diag(Arms) are more commonly applied in practice, which in turn gives rise to coordinate-wise
adaptive stepsizes that are enlarged (reduced) in coordinates that have seen past gradient components
with a smaller (larger) magnitude. In that way, the optimization methods can account for gradients of
potentially different scales arising from e.g. different layers of the networks.

3.1 ADAPTIVE PRECONDITIONING AS ELLIPSOIDAL TRUST REGION

Starting from the fact that adaptive methods employ coordinate-wise stepsizes, one can take a
principled view of these methods. Namely, their update steps arise from minimizing a first-order

1This algorithm is a simplified TR method, initially tailored for non-linear least squares problems (Nocedal
& Wright, 2006)

3

Under review as a conference paper at ICLR 2020

Taylor model of the function L within an ellipsoidal search space around the current iterate wt, where
the diameter of the ellipsoid along a particular coordinate is implicitly given by ηt and ‖gt‖A−1

t
.

Correspondingly, vanilla (S)GD optimizes the same first-order model within a spherical constraint.
Fig. 1 (top) illustrates this effect by showing not only the iterates of GD and Adagrad but also the
implicit trust regions within which the local models were optimized at each step.2 Since the models
are linear, the constrained minimizer is always found on the boundary.

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4
GD
Adagrad

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4
GD
Adagrad

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4
GD
Adagrad
Adagrad_full

0 50 100 150 200

10 10

10 8

10 6

10 4

10 2

100

102
GD
Adagrad

0 50 100 150 200

10 9

10 7

10 5

10 3

10 1

101

103
GD
Adagrad

0 50 100 150 200

10 8

10 6

10 4

10 2

100

102 GD
Adagrad
Adagrad_full

κ = 2 κ = 20 κ = 20

Figure 1: Top: Iterates and implicit trust regions of GD and Adagrad on three quadratic objectives with
different condition number κ. Bottom: Average log suboptimality over iterations as well as 90% confidence
intervals of 30 runs with random initialization

It is well known that GD struggles to progress towards the minimizer of quadratics along low-
curvature directions (see e.g., Goh (2017)). While this effect is negligible for well-conditioned
objectives (Fig. 1, left), it leads to drastically slow-down when the problem is ill-conditioned (Fig. 1,
center). Particularly, once the method has reached the bottom of the valley, it struggles to make
progress along the horizontal axis. Here is precisely where the advantage of adaptive stepsize methods
comes into play. As illustrated by the dashed lines, Adagrad’s search space is damped along the
direction of high curvature (vertical axis) and elongated along the low curvature direction (horizontal
axis). This allows the method to move further horizontally early on to enter the valley with a smaller
distance to the optimizer w∗ along the low curvature direction which accelerates convergence.

Theorem 1 (Preconditioned gradient methods as TR). A preconditioned gradient step

wt+1 −wt = st := −ηtA−1t gt (4)

with stepsize ηt > 0, symmetric positive definite preconditioner At ∈ Rd×d and gt 6= 0
minimizes a first-order model around wt ∈ Rd in an ellipsoid given by At in the sense that

st := arg min
s∈Rd

[
m1
t (s) = L(wt) + sᵀgt

]
, s.t. ‖s‖At ≤ ηt‖gt‖A−1

t
. (5)

Corollary 1 (Rmsprop). The step srms,t := −ηtA−1/2rms,tgt minimizes a first-order Taylor model

around wt in an ellipsoid given by A
1/2
rms,t (Eq. 3) in the sense that

srms,t := arg min
s∈Rd

[
m1
t (s) = L(wt) + sᵀgt

]
, s.t. ‖s‖

A
1/2
rms,t

≤ ηt‖gt‖A−1/2
rms,t

. (6)

Equivalent results can be established for Adam using gadam,t := (1−β)
∑t
k=0 β

t−kgt as well as for
Adagrad by replacing the matrix Aada into the constraint in Eq. (6). Of course, the update procedure
in Eq. (5) is merely a reinterpretation of the original preconditioned update, and thus the employed
trust region radii are defined implicitly by the current gradient and stepsize.

2For illustrative purposes, we only plot every other trust region.

4

Under review as a conference paper at ICLR 2020

3.2 DIAGONAL VERSUS FULL PRECONDITIONING

A closer look at Fig. 1 reveals that the first two problems come with level sets that are perfectly
axis-aligned, which makes these objectives particularly attractive for diagonal preconditioning. For
comparison, on the right of Fig. 1, we report another quadratic problem instance, where the Hessian
is no longer zero on the off-diagonals. As can be seen, the interaction between coordinates introduces
a tilt in the level sets and reduces the superiority of diagonal Adagrad over plain GD. However, using
the full preconditioner Aada re-establishes the original speed up. Yet, non-diagonal preconditioning
comes at the cost of taking the inverse square root of a large matrix, which is why this approach has
been relatively unexplored (see Agarwal et al. (2018) for a recent exception).

Interestingly, early results by Becker et al. (1988) on the curvature structure of neural nets report
a strong diagonal dominance of the Hessian matrix ∇2L(w). This suggests that the loss surface
is indeed somewhat axis-aligned. However, the reported numbers are only for tiny feed-forward
networks of at most 256 parameters. Therefore, we generalize these findings in the following to larger
networks. Furthermore, we contrast the diagonal dominance of real Hessian matrices to the expected
behavior of random Wigner matrices. Of course, true Hessians do not have i.i.d. entries but the
symmetry of Wigner matrices suggests that this baseline is not completely off. For this purpose, let
δA define the ratio of diagonal to overall mass of a matrix A, i.e. δA :=

∑
i |Ai,i|∑

i

∑
j |Ai,j | as in (Becker

et al., 1988).

Proposition 1. For random Gaussian3 Wigner matrix W formed as

Wi,j = Wj,i :=

{
∼ N (0, σ1), i < j

∼ N (0, σ2), i = j,
(7)

where ∼ stands for i.i.d. draws (Wigner, 1993), the expected share of diagonal mass δW amounts to

E [δW] =

(
1 + (d− 1)

σ2
σ1

)−1
.

Thus, if we suppose the Hessian at any given point w were a random Wigner matrix we would expect
the share of diagonal mass to fall with O(1/d) as the network grows in size. Yet, as can be seen in
Fig. 2 the diagonal mass δH of real-world neural networks stays way above this theoretical value at
random initialization, during training and after convergence.

C
on

vN
et

H
/

W

60

50

40

30

20

10

0
start during endWigner

M
L

P

H
/

W

start during end

160

120

80

40

0 Wigner

Figure 2: Diagonal mass of Hessian δH relative to δW of corresponding Wigner matrix at random initialization,
middle and end of training with RMSProp on CIFAR-10. Mean and 95% CI over 10 independent runs.

These findings are in line with Becker et al. (1988) and suggest that full matrix preconditioning is most
probably not worth the effort for neural networks. Consequently, we use diagonal preconditioning for
both first- and second-order methods in all of our experiments in Section 5.

4 SECOND-ORDER TRUST REGION METHODS

Cubic regularization (Nesterov & Polyak, 2006; Cartis et al., 2011) and trust region methods belong
to the family of globalized Newton methods. Both frameworks compute parameter updates by
optimizing regularized (former) or constrained (latter) second-order Taylor models of the objective L

3The argument naturally extends to any distribution with positive expected absolute values.

5

Under review as a conference paper at ICLR 2020

around the current iterate wt.4 In particular, in iteration t the update step of the trust region algorithm
is computed as

min
s∈Rd

[
mt(s) := L(wt) + gᵀ

t s +
1

2
sᵀBts

]
, s.t. ‖s‖At

≤ ∆t (8)

where ∆t > 0 and gt and Bt are either ∇L(wt) and ∇2L(wt) or suitable approximations. The
matrix At induces the shape of the constraint set. So far, the common choice for neural networks
is At := I, ∀t which gives rise to spherical trust regions (Xu et al., 2017a; Liu et al., 2018). By
solving the constrained problem (8), TR methods overcome the problem that pure Newton steps may
be ascending, attracted by saddles or not even computable. See Appendix B for more details.

4.1 CONVERGENCE OF ELLIPSOIDAL TRUST REGION METHODS

Inspired by the success of adaptive gradient methods, we investigate the use of their preconditioning
matrices as norm inducing matrices for second-order TR methods. The crucial condition for con-
vergence is that the applied norms are not degenerate during the entire minimization process in the
sense that the ellipsoids do not flatten out (or blow up) completely along any given direction. The
following definition formalizes this intuition.

Definition 1 (Uniformly equivalent norms). The norms ‖w‖At
:= (wᵀAtw)

1/2 induced by sym-
metric positive definite matrices At are called uniformly equivalent, if ∃µ ≥ 1 such that

1

µ
‖w‖At

≤ ‖w‖2 ≤ µ‖w‖At
, ∀w ∈ Rd,∀t = 1, 2, (9)

We now establish a result which shows that the RMSProp ellipsoid is indeed uniformly equivalent.

Proposition 2 (Uniform equivalence). Suppose ‖gt‖2 ≤ L2
H for all wt ∈ Rd, t = 1, 2, . . .

Then there always exists ε > 0 such that the proposed preconditioning matrices Arms,t (Eq. 3)
are uniformly equivalent, i.e. Def. 1 holds. The same holds for the diagonal variant.

Consequently, the ellipsoids Arms,t can directly be applied to any convergent TR framework without
losing convergence guarantees (Conn et al. (2000), Theorem 6.6.8).5 Interestingly, this result cannot
be established for Aada,t, which reflects the widely known vanishing stepsize problem that arises
since squared gradients are continuously added to the preconditioning matrix. At least partially, this
effect inspired the development of RMSprop (Tieleman & Hinton, 2012) and Adadelta (Zeiler, 2012).

Why ellipsoids? There are many sources for ill-conditioning in neural networks such as un-centered
and correlated inputs (LeCun et al., 2012), saturated hidden units, and different weight scales in
different layers (Van Der Smagt & Hirzinger, 1998). While the quadratic term of model (8) accounts
for such ill-conditioning to some extent, the spherical constraint is completely blind towards the
loss surface. Thus, it is advisable to instead measure distances in norms that reflect the underlying
geometry (see Chapter 7.7 in Conn et al. (2000)). The ellipsoids we propose are such that they allow
for longer steps along coordinates that have seen small gradient components in past and vice versa.
Thereby the TR shape is adaptively adjusted to fit the current region of the non-convex loss landscape.
This procedure is not only effective when the iterates are in an ill-conditioned neighborhood of a
minimizer (Figure 1), but it also helps to escape elongated plateaus (see autoencoder in Section 5).

4.2 A STOCHASTIC TR FRAMEWORK FOR NEURAL NETWORK TRAINING

Since neural network training often constitutes a large scale learning problem in which the number of
datapoints n is very high, we here opt for a fully stochastic TR framework (Chen et al., 2018) in order
to circumvent memory issues and reduce computational complexity. Given that the involved function
and derivative estimates are sufficiently accurate with a fixed probability, such a framework retains
the convergence rate of deterministic TR methods to stationary points in expectation (Blanchet et al.,

4In the following we only treat TR methods, but we would like to emphasize that the use of matrix induced
norms can directly be transferred to the cubic regularization framework.

5Note that the assumption of bounded batch gradients, i.e. smooth objectives, is common in the analysis of
stochastic algorithms (Allen-Zhu, 2017; Defazio et al., 2014; Schmidt et al., 2017; Duchi et al., 2011).

6

Under review as a conference paper at ICLR 2020

2016). For finite-sum objectives such as Eq. (1), the required level of accuracy can be obtained by
simple mini-batching. In that case, Algorithm 1 with Arms ellipsoids converges with the classical
O
(
ε−2, ε−3

)
rate thanks to Proposition 2 above and Theorem 6.6.8 in Conn et al. (2000).

Algorithm 1 Stochastic Ellipsoidal Trust Region Method
1: Input: w0 ∈ Rd, γ1, γ2 > 1, 1 > η2 > η1 > 0, ∆0 > 0, T ≥ 1, |S0|, µ ≥ 1, ε > 0
2: for t = 0, 1, . . . , until convergence do
3: Sample Lt, gt and Bt with batch sizes |SL,t|, |Sg,t|, |SB,t|
4: Compute preconditioner At s.t. Def. 1 holds
5: Obtain st by solving mt(st) (Eq. 8) s.t. Eq 36 holds
6: Compute actual over predicted decrease on batch

ρS,t =
LS(wt)− LS(wt + st)

mt(0)−mt(st)
(10)

7: Set

∆t+1 =

γ1∆t if ρS,t > η2 (very successful)
∆t if η2 ≥ ρS,t ≥ η1 (successful)
∆t/γ2 if ρS,t < η1 (unsuccessful)

, wt+1 =

{
wt + st if ρS,t ≥ η1
wt otherwise

8: end for

The main difference between this and the existing approaches of Kohler & Lucchi (2017); Xu
et al. (2017b); Yao et al. (2018); Cartis & Scheinberg (2017) lies in the computation of ρ, which is
traditionally computed as full function- over stochastic model decrease. Computing ρ solely based on
sub-sampled quantities has the nice side-effect of disentangling two potential sources of error: an
overoptimistic trust region radius or insufficiently small batch sizes. Indeed, the quantity ρS from
Eq. (10) is an unbiased estimate of the ρ used in fully deterministic algorithms and hence the trust
region radius is adjusted purely based on the current adequacy of the local quadratic approximation.

5 EXPERIMENTS

Trust region methods To validate our claim that ellipsoidal TR methods yield improved perfor-
mance over spherical ones, we run a set of experiments on two image datasets and three types of
network architectures. As can be seen in Figure 3, the ellipsoidal TR methods consistently outperform
their spherical counterpart in the sense that they reach full training accuracy substantially faster on all
problems. Moreover, their limit points are in all cases lower than those of the uniform TR method.
Interestingly, this makes an actual difference in the image reconstruction quality of autoencoders
(see Figure 11). We thus draw the clear conclusion that the ellipsoidal trust region constraints we
propose are to be preferred over their spherical counterpart when training neural networks. Both the
experimental and architectural details are provided in Appendix C.

Benchmark with SGD To put the previous results into context, we also benchmark several state-
of-the-art gradient methods. We fix their sample size to 32 (as advocated e.g. in Masters & Luschi
(2018)) but grid search the stepsize since it is the ratio of these two quantities that effectively
determines the level of stochasticity (Jastrzebski et al., 2017). As the TR methods have a larger batch
size6 of 128–512, we report results both in terms of number of backpropagations and epochs for a fair
comparison. A close look at Figure 4 and 9 (Appendix) indicates that the ellipsoidal TR methods can
be slightly superior in terms of backprops but at best manage to keep pace with first-order methods
in terms of epochs. Furthermore, the limit points of both first- and second-order methods yield the
same order of loss in most experiments. When taking gradient norms into account (plot omitted), we
indeed find no spurious local minima and only the autoencoders give rise to saddle points.

6We observed weaker performance when running with smaller batch size. We hypothesize that second-order
methods extract more information of each batch and are thus likely to "overfit" small batches in each step.

7

Under review as a conference paper at ICLR 2020

ResNet18 MLP autoencoder

Fa
sh

io
n-

M
N

IS
T

0.0 0.2 0.4 0.6 0.8 1.0
of backpropagations ×104

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g(

lo
ss

)

99% accuracy

TR Uniform
TR Adagrad
TR RMSprop

0 1 2 3 4 5 6 7
of backpropagations ×104

4

3

2

1

0

1

lo
g(

lo
ss

)

99% accuracy

TR Uniform
TR Adagrad
TR RMSprop

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
of backpropagations ×104

5.5

5.6

5.7

5.8

5.9

6.0

6.1

6.2

6.3

lo
g(

lo
ss

)

TR Uniform
TR Adagrad
TR RMSprop

C
IF

A
R

-1
0

0 1000 2000 3000 4000 5000 6000 7000 8000
of backpropagations

4

3

2

1

0

1

2

lo
g(

lo
ss

)

99% accuracy

TR Uniform
TR Adagrad
TR RMSprop

0.0 0.2 0.4 0.6 0.8 1.0
of backpropagations ×105

0.2

0.0

0.2

0.4

0.6

0.8

lo
g(

lo
ss

)

TR Uniform
TR Adagrad
TR RMSprop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
of backpropagations ×104

5.5

5.0

4.5

4.0

3.5

3.0

lo
g(

lo
ss

)

TR Uniform
TR Adagrad
TR RMSprop

Figure 3: Log loss over backpropagations. Mean and 95% CI of 10 runs. Green dotted line indicates 99% acc.

ResNet18 MLP autoencoder

Fa
sh

io
n-

M
N

IS
T

0.0 0.2 0.4 0.6 0.8 1.0
of backpropagations ×104

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g(

lo
ss

)

99% accuracy

Adagrad
RMSprop
SGD
Adam
TR RMSprop

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
of backpropagations ×105

4

3

2

1

0

1

lo
g(

lo
ss

)

99% accuracy

Adagrad
RMSprop
SGD
TR RMSprop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
of backpropagations ×104

5.4

5.6

5.8

6.0

6.2

lo
g(

lo
ss

)

Adagrad
RMSprop
SGD
TR RMSprop

C
IF

A
R

-1
0

0 2000 4000 6000 8000
of backpropagations

4

3

2

1

0

1

2

lo
g(

lo
ss

)

99% accuracy

Adagrad
RMSprop
SGD
Adam
TR RMSprop

0.0 0.2 0.4 0.6 0.8 1.0
of backpropagations ×105

0.2

0.0

0.2

0.4

0.6

0.8

lo
g(

lo
ss

)

Adagrad
RMSprop
SGD
TR RMSprop

0 1 2 3 4 5
of backpropagations ×104

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

lo
g(

lo
ss

) Adagrad
RMSprop
SGD
TR RMSprop

Figure 4: Log loss over backpropagations. Same setting as Figure 3. See Figure 9 for epoch results.

6 CONCLUSION

We investigated the use of ellipsoidal trust region constraints for neural networks. We have shown
that the RMSProp matrix satisfies the necessary conditions for convergence and our experimental
results demonstrate that ellipsoidal TR methods outperform their spherical counterparts significantly.
We thus consider the development of further ellipsoids that can potentially adapt even better to the
loss landscape such as e.g. (block-) diagonal hessian approximations (e.g. Bekas et al. (2007)) or
approximations of higher order derivatives as an interesting direction of future research.

Yet, the gradient method benchmark indicates that the value of Hessian information for neural
network training is limited for mainly three reasons: 1) second-order methods rarely yield better limit
points, which suggests that saddles and spurious local minima are not a major obstacle; 2) gradient
methods can run on smaller batch sizes which is beneficial in terms of epoch and when memory is
limited; 3) The per-iteration time complexity is noticeably lower for first-order methods (Figure 10).
These observations suggest that advances in hardware and distributed second-order algorithms (e.g.,
Osawa et al. (2018); Dünner et al. (2018)) will be needed before Newton-type methods can replace
(stochastic) gradient methods in deep learning.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
The case for full-matrix adaptive regularization. arXiv preprint arXiv:1806.02958, 2018.

Guillaume Alain, Nicolas Le Roux, and Pierre-Antoine Manzagol. Negative eigenvalues of the
hessian in deep neural networks. 2018.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. The
Journal of Machine Learning Research, 18(1):8194–8244, 2017.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962, 2018.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

Sue Becker, Yann Le Cun, et al. Improving the convergence of back-propagation learning with
second order methods. In Proceedings of the 1988 connectionist models summer school, pp. 29–37.
San Matteo, CA: Morgan Kaufmann, 1988.

Costas Bekas, Effrosyni Kokiopoulou, and Yousef Saad. An estimator for the diagonal of a matrix.
Applied numerical mathematics, 57(11-12):1214–1229, 2007.

Jose Blanchet, Coralia Cartis, Matt Menickelly, and Katya Scheinberg. Convergence rate analysis of
a stochastic trust region method for nonconvex optimization. arXiv preprint arXiv:1609.07428,
2016.

Leon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pp. 177–186. Springer, 2010.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. arXiv preprint arXiv:1702.07966, 2017.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. arXiv preprint arXiv:1710.11606, 2017.

Coralia Cartis and Katya Scheinberg. Global convergence rate analysis of unconstrained optimization
methods based on probabilistic models. Mathematical Programming, pp. 1–39, 2017.

Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. Adaptive cubic regularisation methods for
unconstrained optimization. part i: motivation, convergence and numerical results. Mathematical
Programming, 127(2):245–295, 2011.

Coralia Cartis, Nicholas IM Gould, and Ph L Toint. Complexity bounds for second-order optimality
in unconstrained optimization. Journal of Complexity, 28(1):93–108, 2012a.

Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. How Much Patience to You Have?: A
Worst-case Perspective on Smooth Noncovex Optimization. Science and Technology Facilities
Council Swindon, 2012b.

Olivier Chapelle and Dumitru Erhan. Improved preconditioner for hessian free optimization. In NIPS
Workshop on Deep Learning and Unsupervised Feature Learning, volume 201, 2011.

Ruobing Chen, Matt Menickelly, and Katya Scheinberg. Stochastic optimization using a trust-region
method and random models. Mathematical Programming, 169(2):447–487, 2018.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

Frank E Curtis and Daniel P Robinson. Exploiting negative curvature in deterministic and stochastic
optimization. arXiv preprint arXiv:1703.00412, 2017.

9

Under review as a conference paper at ICLR 2020

Frank E Curtis, Daniel P Robinson, and Mohammadreza Samadi. A trust region algorithm with a
worst-case iteration complexity of O(ε3−2) for nonconvex optimization. Mathematical Program-
ming, 162(1-2):1–32, 2017.

Hadi Daneshmand, Jonas Kohler, Aurelien Lucchi, and Thomas Hofmann. Escaping saddles with
stochastic gradients. arXiv preprint arXiv:1803.05999, 2018.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Advances in neural information processing systems, pp. 2933–2941, 2014.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in neural information
processing systems, pp. 1646–1654, 2014.

Simon S Du and Jason D Lee. On the power of over-parametrization in neural networks with quadratic
activation. arXiv preprint arXiv:1803.01206, 2018.

Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos. Gradient
descent can take exponential time to escape saddle points. In Advances in Neural Information
Processing Systems, pp. 1067–1077, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Celestine Dünner, Aurelien Lucchi, Matilde Gargiani, An Bian, Thomas Hofmann, and Martin Jaggi.
A distributed second-order algorithm you can trust. arXiv preprint arXiv:1806.07569, 2018.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points-online stochastic
gradient for tensor decomposition. In COLT, pp. 797–842, 2015.

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

Serge Gratton, Clément W Royer, Luís N Vicente, and Zaikun Zhang. Complexity and global rates
of trust-region methods based on probabilistic models. IMA Journal of Numerical Analysis, 2017.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582, 2016.

Martin T Hagan and Mohammad B Menhaj. Training feedforward networks with the marquardt
algorithm. IEEE transactions on Neural Networks, 5(6):989–993, 1994.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623,
2017.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882,
2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex opti-
mization. In International Conference on Machine Learning, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

10

http://distill.pub/2017/momentum

Under review as a conference paper at ICLR 2020

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent only
converges to minimizers. In Conference on Learning Theory, pp. 1246–1257, 2016.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. arXiv preprint arXiv:1805.08114, 2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation.
In Advances in Neural Information Processing Systems, pp. 597–607, 2017.

Liu Liu, Xuanqing Liu, Cho-Jui Hsieh, and Dacheng Tao. Stochastic second-order methods for
non-convex optimization with inexact hessian and gradient. arXiv preprint arXiv:1809.09853,
2018.

Linjian Ma, Gabe Montague, Jiayu Ye, Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W
Mahoney. Inefficiency of k-fac for large batch size training. arXiv preprint arXiv:1903.06237,
2019.

James Martens. Deep learning via hessian-free optimization. In ICML, volume 27, pp. 735–742,
2010.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417, 2015.

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks. arXiv
preprint arXiv:1804.07612, 2018.

Eiji Mizutani and Stuart E Dreyfus. Second-order stagewise backpropagation for hessian-matrix
analyses and investigation of negative curvature. Neural Networks, 21(2-3):193–203, 2008.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

Jorge Nocedal and Stephen J Wright. Numerical optimization, 2nd Edition. Springer, 2006.

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Second-order optimization method for large mini-batch: Training resnet-50 on imagenet in 35
epochs. arXiv preprint arXiv:1811.12019, 2018.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–160,
1994.

Herbert Robbins and Sutton Monro. A stochastic approximation method. In The Annals of Mathe-
matical Statistics - Volume 22, Number 3. Institute of Mathematical Statistics, 1951.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723–1738, 2002.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.
arXiv preprint arXiv:1703.07950, 2017.

11

Under review as a conference paper at ICLR 2020

Trond Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM
Journal on Numerical Analysis, 20(3):626–637, 1983.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Patrick Van Der Smagt and Gerd Hirzinger. Solving the ill-conditioning in neural network learning.
In Neural networks: tricks of the trade, pp. 193–206. Springer, 1998.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender systems.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1235–1244, 2015.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes, from any initialization. arXiv preprint arXiv:1806.01811, 2018.

Eugene P Wigner. Characteristic vectors of bordered matrices with infinite dimensions i. In The
Collected Works of Eugene Paul Wigner, pp. 524–540. Springer, 1993.

Peng Xu, Farbod Roosta-Khorasan, and Michael W Mahoney. Second-order optimization for non-
convex machine learning: An empirical study. arXiv preprint arXiv:1708.07827, 2017a.

Peng Xu, Farbod Roosta-Khorasani, and Michael W Mahoney. Newton-type methods for non-convex
optimization under inexact hessian information. arXiv preprint arXiv:1708.07164, 2017b.

Zhewei Yao, Peng Xu, Farbod Roosta-Khorasani, and Michael W Mahoney. Inexact non-convex
newton-type methods. arXiv preprint arXiv:1802.06925, 2018.

Ya-xiang Yuan. Recent advances in trust region algorithms. Mathematical Programming, 151(1):
249–281, 2015.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

12

Under review as a conference paper at ICLR 2020

Appendix A: Proofs
A NOTATION

Throughout this work, scalars are denoted by regular lower case letters, vectors by bold lower case
letters and matrices as well as tensors by bold upper case letters. By ‖ · ‖ we denote an arbitrary norm.
For a symmetric positive definite matrix A we introduce the compact notation ‖w‖A = (wᵀAw)

1/2,
where w ∈ Rd.

B EQUIVALENCE OF PRECONDITIONED GRADIENT DESCENT AND
FIRST-ORDER TRUST REGION METHODS

Theorem 2 (Theorem 1 restated). A preconditioned gradient step

wt+1 −wt = st := −ηtA−1t gt (11)

with stepsize ηt > 0, symmetric positive definite preconditioner At ∈ Rd×d and gt 6= 0
minimizes a first-order local model around wt ∈ R in an ellipsoid given by At in the sense that

st := arg min
s∈Rd

[
m1
t (s) = L(wt) + sᵀgt

]
, s.t. ‖s‖At

≤ ηt‖gt‖A−1
t
. (12)

Proof. We start the proof by noting that the optimization problem in Eq. (12) is convex. For ηt > 0
the constraint satisfies the Slater condition since 0 is a strictly feasible point. As a result, any KKT
point is a feasible minimizer and vice versa.

Let L(s, λ) denote the Lagrange dual of Eq. (5)

L(s, λ) := L(wt) + sᵀgt + λ
(
‖s‖A − ηt‖gt‖A−1

t

)
. (13)

Any point s is a KKT point if and only if the following system of equations is satisfied

∇sL(s, λ) = gt +
λ

‖s‖At
Ats = 0 (14)

λ
(
‖s‖At

− ηt‖gt‖A−1
t

)
= 0. (15)

‖s‖At
− ηt‖gt‖A−1

t
≤ 0 (16)

λ ≥ 0. (17)

For st as given in Eq. (4) we have that

‖st‖At
=

√
η2t gt(A

−1
t)

ᵀ
AtA

−1
t gt = ηt

√
gtA

−1
t gt = ηt‖gt‖A−1

t
. (18)

and thus 15 and 16 hold with equality such that any λ ≥ 0 is feasible. Furthermore,

∇sL(st, λ) = ∇f(wt) +
λ

‖st‖At

Atst
(4)
= gt − ηt

λ

ηt‖gt‖A−1
t

AtA
−1
t gt = gt −

λ

‖gt‖A−1
t

gt

(19)
is zero for λ = ‖gt‖A−1 ≥ 0. As a result, st is a KKT point of the convex problem 5 which proves
the assertion.

To illustrate this theoretical result we run gradient descent and Adagrad as well as the two corre-
sponding first-order TR methods7 on an ill-conditioned quadratic problem. While the method 1st TR

7Essentially Algorithm 1 with mt based on a first order Taylor expansion, i.e. m1
t (s) as in Eq. (12).

13

Under review as a conference paper at ICLR 2020

optimizes a linear model within a ball in each iteration, 1st TRada optimizes the same model over the
ellipsoid given by the Adagrad matrix Aada. The results in Figure 5 show that the methods behave
very similar to their constant stepsize analogues.

8 6 4 2 0 2 4 6 8

8

6

4

2

0

2

4
GD
Adagrad
1st TR_ada
1st TR

0 50 100 150 200 250

10 9

10 7

10 5

10 3

10 1

101

103 GD
Adagrad
1st TR
1st TR_ada

Figure 5: Iterates (left) and log suboptimality (right) of GD, Adagrad and two full-featured first-order TR
algorithms of which one (1st TR) is spherically constraint and the other (1st TRada) uses Aada as ellispoid.

C CONVERGENCE OF ELLIPSOIDAL TR METHODS

Spherical constrained TR methods Under standard smoothness assumptions, spherical TR algo-
rithms achieve εg criticality after O(ε−2g) iterations and additionally εH almost positive curvature
in O(ε−3H) iterations. These rates are attained without the need of actually knowing the Hessian’s
Lipschitz constant. The complete statement of the convergence results for TR methods can be found in
Theorem 4.3 of (Cartis et al., 2012a). Interestingly, these rates can be improved to match the (optimal)
O(ε−3/2) first-order worst case complexity of Cubic Regularization by applying small modifications
to the TR framework. As stated in Section B.2 the involved subproblems do not need to be solved
globally in each iteration. For both, cubic regularization and trust region methods, many stochastic
extensions have emerged in literature that alleviate the need to compute exact derivative information
without losing the above mentioned convergence guarantees with high probability (Kohler & Lucchi,
2017; Xu et al., 2017a;b; Blanchet et al., 2016; Gratton et al., 2017)). For the deep learning setting,
the analysis of Blanchet et al. (2016) is most relevant since it also allows the algorithm to run solely
based on sub-sampled function evaluations.

Ellipsoidal constrained TR methods In order to prove such results for ellipsoidal Trust Region
methods one must ensure that the applied norms are coherent during the complete minimization
process in the sense that the ellipsoids do not flatten out (or blow up) completely along any given
direction. This intuition is formalized in Assumption 1 which we restate here for the sake of clarity.
Definition 2 (Definition 1 restated). There exists a constant µ ≥ 1 such that

1

µ
‖w‖At

≤ ‖w‖2 ≤ µ‖w‖At
, ∀t,∀w ∈ Rd. (20)

Having uniformly equivalent norms is necessary and sufficient to prove that ellipsoidal TR methods
enjoy the same convergence rate as classical ball constrained Trust Region algorithms. Towards this
end, Conn et al. (2000) identify the following sufficient condition on the basis of which we will prove
that our proposed ellipsoid Arms is indeed uniformly equivalent under some mild assumptions.
Lemma 1 (Theorem 6.7.1 in Conn et al. (2000)). Suppose that there exists a constant ζ ≥ 1 such
that

1

ζ
≤ σmin (At) ≤ σmax (At) ≤ ζ ∀t, (21)

then Definition 1 holds.

14

Under review as a conference paper at ICLR 2020

Proposition 3 (Uniform equivalence). Suppose ‖gt‖2 ≤ L2
H for all wt ∈ Rd, t = 1, 2, . . .

Then there always exists ε > 0 such that the proposed preconditioning matrices Arms,t (Eq. 3)
are uniformly equivalent, i.e. Def. 1 holds. The same holds for the diagonal variant.

Proof. The basic building block of our ellipsoid matrix consists of the current and past stochastic
gradients Gt := [g1,g2, . . . ,gt].

We consider Arms which is built up as follows8

Arms,t :=

(1− β)Gdiag(βt, βt−1, . . . , β0)︸ ︷︷ ︸
:=D

Gᵀ

+ εI. (22)

From the construction of Arms,t it directly follows that for any unit length vector u ∈ Rd \
{0}, ‖u‖2 = 1 we have

uᵀ ((1− β)GDGᵀ + εI)u

=(1− β)uᵀGD1/2(D1/2)ᵀGᵀu + ε‖u‖22
=(1− β)

(
(D1/2)ᵀGᵀu

)ᵀ (
(D1/2)ᵀGᵀu

)
+ ε‖u‖22

≥ε > 0,

(23)

which proves the lower bound for ζ = 1/ε. Now, let us consider the upper end of the spectrum of
Arms,t. Towards this end, recall the geometric series expansion

t∑
i=0

βt−i =

t∑
i=0

βi =
1− βt+1

1− β
(24)

and the fact that GG> is a sum of exponentially weighted rank-one positive semi-definite matrices
of the form gig

ᵀ
i . Thus

λmax(gig
ᵀ
i) = Tr(gig

ᵀ
i) = ‖∇gi‖2 ≤ L2

H ,

where the latter inequality holds per assumption for any sample size |S|. Combining these facts we
get that

uᵀ ((1− β)GDGᵀ + εI)u

=(1− β)uᵀGDGᵀu + ε‖u‖22

=(1− β)

t∑
i=0

βt−1uᵀgig
ᵀ
i u + ε‖u‖22

≤(1− β)

t∑
i=0

βt−iL2
H‖u‖22 + ε‖u‖22

=(1− βt+1)L2
H + ε.

(25)

As a result we have that

ε ≤ λmin (Arms,t) ≤ λmax (Arms,t) ≤
(
1− βt+1

)
L2
H + ε (26)

8This is a generalization of the diagonal variant proposed by Tieleman & Hinton (2012), which precondition
the gradient step by an elementwise division with the square-root of the following estimate gt = (1− β)gt−1 +
β∇L(wt)

2.

15

Under review as a conference paper at ICLR 2020

Finally, to achieve uniform equivalence we need the r.h.s. of (26) to be bounded by 1/ε. This gives
rise to a quadratic equation in ε, namely

ε2 +
(
1− βt+1

)
L2
Hε− 1 ≤ 0 (27)

which holds for any t and any β ∈ (0, 1) as long as

0 ≤ ε ≤ 1

2
(
√
L4
H + 4− L2

H). (28)

Such an ε always exists but one needs to choose smaller and smaller values as the upper bound on the
gradient norm grows. For example, the usual value ε = 10−8 is valid for all L2

H < 9.9 · 107. All of
the above arguments naturally extend to the diagonal preconditioner diag(Arms).

D DIAGONAL DOMINANCE IN NEURAL NETWORKS

D.1 PROOF OF PROPOSITION 1

Proposition 4 (Proposition 1 restated). For random Gaussian Wigner matrix W formed as

Wi,j = Wj,i :=

{
∼ N (0, σ1), i < j

∼ N (0, σ2), i = j,
(29)

where ∼ stands for i.i.d. draws (Wigner, 1993), the expected share of diagonal mass δW amounts to

E [δW] =
1

1 + (d− 1)σ2

σ1

. (30)

Proof.

E [δW] = E

[∑
i |Wi,i|∑

i

∑
j |Wi,j |

]
= E

 1

1 +
∑

i

∑
j 6=i |Wi,j |∑
i |Wi,i|

=

1

1 +
∑

i

∑
j 6=i E[|Wi,j |]∑
i E[|Wi,i|]

=
1

1 +
(d2−d)σ2

√
2/π

dσ1

√
2/π

=
1

1 + (d− 1)σ2

σ1

,

(31)

which simplifies to 1
d if the diagonal and off-diagonal elements come from the same Gaussian

distribution (σ1 = σ2).

For the sake of simplicity we only consider Gaussian Wigner matrices but the above argument
naturally extends to any distribution with positive expected absolute values, i.e. we only exclude the
Dirac delta function as probability density.

CONV MLP

H
/

W

start during end

20.0

15.0

10.0

5.0

0.0 Wigner

H
/

W

start during end

50

40

30

20

10

0
Wigner

Figure 6: Share of diagonal mass of the Hessian δH relative to δW of the corresponding Wigner
matrix at random initialization, after 50% iterations and at the end of training with RMSprop on
MNIST. Average and 95% confidence interval over 10 runs. See Figure 2 for CIFAR-10 results.

16

Under review as a conference paper at ICLR 2020

Appendix B: Background on second-order
optimization
A NEWTON’S METHOD

The canonical second-order method is Newton’s methods. This algorithm uses the inverse Hessian as
a scaling matrix and thus has updates of the form

wt+1 = wt −∇2L(wt)
−1∇L(wt), (32)

which is equivalent to optimizing the local quadratic model

mN (wt) := L(wt) +∇L(wt)
ᵀs +

1

2
sᵀ∇2L(wt)s (33)

to first-order stationarity. Using curvature information to rescale the steepest descent direction gives
Newton’s method the useful property of being linearly scale invariant. This gives rise to a problem
independent local convergence rate that is super-linear and even quadratic in the case of Lipschitz
continuous Hessians (see Nocedal & Wright (2006) Theorem 3.5), whereas gradient descent at best
achieves linear local convergence (Nesterov, 2013).

However, there are certain drawbacks associated with applying classical Newton’s method. First of
all, the Hessian matrix may be singular and thus not invertible. Secondly, even if it is invertible the
local quadratic model (Eq. 33) that is minimized in each NM iteration may simply be an inadequate
approximation of the true objective. As a result, the Newton step is not necessarily a descent step. It
may hence approximate arbitrary critical points (including local maxima) or even diverge. Finally,
the cost of forming and inverting the Hessian sum up to O(nd2 + d3) and are thus prohibitively high
for applications in large dimensional problems.

B TRUST REGION METHODS

B.1 OUTER ITERATIONS

Trust region methods are among the most principled approaches to overcome the above mentioned
issues. These methods also construct a quadratic model mt but constrain the subproblem in such a
way that the stepsize is restricted to stay within a certain radius ∆t within which the model is trusted
to be sufficiently adequate

min
s∈Rd

mt(s) = L(wt) +∇L(wt)
ᵀs +

1

2
sᵀ∇2L(wt)s, s.t. ‖s‖ ≤ ∆t. (34)

Hence, contrary to line-search methods this approach finds the step st and its length ‖st‖ si-
multaneously by optimizing (34). Subsequently the actual decrease L(wt) − L(wt + st) is
compared to the predicted decrease mt(0) − mt(st) and the step is only accepted if the ratio
ρ := L(wt) − L(wt + st)/(mt(0) −mt(st)) exceeds some predefined success threshold η1 > 0.
Furthermore, the trust region radius is decreased whenever ρ falls below η1 and it is increased
whenever ρ exceeds the "very successful" threshold η20. Thereby, the algorithm adaptively measures
the accuracy of the second-order Taylor model – which may change drastically over the parameter
space depending on the behaviour of the higher-order derivatives9 – and adapts the effective length
along which the model is trusted accordingly. See Conn et al. (2000) for more details.

As a consequence, the plain Newton step sN,t = −
(
∇2Lt

)−1∇Lt is only taken if it lies within the
trust region radius and yields a certain amount of decrease in the objective value. Since many functions
look somehow quadratic close to a minimizer the radius can be shown to grow asymptotically under
mild assumptions such that eventually full Newton steps are taken in every iteration which retains the
local quadratic convergence rate (Conn et al., 2000).

9Note that the second-order Taylor models assume constant curvature.

17

Under review as a conference paper at ICLR 2020

3 2 1 0 1 2 3

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 wopt

wsaddle

w0
wnewton

wTR

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
wopt

wsaddle

w0
wnewton

wTR

Figure 7: Level sets of the non-convex, coercive objective function f(w) = 0.5w2
0 + 0.25w4

1 − 0.5w2
1.

Newton’s Method makes a local quadratic model (blue dashed lines) and steps to its critical point. It may be
thus be ascending (left) or attracted by a saddle point (right). TR methods relieve this issue by stepping to the
minimizer of that model within a certain region (green dashed line).

B.2 SUBPROBLEM SOLVER

Interestingly, there is no need to optimize Eq. (34) to global optimality to retain the remarkable
global convergence properties of TR algorithms. Instead, it suffices to do better than the Cauchy-
and Eigenpoint10 simultaneously. One way to ensure this is to minimize mt(s) in nested Krylov
subspaces. These subspaces naturally include the gradient direction as well as increasingly accurate
estimates of the leading eigendirection

span{gt,Btgt,B
2
tgt, . . . ,B

j
tgt} (35)

until (for example) the stopping criterion

‖∇mt(sj)‖ ≤ ‖∇L(wt)‖min{κK , ‖∇L(wt)‖θ}, κK < 1, θ ≥ 0 (36)

is met, which requires increased accuracy as the underlying trust region algorithm approaches
criticality. Conjugate gradients and Lanczos method are two iterative routines that implicitly build up
a conjugate and orthogonal basis for such a Krylov space respectively and they converge linearly on
quadratic objectives with a square-root dependency on the condition number of the Hessian (Conn
et al., 2000). We here employ the preconditionied Steihaug-Toint CG method (Steihaug, 1983) in
order to cope with possible boundary solutions of (34) but similar techniques exist for the Lanczos
solver as well for which we also provide code. As preconditioning matrix for CG we use the same
matrix as for the ellipsoidal constraint.

C DAMPED (GAUSS-)NEWTON METHODS

An alternative approach to actively constraining the region within which the model is trusted is to
instead penalize the step norm in each iteration in a Lagrangian manner. This is done by so-called
damped Newton methods that add a λ > 0 multiple of the identity matrix to the second-order term in
the model, which leads to the update step

min
s∈Rd

mt(s) = L(wt)+∇L(wt)
ᵀs+

1

2
sᵀ(∇2L(wt)+λI)s = L(wt)+∇L(wt)

ᵀs+
1

2
sᵀ∇2L(wt)s+λ‖s‖2.

(37)
This can also be solved hessian-free by conjugate gradients (or other Krylov subspace methods). The
penalty parameter λ is acting inversely to the trust region radius ∆ and it is often updated accordingly.
Such algorithms are commonly known as Levenberg-Marquardt algorithms and they were originally
tailored towards solving non-linear least squares problems (Nocedal & Wright, 2006) but they have
been proposed for neural network training already early on (Hagan & Menhaj, 1994).

10which are the model minimizers along the gradient and the eigendirection associated with its smallest
eigenvalue, respectively.

18

Under review as a conference paper at ICLR 2020

Many algorithms in the existing literature replace the use of ∇2L(wt) in (37) with the Generalized
Gauss Newton matrix (Martens, 2010; Chapelle & Erhan, 2011) or an approximation of the latter
(Martens & Grosse, 2015). This matrix constitutes the first part of the well-known Gauss-Newton
decomposition

∇2L(·) =
1

n

n∑
i=1

`′′(fi(·))∇fi(·)∇fi(·)ᵀ︸ ︷︷ ︸
:=AGGN

+
1

n

n∑
i=1

`′(fi(·))∇2fi(·), (38)

where l′ and l′′ are the first and second derivative of l : Rout → R+ assuming that out = 1 (binary
classification and regression task) for simplicity here.

It is interesting to note that the GGN matrix AGGN of neural networks is equivalent to the Fisher
matrix used in natural gradient descent (Amari, 1998) in many cases like linear activation function
and squared error as well as sigmoid and cross-entropy or softmax and negative log-likelihood for
which the extended Gauss-Newton is defined (Pascanu & Bengio, 2013). As can be seen in (38)
the matrix AGGN is positive semidefinite (and low rank if n < d). As a result, there exist no
second-order convergence guarantees for such methods on general non-convex problems. On the
other end of the spectrum, the GGN also drops possibly positive terms from the Hessian (see 38).
Hence it is not guaranteed to be an upper bound on the latter in the PSD sense. Essentially, GGN
approximations assume that the network is piece-wise linear and thus the GGN and Hessian matrices
only coincide in the case of linear and ReLU activations or non-curved loss functions. For any other
activation the GGN matrix may approximate the Hessian only asymptotically and if the `′(fi(·))
terms in 38 go to zero for all i ∈ {1, . . . , n}. In non-linear least squares such problems are called
zero-residual problems and GN methods can be shown to have quadratic local convergence there. In
any other case the convergence rate does not exceed the linear local convergence bound of gradient
descent. In practice however there are cases where deep neural nets do show negative curvature in the
neighborhood of a minimizer (Bottou et al., 2018).Finally, Dauphin et al. (2014) propose the use of
the absolute Hessian instead of the GGN matrix in a framework similar to 37. This method has been
termed saddle-free Newton even though its manifold of attraction to a given saddle is non-empty11.

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
wopt

wsaddle

w0
wGN

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
wopt

wsaddle

w0
w|H|

Figure 8: Both, the GGN method and saddle-free Newton method make a positive definite quadratic model
around the current iterate and thereby overcome the abstractedness of pure Newton towards the saddle (compare
Figure 7). However, (i) none of these methods can escape the saddle once they are in the gradient manifold
of attraction and (ii) as reported in Mizutani & Dreyfus (2008) the GN matrix can be significantly less well
conditioned than the absolute Hessian (here κGN = 49′487′554 and κ|H| = 1.03 so we had to add a damping
factor of λ = 0.1 to make the GN step fit the plot.

C.1 COMPARISON TO TRUST REGION

Contrary to TR methods, the Levenberg-Marquardt methods never take plain Newton steps since the
regularization is always on (λ > 0). Furthermore, if a positive-definite Hessian approximation like
the Generalized Gauss Newton matrix is used, this algorithm is not capable of exploiting negative
curvature and there are cases in neural network training where the Hessian is much better conditioned
than the Gauss-Newton matrix (Mizutani & Dreyfus, 2008) (also see Figure 8). While some scholars

11It is the same as that for GD, which renders the method unable to escape e.g. when initialized right on a
saddle point. To be fair, the manifold of attraction for GD constitutes a measure zero set (Lee et al., 2016).

19

Under review as a conference paper at ICLR 2020

believe that positive-definiteness is a desirable feature (Martens, 2010; Chapelle & Erhan, 2011), we
want to point out that following negative curvature directions is necessarily needed to escape saddle
points and it can also be meaningful to follow directions of negative eigenvalue λ outside a saddle
since they guarantee O(|λ|3) progress, whereas a gradient descent step yields at least ‖∇f(w)‖2
progress (both under certain stepsize conditions) and one cannot conclude a-priori which one is better
in general (Curtis & Robinson, 2017; Alain et al., 2018). Despite these theoretical considerations,
many methods based on GGN matrices have been applied to neural network training (see Martens
(2014) and references therein) and particularly the hessian-free implementations of (Martens, 2010;
Chapelle & Erhan, 2011) can be implemented very cheaply (Schraudolph, 2002).

D USING HESSIAN INFORMATION IN NEURAL NETWORKS

While many theoretical arguments suggest the superiority of regularized Newton methods over
gradient based algorithms, several practical considerations cast doubt on this theoretical superiority
when it comes to neural network training. Answers to the following questions are particularly
unclear: Are saddles even an issue in deep learning? Is superlinear local convergence a desirable
feature in machine learning applications (test error)? Are second-order methods more "vulnerable" to
sub-sampling noise? Do worst-case iteration complexities even matter in real-world settings? As a
result, the value of Hessian information in neural network training is somewhat unclear a-priori and
so far a conclusive empirical study is still missing.

Our empirical findings indicate that the net value of Hessian information for neural network training
is indeed somewhat limited for mainly three reasons: 1) second-order methods rarely yield better limit
points, which suggests that saddles and spurious local minima are not a major obstacle; 2) gradient
methods can indeed run on smaller batch sizes which is beneficial in terms of epoch and when
memory is limited; 3) The per-iteration time complexity is noticeably lower for first-order methods.
In summary, these observations suggest that advances in hardware and distributed second-order
algorithms (e.g., Osawa et al. (2018); Dünner et al. (2018)) will be needed before Newton-type
methods can replace (stochastic) gradient methods in deep learning.

Appendix C: Experiment details
A EXPERIMENTAL RESULTS

A.1 ELLIPSOIDAL TRUST REGION VS. FIRST-ORDER OPTIMIZER

ResNet18 Fully-Connected Autoencoder

C
IF

A
R

-1
0

0 2 4 6 8 10
epoch

5

4

3

2

1

0

1

2

lo
g(

lo
ss

)

99% accuracy

Adagrad
RMSprop
SGD
Adam
TR RMSprop

0 100 200 300 400 500 600
 epoch

0.0

0.2

0.4

0.6

0.8

lo
g(

lo
ss

)

Adagrad
RMSprop
SGD
TR RMSprop

0 20 40 60 80 100
 epoch

6.0

5.5

5.0

4.5

4.0

3.5

3.0

lo
g(

lo
ss

) Adagrad
RMSprop
SGD
TR RMSprop

Fa
sh

io
n-

M
N

IS
T

0 5 10 15 20 25 30 35
epoch

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g(

lo
ss

)

99% accuracy

Adagrad
RMSprop
SGD
Adam
TR RMSprop

0 50 100 150 200 250 300 350
 epoch

4

3

2

1

0

1

lo
g(

lo
ss

)

99% accuracy

Adagrad
RMSprop
SGD
TR RMSprop

0 10 20 30 40 50 60 70 80
 epoch

5.4

5.6

5.8

6.0

6.2

lo
g(

lo
ss

)

Adagrad
RMSprop
SGD
TR RMSprop

Figure 9: Experiment comparing TR and gradient methods in terms of epochs. Average log loss as
well as 95% confidence interval shown.

20

Under review as a conference paper at ICLR 2020

ResNet18 Fully-Connected Autoencoder

C
IF

A
R

-1
0

0.0 0.5 1.0 1.5 2.0
time ×104

14

12

10

8

6

4

2

0

2

lo
g(

lo
ss

)

99% accuracy

Adagrad
RMSprop
SGD
Adam
TR RMSprop

0 250 500 750 1000 1250
time

0.2

0.0

0.2

0.4

0.6

0.8

lo
g(

lo
ss

)

Adagrad
RMSprop
SGD
TR RMSprop

0 100 200 300 400
time

6

5

4

3

lo
g(

lo
ss

)

Adagrad
RMSprop
SGD
TR RMSprop

Fa
sh

io
n-

M
N

IS
T

0 500 1000 1500 2000 2500 3000 3500
time

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g(

lo
ss

)

99% accuracy

Adagrad
RMSprop
SGD
Adam
TR RMSprop

0 100 200 300 400 500 600
time

4

3

2

1

0

1

lo
g(

lo
ss

)

99% accuracy

Adagrad
RMSprop
SGD
TR RMSprop

0 25 50 75 100 125 150
time

5.4

5.6

5.8

6.0

6.2

lo
g(

lo
ss

)

Adagrad
RMSprop
SGD
TR RMSprop

Figure 10: Experiment comparing TR and gradient methods in terms of wall-clock time. Average log
loss as well as 95% confidence interval shown. The advantage of extremely low-iteration costs of
first-order methods is particularly notable in the ResNet18 architecture due to the large network size.

B FURTHER EXPERIMENT DETAILS

B.1 DEFAULT PARAMETERS, ARCHITECTURES AND DATASETS

Parameters Table 1 reports the default parameters we consider. Only for the larger ResNet18 on
CIFAR-10, we adapted the batch size to 128 due to memory constraints.

|S0| ∆0 ∆max η1 η2 γ1 γ2 κK (krylov tol.)
TRuni 512 10−4 10 10−4 0.95 1.1 1.5 0.1
TRada 512 10−4 10 10−4 0.95 1.1 1.5 0.1
TRrms 512 10−4 10 10−4 0.95 1.1 1.75 0.1

Table 1: Default parameters

Datasets We use two real-world datasets for image classification, namely CIFAR-10 and Fashion-
MNIST12. While Fashion-MNIST consists of greyscale 28 × 28 images, CIFAR-10 are colored
images of size 32× 32. Both datasets have a fixed training-test split consisting of 60,000 and 10,000
images, respectively.

Network architectures The MLP architectures are simple. For MNIST and Fashion-MNIST we
use a 784 − 128 − 10 network with tanh activations and a cross entropy loss. The networks has
101′770 parameters. For the CIFAR-10 MLP we use a 3072− 128− 128− 10 architecture also with
tanh activations and cross entropy loss. This network has 410′880 parameters.

The Fashion-MNIST autoencoder has the same architecture as the one used in Hinton & Salakhutdinov
(2006); Xu et al. (2017a); Martens (2010); Martens & Grosse (2015). The encoder structure is
784 − 1000 − 500 − 250 − 30 and the decoder is mirrored. Sigmoid activations are used in all
but the central layer. The reconstructed images are fed pixelwise into a binary cross entropy loss.
The network has a total of 2′833′000 parameters. The CIFAR-10 autoencoder is taken from the
implementation of https://github.com/jellycsc/PyTorch-CIFAR-10-autoencoder.

For the ResNet18, we used the implementation from torchvision for CIFAR-10 as well as a mod-
ification of it for Fashion-MNIST that adapts the first convolution to account for the single input
channel.

12Both datasets were accessed from https://www.tensorflow.org/api_docs/python/tf/keras/datasets

21

https://pytorch.org/docs/stable/torchvision/models.html
https://zablo.net/blog/post/using-resnet-for-mnist-in-pytorch-tutorial/
https://zablo.net/blog/post/using-resnet-for-mnist-in-pytorch-tutorial/

Under review as a conference paper at ICLR 2020

In all of our experiments each method was run on one Tesla P100 GPU using the PyTorch (Paszke
et al., 2017) library.

B.2 RECONSTRUCTED IMAGES FROM AUTOENCODERS

Original SGD Adagrad Rmsprop TR Uniform TR Adagrad TR RMSprop

Figure 11: Original and reconstructed MNIST digits (left), Fashion-MNIST items (middle), and CIFAR-10
classes (right) for different optimization methods after convergence.

22

	Introduction
	Related work
	An alternative view on adaptive gradient methods
	Adaptive preconditioning as ellipsoidal Trust Region
	Diagonal versus full preconditioning

	Second-order Trust Region Methods
	Convergence of ellipsoidal Trust Region methods
	A stochastic TR framework for neural network training

	Experiments
	Conclusion
	Notation
	Equivalence of Preconditioned Gradient Descent and first-order Trust Region Methods
	Convergence of ellipsoidal TR methods
	Diagonal Dominance in Neural Networks
	Proof of Proposition 1

	Newton's Method
	Trust Region Methods
	Outer iterations
	Subproblem solver
	Damped (Gauss-)Newton methods
	Comparison to trust region

	Using Hessian information in Neural Networks
	Experimental results
	Ellipsoidal Trust Region vs. First-order Optimizer

	Further Experiment Details
	Default parameters, architectures and datasets
	Reconstructed Images from Autoencoders

