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ABSTRACT

Modelling long-range dependencies is critical for scene understanding tasks in
computer vision. Although CNNs have excelled in many vision tasks, they are still
limited in capturing long-range structured relationships as they typically consist of
layers of local kernels. A fully-connected graph is beneficial for such modelling,
however, its computational overhead is prohibitive. We propose a dynamic graph
message passing network, that significantly reduces the computational complexity
compared to related works modelling a fully-connected graph. This is achieved
by adaptively sampling nodes in the graph, conditioned on the input, for message
passing. Based on the sampled nodes, we dynamically predict node-dependent filter
weights and the affinity matrix for propagating information between them. Using
this model, we show significant improvements with respect to strong, state-of-the-
art baselines on three different tasks and backbone architectures. Our approach also
outperforms fully-connected graphs while using substantially fewer floating-point
operations.

1 INTRODUCTION

Capturing long-range dependencies is crucial for complex scene understanding tasks such as semantic
segmentation, instance segmentation and object detection. Although convolutional neural networks
(CNNs) have excelled in a wide range of scene understanding tasks (Krizhevsky et al., 2012; Simonyan
& Zisserman, 2015; He et al., 2016), they are still limited by their ability to capture these long-range
interactions. To improve the capability of CNNs in this aspect, a recent popular model Non-local
networks (Wang et al., 2018) proposes a generalisation of the attention model of (Vaswani et al.,
2017) and achieves significant advance in several computer vision tasks.

Non-local networks essentially model pairwise structured relationships among all feature elements in
a feature map to produce the attention weights which are used for feature aggregation. Considering
each feature element as a node in a graph, Non-local networks effectively model a fully-connected
feature graph and thus have a quadratic inference complexity with respect to the number of the feature
elements. This is infeasible for dense prediction tasks on high-resolution imagery, as commonly
encountered in semantic segmentation (Cordts et al., 2016). Moreover, in dense prediction tasks,
capturing relations between all pairs of pixels is usually unnecessary due to the redundant information
contained within the image (Fig. 1). Simply subsampling the feature map to reduce the memory
requirements is also suboptimal, as such naı̈ve subsampling would result in smaller objects in the
image not being represented adequately.

To tackle the complexity issue of the fully connected models, graph convolution networks
(GCNs) (Kipf & Welling, 2017; Gilmer et al., 2017), which propagate information along graph-
structured input data, can alleviate the computational issues of non-local networks to a certain extent.
However, this stands only if local neighbourhoods are considered for each node. Employing such
local-connected graphs means that the long-range contextual information needed for complex vision
tasks such as segmentation and detection (Rabinovich et al., 2007; Oliva & Torralba, 2007) will
only be partially captured. Along this direction, GraphSAGE (Hamilton et al., 2017) introduces an
efficient graph learning model based on a graph sampling method. However, the sampling considers
a spatial uniform sampling strategy and is not dependant on the feature nodes. Thus the modelling
capacity is also restricted as it basically assumes a static input graph where the neighbours for each
node are fixed and the filter weights are shared among all nodes.
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Figure 1: Contextual information is crucial for complex scene understanding tasks. To recognise the
“boathouse”, one needs to consider the “boat” and the “water” next to it. Fully-connected message pass-
ing models (a) are able to obtain this information, but are prohibitively expensive. Furthermore, they capture a
lot of redundant information (i.e.“trees” and “sky”). Locally-connected models (b) are more ef�cient, but miss
out on important context. Our proposed approach (c), dynamically samples a small subset of relevant feature
nodes based on alearneddynamic sampling scheme,i.e. thelearnedposition-speci�c random walk (indicated
by the white dashed arrow lines), and also dynamically predicts �lter weights and af�nities (indicated by unique
edge and square colors.), which are both conditioned on the sampled feature nodes.

To address the aforementioned shortcomings, we propose a novel dynamic graph message passing
network (DGMN) model, targeting effective and ef�cient deep representational learning with a joint
modeling of two key dynamic properties as illustrated in Fig. 1. Our contribution is twofold: (i) We
dynamically samples the neighbourhood of a node from the feature graph and conditioned on the
node features. The sampling isposition-speci�cally learnedwith the model training. Intuitively, this
allows the network to ef�ciently gather long-range context by only selecting a subset of the most
relevant nodes in the graph; (ii) Based on the nodes that have been sampled, we further dynamically
predict node-dependant �lter weights and the af�nity matrix, which are used to propagate information
among the feature nodes via message passing. The dynamic weights and af�nities are especially
bene�cial for us to speci�cally model each sampled feature context, thus leading to more effective
message passing. Both of these dynamic properties are jointly optimised in a single model, and we
modularise the DGMN as a network layer for simple deployment into existing networks.

We demonstrate the proposed model on the tasks of semantic segmentation, object detection and
instance segmentation on the challenging Cityscapes (Cordts et al., 2016) and COCO (Lin et al., 2014)
datasets. We achieve clearly better performance than the fully-connected Non-local model, while
using substantially fewer �oating point operations (FLOPs). Signi�cantly, one variant of our model
with dynamic �lters and af�nities (i.e. the second dynamic property) achieves similar performance to
Non-local while only using 9.4% of its FLOPs and 25.3% of its parameters. Furthermore, “plugging”
our module into existing networks, we show considerable improvements with respect to strong,
state-of-the-art baselines on three different tasks and backbone architectures.

2 RELATED WORK

An early technique for modelling context for computer vision tasks involved conditional random
�elds. In particular, the DenseCRF model (Krhenbhl & Koltun, 2011) was popular as it modelled
interactions between all pairs of pixels in an image. Although such models have been integrated into
neural networks (Chen et al., 2015; Zheng et al., 2015; Arnab et al., 2016; Xu et al., 2017), they
are limited by the fact that the pairwise potentials are based on simple handcrafted features, and
mostly model on the discrete label space, thus not directly applicable in the feature learning task in
which the feature variables are typically considered continuous. Coupled with the fact that CRFs are
computationally expensive, CRFs are no longer used for most computer vision tasks.

A complementary technique for increasing the receptive �eld of CNNs was to use dilated convolu-
tions (Chen et al., 2015; Yu & Koltun, 2016; Chen et al., 2017). Other modi�cations to the convolution
operation include deformable convolution (Dai et al., 2017; Zhu et al., 2019), which learns the offset
with respect to a prede�ned grid. While the deformable strategy could learn the random walks of the
feature nodes, it only considers very local �eld, and the �lters aresharedacross all convolutional
positions. In contrast, our dynamic sampling aims to sample over the whole feature graph to obtain a
large receptive �eld, and also the predicted af�nities and the weights for message passing areposition
speci�c andconditionedon the dynamically sampled nodes. Our model is thus able to better capture
position-based semantic context to enable more effective message passing among feature nodes.
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The idea of graph node sampling has previously been explored in GraphSAGE (Hamilton et al., 2017).
GraphSAGE simply uniformly samples nodes. In contrast, our sampling strategy islearnedbased on
the node features. Speci�cally, we �rst sample the nodes uniformly in the spatial dimension, and then
dynamically predictwalksof each node conditioned on the node features. Therefore the sampling
in our model is input-dependant and clearly different from GraphSAGE. Furthermore, GraphSAGE
does not consider our second important property,i.e. the dynamic prediction of the af�nities and the
message passing kernels, and it does not explore the challenging detection and segmentation tasks.

We also note that Jia et al. (2016) developed an idea of “dynamic convolution”, that is predicting
a dynamic convolutional �lter for each feature position. More recently, Wu et al. (2019) further
reduced the complexity of this operation in the context of natural laguage processing with lightweight
group convolutions. Unlike (Jia et al., 2016; Wu et al., 2019), we present a graph-based formulation,
and jointly learn dynamic weights and dynamic af�nities, which are conditioned on anadaptively
sampledneighbourhood for each feature node in the graph using the proposed dynamic sampling
strategy for effective message passing.

3 DYNAMIC GRAPH MESSAGEPASSING NETWORKS

3.1 PROBLEM DEFINITION AND NOTATION

Given an input feature map interpreted as a set of feature vectors,i.e.F = f f i gN
i =1 with f i 2 R1� C ,

whereN is the number of pixels andC is the feature dimension respectively, our goal is to learn a
set of re�ned latent feature vectorsH = f h i gN

i =1 by utilising hidden structured information among
the feature vectors at different pixel locations.H has the same dimension as the observationF. To
learn such structured representations, we convert the feature map into a graph domain by constructing
a feature graphG = fV ; E; Ag with V as its nodes,E as its edges andA as its adjacency matrix.
Speci�cally, the nodes of the graph are represented by the latent feature vectors,i.e.V = f h i gN

i =1 ,
andA 2 RN � N is a binary or learnable matrix with self-loops describing the connections between
nodes. In this work, we propose a novel dynamic graph message passing network Gilmer et al.
(2017) for deep representation learning, which re�nes each graph feature node by passing messages
on the graphG. Different from existing message passing neural networks considering a fully- or
locally-connected static graph (Wang et al., 2018; Gilmer et al., 2017), we propose a dynamic graph
network model with two dynamic properties,i.e. dynamic sampling of graph nodes to approximate
the full graph distribution, and dynamic prediction of node-conditioned �lter weights and af�nities,
in order to achieve more ef�cient and effective message passing.

3.2 GRAPH MESSAGEPASSING NEURAL NETWORKS FORDEEP REPRESENTATIONLEARNING

Message passing neural networks (MPNNs) (Gilmer et al., 2017) present a generalised form of graph
neural networks such as graph convolution networks (Kipf & Welling, 2017), gated graph sequential
networks (Li et al., 2015) and graph attention networks (Veli�cković et al., 2018). In order to model
structured graph data, in which latent variables are represented as nodes on an undirected or directed
graph, feed-forward inference is performed through a message passing phase followed by a readout
phase upon the graph nodes. The message passing phase usually takesT iteration steps to update
feature nodes, while the readout phase is for the �nal predictione.g.graph classi�cation with updated
nodes. In this work, we focus on the message passing phase for learning ef�cient and effective feature
re�nement, since well-represented features are critical in all downstream tasks. The message passing
phase consists of two steps,i.e. a message calculation stepM t and a message updating stepU t .
Given a latent feature nodeh ( t )

i at an iterationt, for computational ef�ciency, we consider a locally
connected node �eld withvi � V andvi 2 R(K � C ) , whereK � N is the number of sampled nodes
in vi . Thus we can de�ne the message calculation step for nodei operated locally as

m ( t +1)
i = M t

�
A i;j ; f h ( t )

1 ; � � � ; h ( t )
K g; w j

�
=

X

j 2N ( i )

A i;j h ( t )
j w j ; with A i;j = A[i; j ]; (1)

whereA i;j describes the connection relationshipi.e. the af�nity between latent nodesh ( t )
i andh ( t )

j ,

N (i ) denotes a self-included neighborhood of the nodeh ( t )
i which can be derived fromvi and

w j 2 RC � C is a transformation matrix for message calculation on the hidden nodeh ( t )
j . Then the
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Figure 2:Overview of our proposed dynamic graph message passing network (DGMN). The neighbourhood
used to update the feature representation of each node (we show a single node with a red square) is predicted
dynamically conditioned on each input. This is done by �rst uniformly sampling (denoted by “US”) a set of
S neighbourhoods around each node. Each neighbourhood containsK (e.g.3 � 3) sampled nodes. Here, the
blue nodes were sampled with a low sampling rate, and the green ones with a high sampling rate. Walks are
predicted (conditioned on the input) from these uniformly sampled nodes, denoted by thes
 symbol representing
the random walk sampling operation described in Sec. 3.3.DMC 1 ; � � � ; DMC S and� 1 ; � � � ; � S denotesS
dynamic message calculation operations andS message scaling parameters, respectively. The DMC module is
detailed in Figure 3. The symbol� indicates an element-wise addition operation.

message updating functionU t is applied to update the nodeh ( t )
i with a linear combination of the

calculated message and the observation featuref i at the node positioni as:

h ( t +1)
i = U t

�
f i ; m ( t +1)

i

�
= �

�
f i + � m

i m ( t +1)
i

�
; (2)

where� m
i of a learnable parameter for scaling the message, and the operation� (�) is a non-linearity

functione.g.ReLU. By iteratively performing message passing on each node withT steps, we obtain
a re�ned feature mapH (T ) as output.

3.3 FROM A FULLY-CONNECTEDGRAPH TO A DYNAMIC SAMPLED GRAPH

A fully-connected graph typically contains many connections and parameters, which thus naturally
brings redundancy in the connections, and also makes the network optimisation more dif�cult
especially when dealing with limited training data. Therefore, as in Eq. 1, a local node connection
�eld is considered in the graph message passing network, in order to substantially reduce the
computational overhead of large fully-connected graphs. However, in various computer vision tasks,
such as detection and segmentation, learning deep representations capturing both local and global
receptive �elds is important for the model performance (Rabinovich et al., 2007; Oliva & Torralba,
2007). To maintain a large receptive �eld while utilising much fewer parameters than the fully-
connected setting, we further explore dynamic sampling strategies in our proposed graph message
passing network. We develop a uniform sampling scheme, which we extend to a predicted random
walk sampling scheme which aims to reduce the redundancy found in a fully-connected graph. This
sampling is performed in a dynamic fashion, meaning that for a given nodeh i , we aim to sample an
optimal subset ofvi from V to updateh i via message passing as shown in Fig. 2.

Multiple uniform sampling for dynamic receptive �elds. Uniform sampling is a commonly used
strategy for graph node sampling (Leskovec & Faloutsos, 2006) based on Monte-Carlo estimation. To
approximate the distribution ofV, we consider a set ofS uniform sampling rates' with ' = f � qgS

q=1 ,
where� q is a sampling rate. Let us assume that the latent feature nodes are located in aP-dimensional
spaceRP . For instance,P = 2 for images considering thex- andy-dimensions of the image plane.
For each latent nodeh i , a total ofK neighbouring nodes are sampled fromRP . The receptive �eld
of vi is thus determined by� q andK . Note that the sampling rate� q corresponds to the “dilation rate”
often used in convolution (Yu & Koltun, 2016) and is thus able to capture a large receptive �eld whilst
maintaining a small number of connected nodes. Thus we can achieve much lower computational
overhead compared with fully-connected message passing in which typically allN nodes are used
when one of the nodes is updated. Each node receivesS complementary messages from distinct
receptive �elds for updating as

m ( t +1)
i =

X

q

X

j 2N q ( i )

� qAq
i;j h ( t )

j w q
j ; with Aq

i;j = Aq[i; j ] andq = 1 ; � � � ; S (3)
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