
Under review as a conference paper at ICLR 2020

META DROPOUT: LEARNING TO PERTURB LATENT
FEATURES FOR GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

A machine learning model that generalizes well should obtain low errors on un-
seen test examples. Thus, if we know how to optimally perturb training examples
to account for test examples, we may achieve better generalization performance.
However, obtaining such perturbation is not possible in standard machine learn-
ing frameworks as the distribution of the test data is unknown. To tackle this
challenge, we propose a novel regularization method, meta-dropout, which learns
to perturb the latent features of training examples for generalization in a meta-
learning framework. Specifically, we meta-learn a noise generator which outputs
a multiplicative noise distribution for latent features, to obtain low errors on the
test instances in an input-dependent manner. Then, the learned noise generator can
perturb the training examples of unseen tasks at the meta-test time for improved
generalization. We validate our method on few-shot classification datasets, whose
results show that it significantly improves the generalization performance of the
base model, and largely outperforms existing regularization methods such as in-
formation bottleneck, manifold mixup, and information dropout.

1 INTRODUCTION

Obtaining a model that generalizes well is a fundamental problem in machine learning, and is be-
coming even more important in the deep learning era where the models may have tens of thousands
of parameters. Basically, a model that generalizes well should obtain low error on unseen test ex-
amples, but this is difficult since the distribution of test data is unknown during training. Thus,
many approaches resort to variance reduction methods, that reduce the model variance with respect
to the change in the input. These approaches includes controlling the model complexity (Neyshabur
et al., 2017), reducing information from inputs (Tishby et al., 1999), obtaining smoother loss sur-
face (Shirish Keskar et al., 2017; Neyshabur et al., 2017; Chaudhari et al., 2017; Santurkar et al.,
2018), smoothing softmax probabilities (Pereyra et al., 2017) or training for multiple tasks with
multi-task (Caruana, 1997) and meta-learning (Thrun & Pratt, 1998).

A more straightforward and direct way to achieve generalization is to simulate the test exam-
ples by perturbing the training examples during training. Some regularization methods such as
mixup (Zhang et al., 2017) follow this approach, where the training examples are perturbed to the
direction of the other training examples to mimic test examples. The same method could be also
applied to the latent feature space, to achieve even larger performance gain (Verma et al., 2019).
However, these approaches are all limited in that they do not explicitly aim to lower the general-
ization error on the test examples. How can we then perturb the training instances such that the
perturbed instances will be actually helpful in lowering the test loss? Enforcing this generalization
objective is not straightforward in standard learning framework since the test data is unobservable.

To solve this seemingly impossible problem, we resort to meta-learning (Thrun & Pratt, 1998) which
aims to learn a model that generalize over a distribution of tasks, rather than a distribution of data
instances from a single task. Generally, a meta-learner is trained on a series of tasks with random
training and test splits. While learning to solve diverse tasks, it accumulates the meta-knowledge that
is not specific to a single task, but is generic across all tasks, which is later leveraged when learning
for a novel task. During this meta-training step, we observe both the training and test data. That is,
we can explicitly learn to perturb the training instances to obtain low test loss in this meta-learning

1



Under review as a conference paper at ICLR 2020

framework. The learned noise generator then can be used to perturb instances for generalization at
meta-test time.

train

train

train

test

test

test

Figure 1: Concepts. In the feature
space, each training instance stochas-
tically perturbs so that the resultant
decision boundaries (red line) explain
well for the test examples. Note that
the noise distribution does not have to
cover the test instances directly.

Yet, learning how much and which features to pertub is dif-
ficult for two reasons. First of all, meaningful directions of
perturbation may differ from one instance to another, and one
task to another. Secondly, a single training instance may need
to cover largely different test instances with its perturbation,
since we do not know which test instances will be given at test
time. To handle this problem, we propose to learn an input-
dependent stochastic noise; that is, we want to learn distribu-
tion of noise, or perturbation, that is meaningful for a given
training instance. Specifically, we learn a noise generator for
each layer features of the main network, given lower layer fea-
tures as input. We refer to this meta-noise generator as meta-
dropout that learns to regularize.

Also the learned noise distribution is transferrable, which is
especially useful for few-shot learning setting where only a
few examples are given to solve a novel task. Figure 1 depicts
such a scenario where the noise generator perturbs each input
instance to help the model predict better decision boundaries.

In the remaining sections, we will explain our model in the context of existing work and propose
the learning framework for meta-dropout. We compare our method to existing regularizers such
as manifold mixup (Verma et al., 2019), information bottleneck, and information dropout (Achille
& Soatto, 2018), which our method significantly outperforms. We further show that meta-dropout
can be understood as meta-learning the variational inference framework for the graphical model in
Figure 3. Finally, we validate our work on multiple benchmark datasets for few-shot classification.

Our contribution is threefold.

• We propose a novel regularization method called meta-dropout that generates stochastic
input-dependent perturbations to regularize few-shot learning models, and propose a meta-
learning framework to train it.
• We compare with the existing regularizers such as information bottleneck (Achille &

Soatto, 2018; Alemi et al., 2017) and manifold mixup (Verma et al., 2019). We also pro-
vide the probabilistic interpretation of our approach as learning to regularize the variational
inference framework for the graphical model in Figure 3.
• We validate our method on multiple benchmark datasets for few-shot classification, on

which our model significantly improves the performance of the base models.

2 RELATED WORK

Meta learning While the literature on meta-learning (Thrun & Pratt, 1998) is vast, here we dis-
cuss a few relevant existing works for few-shot classification. One of the most popular approaches
is metric-based meta-learning that learns a shared metric space (Koch et al., 2015; Vinyals et al.,
2016; Snell et al., 2017; Oreshkin et al., 2018; Mishra et al., 2018) over randomly sampled few-shot
classification problems, to embed the instances to be closer to their correct embeddings by some
distance measure regardless of their classes. The most popular models among them are Match-
ing networks (Vinyals et al., 2016) which leverages cosine distance measure, and Prototypical net-
works (Snell et al., 2017) that make use of Euclidean distance. On the other hand, gradient-based
approaches (Finn et al., 2017; 2018; Li et al., 2017; Lee & Choi, 2018; Ravi & Beatson, 2019; Zint-
graf et al., 2019) learns a shared initialization parameter, which can rapidly adapt to new tasks with
only a few gradient steps. Recent literatures on few-shot classification show that the performance
can significantly improve with larger networks, meta-level regularizers or fine-tuning (Lee et al.,
2019; Rusu et al., 2019). Lastly, meta-learning of the regularizers has been also addressed in Balaji
et al. (2018), which proposed to meta-learn `1 regularizer for domain adaptation. However, while
this work focuses on the meta-learning of the hyperparameter of generic regularizers, our model is
more explicitly targeting generalization via input perturbation.

2



Under review as a conference paper at ICLR 2020

Dropout Dropout (Srivastava et al., 2014) is a regularization technique to randomly drop out neu-
rons during training. In addition to feature decorrelation and ensemble effect, we could also in-
terpret dropout regularization as a variational approximation for posterior inference of the network
weights (Gal & Ghahramani, 2016), in which case we can even learn the dropout rates with stochatic
gradient variational Bayes (Kingma et al., 2015; Gal et al., 2017). The dropout regularization could
be viewed as a noise injection process. In case of standard dropout, the noise follows the Bernoulli
distribution, but we could also use Gaussian multiplicative noise to the parameters instead (Wang &
Manning, 2013). It is also possible to learn the dropout probability in an input-dependent manner as
done with Adaptive Dropout (Standout) (Ba & Frey, 2013), which could be interpreted as variational
inference on input-dependent latent variables (Sohn et al., 2015; Xu et al., 2015; Heo et al., 2018;
Lee et al., 2018). However, meta-dropout is fundamentally different from adaptive dropout, as it
makes use of previously obtained meta-knowledge in posterior variance inference, while adaptive
dropout resorts only to training data and prior distribution.

Regularization methods There exist large number of regularization techniques for improving the
generalization performance of deep neural networks (Srivastava et al., 2014; Ioffe & Szegedy, 2015;
Ghiasi et al., 2018), but we only wwwdiscuss approaches based on input-dependent perturbations
that are closely related to meta-dropout. Mixup (Zhang et al., 2017) randomly pairs training in-
stances and interpolates between them to generate additional training examples. Verma et al. (2019)
further extends the technique to perform the same procedure in the latent feature spaces at each
layer of deep neural networks. While mixup variants are related to meta-dropout as they generate
additional training instances via input perturbations, these heuristics may or may not improve gener-
alization, while meta dropout perturbs the input while explicitly aiming to minimize the test loss in a
meta-learning framework. Information-theoretic regularizers (Alemi et al., 2017; Achille & Soatto,
2018) are also relevant to our work, where they inject input-dependent noise to latent features to
forget some of the information from the inputs, resulting in learning high-level representations that
are invariant to less meaningful variations. Yet, meta-dropout has a more clear and direct objective
to improve on the generalization. Adversarial learning (Goodfellow et al., 2015) is also somewhat
related to our work, which perturbs the examples towards the direction that maximizes the training
loss, as meta dropout also tend to pertub inputs to the direction of decision boundaries. In the exper-
iments section, we show that meta dropout also improves adversarial robustness, which implies the
connection between adversarial robustness and generalization (Stutz et al., 2019).

3 LEARNING TO PERTURB LATENT FEATURES

We now describe our problem setting and the meta-learning framework for learning to perturb train-
ing instances in the latent feature space, for improved generalization. The goal of meta-learning is
to learn a model that generalizes over a task distribution p(T ). This is usually done by training the
model over large number of tasks (or episodes) sampled from p(T ), each of which consists of a
training set Dtr = {(xtr

i ,y
tr
i )}Ni=1 and a test set Dte = {(xte

j ,y
te
j )}Mj=1.

Suppose that we are given such a split of Dtr and Dte. Denoting the initial model parameter of an
arbitrary neural network as θ, Model Agnostic Meta Learning (MAML) (Finn et al., 2017) aims to
infer task-specific model parameter θ∗ with one or a few gradient steps with the training set Dtr,
such that θ∗ can quickly generalize toDte with a few gradient steps. Let α denote the inner-gradient
step size, X and Y denote the concatenation of input data instances and their associated labels
respectively for both training and test set. Then, we have

min
θ

Ep(T )

[
− 1

M
log p(Yte|Xte;θ∗)

]
, where θ∗ = θ − α∇θ

(
− 1

N
log p(Ytr|Xtr;θ)

)
. (1)

Optimizing the objective in Eq. 1 is repeated over many random splits of Dtr and Dte, such that the
initial model parameter θ captures the most generic information over the task distribution p(T ).

3.1 META-DROPOUT

A notable limitation of MAML is that the knowledge transfer to unseen tasks is done only by sharing
the initial model parameter over the entire task distribution. When considering few-shot classifica-
tion task for instance, this means that given the initial θ, the inner-gradient steps at the meta-test

3



Under review as a conference paper at ICLR 2020

time only depends on few training instances, which could potentially lead to learning sub-optimal
decision boundaries. Thus, it would be desirable if we could transfer additional information from
the meta-learning step, that could help the model to generalize better. Based on this motivation, we
propose to capture a transferrable noise distribution from the given tasks at the meta-training time,
and inject the learned noise at the meta-test time, such that the noise samples would perturb the
latent features of the training instances to explicitly improve the decision boundaries.

Noise generator

Conv

FC

Main network

Noise

Noise

Figure 2: Model archi-
tecture. Each bottom layer
generates the noise for up-
per layer with parameter φ.

Toward this goal, we propose to learn an input-dependent noise distribu-
tion, such that the noise is individually tailored for each instance. This
is because the optimal direction and the amount of perturbation for each
input instance may vary largely from one instance to another. We empir-
ically validate the effectiveness of this input-dependent noise generation
in our experiments (Table 3). We denote the shared form of the noise dis-
tribution as p(z|xtr;θ,φ), with φ as the additional meta-parameter for
the noise generator that does not participate in the inner-optimization.
Note that the noise distribution has dependency on the main parameter
θ, due to input dependency (see Figure 2).

Recall that each inner-gradient step requires to compute the gradient over the training marginal log-
likelihood (Eq. 1). In our case of training with the input-dependent noise generator p(z|xtr;θ,φ),
the marginal log-likelihood is obtained by considering all the plausible perturbations for each in-
stance: log p(Ytr|Xtr;θ,φ) =

∑N
i=1 logEzi∼p(zi|xtr

i ;θ,φ) [p(y
tr
i |xtr

i , zi;θ)]. In this work, we instead
consider its lower bound, which simply correspondes to the expected loss over the noise distribution
(See section 3.2 for more discussion).

log p(Ytr|Xtr;θ,φ) ≥
N∑
i=1

Ezi∼p(zi|xtr
i ;θ,φ)

[
log p(ytr

i |xtr
i , zi;θ)

]
(2)

We take the gradient ascent steps with this lower bound. Following Kingma & Welling (2014), we
use reparameterization trick to evaluate the gradient of the expectation w.r.t. θ and φ, such that
z = Softplus(µ+ε) and ε ∼ N (0, I) (See Eq. 5). Then, the associated Monte-carlo (MC) samples
allow to compute the gradients through the deterministic function µ parameterized by φ and θ. We
use MC sample size S = 1 for meta-training and S = 30 for meta-testing.

θ∗ = θ + α
1

N

N∑
i=1

1

S

S∑
s=1

∇θ log p(y
tr
i |xtr

i , z
(s)
i ;θ), z

(s)
i

i.i.d.∼ p(zi|xtr
i ;φ,θ) (3)

By taking the proposed gradient step, the target learning process can consider all the plausible per-
turbations of the training examples that can help explain the test dataset. Extension to more than one
inner-gradient step is also straightforward: for each inner-gradient step, we perform MC integration
to estimate the model parameter at the next step, and repeat this process until we get the final θ∗.

Finally, we evaluate and maximize the performance of θ∗ on the test examples, by optimizing θ
and φ for the following meta-objective over the task distribution p(T ). Considering that the test
examples should remain as stable targets we aim to generalize to, we deterministically evaluate its
log-likelihood by forcing the variance of a to be zero in Eq. 5 (i.e. a = µ). Denoting z as the one
obtained from such deterministic a, we have

max
θ,φ

Ep(T )

[
1

M

M∑
i=1

log p(yte
i |xte

i , zi = zi;θ
∗)

]
. (4)

By applying the same deterministic transformation µ to both training and test examples, they can
share the same consistent representation space, which seems important for performance. Lastly, to
compute the gradient of Eq. 4 w.r.t. φ, we must compute second-order derivative, otherwise the
gradient w.r.t. φ will always be zero. See Algorithm 1 and 2 for the pseudocode of Meta-dropout.

Form of the noise We apply input-dependent multiplicative noise to the latent features at all lay-
ers (Ba & Frey, 2013) (See Figure 2). Here we suppress the dependency on θ and φ for better
readability. We propose to use simple Softplus transformation of a Gaussian noise distribution. We

4



Under review as a conference paper at ICLR 2020

could use other types of transformations, such as exponential transformation (i.e. Log-Normal dis-
tribution), but we empirically verified that Softplus works better. First, we generate input-dependent
noise z(l) given the latent features h(l−1) from the previous layer.

z(l) = Softplus(a(l)), a(l) ∼ N (a(l)|µ(l), I) (5)

where µ(l) := µ(l)(h(l−1)) is parameterized by φ and θ. Note that although the variance of a is
fixed as I, we can still adjust the noise scale at each dimension via the mean µ(l), with the scale of
the noise suppressed at certain dimensions by the Softplus function. While we could also model
the variance in an input-dependent manner, we empirically found that this does not improve the
generalization performance (Table 3). Then, we can obtain the latent features h(l) for the current
layer l, by applying the noise to the pre-activation f (l) := f (l)(h(l−1)) prameterized by θ:

h(l) = ReLU(f (l) ◦ z(l)). (6)

where ◦ denotes the element-wise multiplication.

3.2 LEARNING TO REGULARIZE VARIATIONAL INFERENCE

Fixed

Figure 3:
Graphical
model

Lastly, we explain that our model can be understood as learning to regularize the
variational inference framework described with the graphical model in Figure 3.
Suppose we are given a training set D = {(xi,yi)}Ni=1, where for each instance
xi, the generative process involves latent zi conditioned on xi. Note that during
the inner-gradient steps, the global parameter φ∗ is fixed and we only learn θ.

Based on this specific context, we see that the inner-gradient steps of meta dropout
in Eq. 3 essentially perform posterior variational inference on z (the latent input-
dependent noise variable) by maximizing the following evidence lower bound:

log p(Y|X;θ,φ∗)

≥
∑N

i=1Eq(zi|xi,yi)[log p(yi|xi, zi;θ)]−KL[q(zi|xi,yi)‖p(zi|xi;θ,φ
∗)] (7)

=
∑N

i=1Ep(zi|xi;θ,φ∗) [log p(yi|zi,xi;θ)] (8)

= L(θ).

where from Eq. 7 to Eq. 8 we let the approximate posterior q(z|x,y) share the same form with
the conditional prior p(z|x;θ,φ∗), such that the KL divergence between them becomes zero. By
sharing the same form, we can let the training and testing pipeline be consistent (note that the label
y is not available for the test examples, (Sohn et al., 2015; Xu et al., 2015)). By maximizing L(θ),
we obtain the task-specific model parameter θ∗ that can make more accurate predictions on the test
examples, owing to the knowledge transfer from φ∗, which regularizes the form of the conditional
prior p(z|x;θ∗,φ∗) (or equivalently, the approximate posterior q(z|x,y) that shares the form).

Further, the fixed variance in Eq. 5 can be understood as a crude approximation of the true posterior,
which is similar to the variational inference interpretation of the standard dropout regularization
with fixed probability in Gal & Ghahramani (2016). MC-dropout is known to produce reasonable
uncertainties in many cases (Louizos & Welling, 2017), which justifies our use of fixed variance.

4 EXPERIMENTS

We now validate our meta-dropout on few-shot classification tasks for its effectiveness.

Baselines and our models We first introduce the two most important baselines and our model.
We compare against other few-shot meta-learning baselines, using their reported performances.
1) MAML. Model Agnostic Meta Learning by Finn et al. (2017). First-order approximation is not
considered for fair comparison against the baselines that use second-order derivatives.
2) Meta-SGD. A variant of MAML whose learning rate vector is element-wisely learned for the
inner-gradient steps (Li et al., 2017).
3) Meta-dropout. MAML or Meta-SGD with our learnable input-dependent noise generator.

5



Under review as a conference paper at ICLR 2020

Table 1: Few-shot classification performance on conventional 4-layer convolutional neural networks. All
reported results are average performances over 1000 randomly selected episodes with standard errors for 95%
confidence interval over tasks.

Omniglot 20-way miniImageNet 5-way
Models 1-shot 5-shot 1-shot 5-shot

Meta-Learning LSTM (Ravi & Larochelle, 2017) - - 43.44±0.77 60.60±0.71

Matching Networks (Vinyals et al., 2016) 93.8 98.7 43.56±0.84 55.31±0.73

Prototypical Networks (Snell et al., 2017) 95.4 98.7 46.14±0.77 65.77±0.70

Prototypical Networks (Snell et al., 2017) (Higher way) 96.0 98.9 49.42±0.78 68.20±0.66

MAML (our reproduction) 95.23±0.17 98.38±0.07 49.58±0.65 64.55±0.52

Meta-SGD (our reproduction) 96.16±0.14 98.54±0.07 48.30±0.64 65.55±0.56

Reptile (Nichol et al., 2018) 89.43±0.14 97.12±0.32 49.97±0.32 65.99±0.58

Amortized Bayesian ML (Ravi & Beatson, 2019) - - 45.00±0.60 -
Probabilistic MAML (Finn et al., 2018) - - 50.13±1.86 -

MT-Net (Lee & Choi, 2018) 96.2±0.4 - 51.70±1.84 -
CAVIA (512) (Zintgraf et al., 2019) - - 51.82±0.65 65.85±0.55

MAML + Meta-dropout 96.63±0.13 98.73±0.06 51.93±0.67 67.42±0.52

Meta-SGD + Meta-dropout 97.02±0.13 99.05±0.05 50.87±0.63 65.55±0.57

train
perturbed train
test
decision boundary

(a) MAML (miniImageNet) (b) Meta-dropout (miniImageNet) (c) Meta-dropout (Omniglot)

Figure 4: Visualization of the task-specific decision boundaries in the last latent feature space, for 1-shot
learning case. The visualizations are the projection of the features after completing the last (5th) inner-gradient
step, where the sampled 4 examples (2 examples (©,4) × 2 classes) participate in the inner-optimization. (a)
and (b) are drawn from the same task. See Appendix B for the details about this visualization.

Datasets We validate our method on the following two benchmark datasets for few-shot classifi-
cation. 1) Omniglot: This gray-scale hand-written character dataset consists of 1623 classes with
20 examples of size 28 × 28 for each class. Following the experimental setup of Vinyals et al.
(2016), we use 1200 classes for meta-training, and the remaining 423 classes for meta-testing. We
further augment classes by rotating 90 degrees multiple times, such that the total number of classes
is 1623× 4. 2) miniImageNet: This is a subset of ILSVRC-2012 (Deng et al., 2009), consisting of
100 classes with 600 examples of size 84 × 84 per each class. There are 64, 16 and 20 classes for
meta- train/validation/test respectively.

Base networks. We use the standard network architecture for the evaluation of few-shot classifi-
cation performance (Finn et al., 2017), which consists of 4 convolutional layers with 3 × 3 kernels
(”same” padding), and has either 64 (Omniglot) or 32 (miniImageNet) channels. Each layer is fol-
lowed by batch normalization, ReLU, and max pooling (”valid” padding).

Experimental setup. Omniglot: For 1-shot classification, we use the meta-batchsize of B = 8
and the inner-gradient stepsize of α = 0.1. For 5-shot classification, we use B = 6 and α = 0.4.
We train for total 40K iterations with meta-learning rate 10−3. mimiImageNet: We use B = 4 and
α = 0.01. We train for 60K iterations with meta-learning rate 10−4. Both datasets: Each inner-
optimization consists of 5 SGD steps for both meta-training and meta-testing. Each task consists of
15 test examples. Note that the testing framework becomes transductive via batch normalization, as
done in Finn et al. (2017). We use Adam optimizer (Kingma & Ba, 2014) with gradient clipping of
[−3, 3]. We used TensorFlow (Abadi et al., 2016) for all our implementations.

4.1 FEW-SHOT CLASSIFICATION EXPERIMENTS

Table 1 shows the classification results obtained with conventional 4-layer convolutional neural net-
works on Omniglot and mimiImageNet dataset. The base MAML or Meta-SGD with Meta-dropout

6



Under review as a conference paper at ICLR 2020

Table 2: Comparison against existing perturbation-based regularization techniques. The performances
are obtained by applying the regularizers to the inner gradient steps of MAML.

Models Noise Hyper- Omniglot 20-way miniImageNet 5-way
(MAML +) Type parameter 1-shot 5-shot 1-shot 5-shot

No perturbation None 95.23±0.17 98.38±0.07 49.58±0.65 64.55±0.52

Input & Manifold Mixup γ = 0.2 89.78±0.25 97.86±0.08 48.62±0.66 63.86±0.53

(Zhang et al., 2017) Pairwise γ = 1 87.00±0.28 97.27±0.10 48.24±0.62 62.32±0.54

(Verma et al., 2019) γ = 2 87.26±0.28 97.14±0.17 48.42±0.64 62.56±0.55

Variational β = 10−5 92.09±0.22 98.85±0.07 48.12±0.65 64.78±0.54

Information Bottleneck Add. β = 10−4 93.01±0.20 98.80±0.07 46.75±0.63 64.07±0.54

(Alemi et al., 2017) β = 10−3 94.98±0.16 98.75±0.07 47.59±0.60 63.30±0.53

Information Dropout β = 10−5 94.49±0.17 98.50±0.07 50.36±0.68 65.91±0.55

(ReLU ver.) Mult. β = 10−4 94.36±0.17 98.53±0.07 49.14±0.63 64.96±0.54

(Achille & Soatto, 2018) β = 10−3 94.28±0.17 98.65±0.07 43.78±0.61 63.36±0.56

Meta- Add. 0.1 96.55±0.14 99.04±0.05 50.25±0.66 66.78±0.53

dropout Mult. None 96.63±0.13 98.73±0.06 51.93±0.67 67.42±0.52

outperform all the baselines, except for the Prototypical Networks trained with ”higher way” (20-
way) on the miniImageNet 5-shot classification1. Figure 4 visualizes the learned decision boundaries
of MAML and meta-dropout. We observe that the perturbations from meta-dropout generate data-
points that are close to the decision boundaries for the classification task at the test time, which could
effectively improve the generalization accuracy. See Appendix section C for more visualizations,
including stochastic activations and input-level projections of perturbations.

Comparison against perturbation-based regularization methods In Table 2, we compare with
the existing regularization methods based on input-dependent perturbation, such as Mixup (Zhang
et al., 2017; Verma et al., 2019) and Information-theoretic regularizers (Achille & Soatto, 2018;
Alemi et al., 2017). We train the base MAML with the baseline regularizers added to the inner-
gradient steps, and set the number of perturbations for each step to 1 for meta-training and 30 for
meta-testing, as in the case of Meta-dropout. We meta-train additional parameters from the baselines
by optimizing them in the inner-gradient steps for fair comparison.

We first compare meta-dropout against mixup variants. The perturbation for mixup regularization is
defined as a linear interpolation of both inputs and labels between two randomly sampled training
datapoints. We interpolate at both the input and manifold level following Verma et al. (2019). The
interpolation ratio λ ∈ [0, 1] follows λ ∼ Beta(γ, γ), and we use γ ∈ {0.2, 1, 2} following the
settings of the original paper. Table 2 shows that Mixup regularization significantly degrades the
few-shot classification performance within the range of γ we considered. This is because, in the
meta-learning framework, the interpolations of each task-adaptation process ignores the larger task
distribution, which could conflict with the previously accumulated meta-knowledge.

Next, we compare with the information-theoretic regularizers. Information Bottleneck (IB) method
(Tishby & Zaslavsky, 2015) is a framework for searching for the optimal tradeoff between forget-
ting of unnecessary information in inputs (nuisances) and preservation of information for correct
prediction, with the hyperparameter β controlling the tradeoff. The higher the β, the more strongly
the model will forget the inputs. We consider the two recent variations for IB-regularization for
deep neural networks, namely Information Dropout (Achille & Soatto, 2018) and Variational Infor-
mation Bottleneck (VIB) (Alemi et al., 2017). Those information-theoretic regularizers are relevant
to meta-dropout as they also inject input-dependent noise, which could be either multiplicative (In-
formation Dropout) or additive (VIB). However, the assumption of optimal input forgetting does
not hold in meta-learning framework, because it will forget the previous task information as well.
Table 2 shows that these regularizers significantly upderperform ours in the meta-learning setting.

Lastly, we investigate if the perturbations generated from Meta-dropout can improve the adversarial
robustenss as well. For comparison, we consider adversarial learning baselines that use adverarially
perturbed examples for their inner-gradient steps. We use FSGM attack (Goodfellow et al., 2015)
of size ε ∈ {0.1, 0.3} for Omniglot and ε ∈ {0.01, 0.1} for mimiImageNet. After meta-training,

1 Strictly, this result is not comparable with others as all other models are trained with 5-way classification
problems during meta-training.

7



Under review as a conference paper at ICLR 2020

Table 3: Ablation study on the noise types applied to the inner-gradient steps.
Models Omniglot 20-way miniImageNet 5-way

(MAML+) 1-shot 5-shot 1-shot 5-shot
No noise 95.23±0.17 98.38±0.07 49.58±0.65 64.55±0.52

Fixed Gaussian 95.44±0.17 98.99±0.06 49.39±0.63 66.84±0.54

Independent Gaussian 94.36±0.18 98.26±0.08 50.31±0.64 66.97±0.54

Weight Gaussian 94.32±0.18 98.35±0.07 49.37±0.64 64.78±0.54

Deterministic Meta-dropout 95.99±0.14 97.78±0.09 50.75±0.63 65.62±0.53

Meta-dropout w/ learned variance 95.98±0.15 98.87±0.06 50.93±0.68 66.15±0.56

Meta-dropout 96.63±0.13 98.73±0.06 51.93±0.67 67.42±0.52

0.000 0.001 0.002 0.003 0.004
epsilon

15

20

25

30

35

40

45

50

ac
cu

ra
cy

MAML
Metadrop
Adv. (0.01)
Adv. (0.1)

(a) mimiImageNet 1-shot

0.0 0.1 0.2 0.3 0.4
epsilon

20

40

60

80

100

ac
cu

ra
cy

MAML
Metadrop
Adv. (0.1)
Adv. (0.3)

(b) Omniglot 1-shot

0.0 0.1 0.2 0.3 0.4
epsilon

20

40

60

80

100

ac
cu

ra
cy

MAML
Metadrop
Adv. (0.1)
Adv. (0.3)

(c) Omniglot 5-shot
Figure 5: Adversarial robustness against FSGM attack with varying size of ε.

we meta-test with varying the size of ε. Figure 5 shows that meta-dropout improves the adversarial
robustness as well as the generalization of the base MAML, although neither the inner nor the
outer optimization involves explicit adversarial learning. This is because meta-droput perturbates
the inputs to the direction of the decision boundaries (see Figure 4(c)). This result implies that the
perturbation directions for generalization and adversarial robustness are related to each other (Stutz
et al., 2019); however we need further research to clarify the relationship between the two.

Ablation study In Table 3, we compare against other types of noise generator, to justify the use of
input-dependense multiplicative noise for meta-dropout. We describe the baseline noise generators
as follows: 1) Fixed Gaussian: MAML with fixed multiplicative noise, such that a in Eq. 5 follows
a ∼ N (0, I) without any trainable parameters. 2) Independent Gaussian: MAML with input-
independent multiplicative noise, such that a ∼ N (µ, I), where learnable parameter µ has the same
dimensionality to the channels (similarly to channel-wise dropout). 3) Weight Gaussian: MAML
with fully factorized gaussian weights whose variances are meta-learned. We see from the Table 3
that neither the fixed distribution (Fixed Gaussian) nor the input-independent noise (Independent
and Weight Gaussian) outperforms the base MAML, whereas our meta-dropout model significantly
outperforms MAML. The results support our claim that the input-dependent noise generators are
more transferrable across tasks, as it can generate noise distribution adaptively for each instance.

We also compare against a deterministic meta-dropout where we force a in Eq. 5 to be deterministic:
a = µ, for both training and test examples. We can see that although there are some gain from
deterministically meta-learning the representation space via µ, we can significantly improve the
performance by injecting stochastic noise (meta-dropout). We also compared against a variant of
meta-dropout that instead of using fixed I in Eq. 5, learns the variance in an input-dependent manner
(meta-droput w/ learned variance) but it underperforms meta-dropout with fixed variance.

5 CONCLUSION

We proposed a novel regularization method for deep neural networks, meta-droput, which learns
to perturb the latent features of training examples for improved generalization. However, learning
how to optimally perturb the input is difficult in a standard learning scenario, as we do not know
which data will be given at the test time. Thus we tackle this challenge by learning the input-
dependent noise generator in a meta-learning framework, to explicitly train it to minimize the test
loss during meta-training. Our noise learning process could be interpreted as meta-learning of a
variational inference for a specific graphical model in Fig. 3. We validate our method on benchmark
datasets for few-shot classification, on which it significantly improves the generalization perfor-
mance of the target meta-learning model, while largely outperforming existing regularizers based
on input-dependent perturbation. As future work, we plan to investigate the relationships between
generalization and adversarial robustness.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale Machine
Learning on Heterogeneous Distributed Systems. arXiv:1603.04467, 2016.

Alessandro Achille and Stefano Soatto. Information Dropout: Learning Optimal Representations
Through Noisy Computation. In PAMI, 2018.

Alex Alemi, Ian Fischer, Josh Dillon, and Kevin Murphy. Deep variational information bottleneck.
In ICLR, 2017.

Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural networks. In NIPS. 2013.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain gener-
alization using meta-regularization. In NeurIPS. 2018.

R. Caruana. Multitask Learning. Machine Learning, 1997.

P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun,
and R. Zecchina. Entropy-SGD: Biasing Gradient Descent Into Wide Valleys. In ICLR, 2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-F ei. Imagenet: A Large-Scale Hierarchical
Image Database. In CVPR, 2009.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
NeurIPS, 2018.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty
in Deep Learning. In ICML, 2016.

Y. Gal, J. Hron, and A. Kendall. Concrete Dropout. In NIPS, 2017.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for convolu-
tional networks. In NeurIPS, 2018.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

J. Heo, H. B. Lee, S. Kim, J. Lee, K. J. Kim, E. Yang, and S. J. Hwang. Uncertainty-Aware Attention
for Reliable Interpretation and Prediction. In NeurIPS, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In JMLR, 2015.

D. P. Kingma, T. Salimans, and M. Welling. Variational Dropout and the Local Reparameterization
Trick. In NIPS, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014.

Diederik P. Kingma and Max Welling. Auto encoding variational bayes. In ICLR. 2014.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML, 2015.

Hae Beom Lee, Juho Lee, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Dropmax: Adaptive
variationial softmax. In NeurIPS, 2018.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In CVPR, 2019.

Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric and
subspace. In ICML, 2018.

9



Under review as a conference paper at ICLR 2020

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few
shot learning. arXiv preprint arXiv:1707.09835, 2017.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational Bayesian neural
networks. In ICML, 2017.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In ICLR, 2018.

B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Exploring Generalization in Deep
Learning. In NIPS, 2017.

Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-Learning Algorithms. arXiv
e-prints, 2018.

Boris Oreshkin, Pau Rodrı́guez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. In NeurIPS, 2018.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
Neural Networks by Penalizing Confident Output Distributions. arXiv e-prints, 2017.

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In ICLR, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In ICLR, 2019.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In NeurIPS. 2018.

N. Shirish Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On Large-Batch
Training for Deep Learning: Generalization Gap and Sharp Minima. In ICLR, 2017.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NIPS, 2017.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. In NIPS. 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15:1929–1958, 2014.

David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness and general-
ization. In CVPR, 2019.

Sebastian Thrun and Lorien Pratt (eds.). Learning to Learn. Kluwer Academic Publishers, Norwell,
MA, USA, 1998. ISBN 0-7923-8047-9.

Naftali Tishby and Noga Zaslavsky. Deep Learning and the Information Bottleneck Principle. In In
IEEE Information Theory Workshop, 2015.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method. In
Annual Allerton Conference on Communication, Control and Computing, 1999.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Aaron Courville, Ioannis Mitliagkas,
and Yoshua Bengio. Manifold Mixup: Learning Better Representations by Interpolating Hidden
States. In ICML, 2019.

Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. In NIPS, 2016.

Sida Wang and Christopher Manning. Fast dropout training. In ICML, 2013.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. Show,
Attend and Tell: Neural Image Caption Generation with Visual Attention. In ICML, 2015.

10



Under review as a conference paper at ICLR 2020

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In ICLR, 2017.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In ICML, 2019.

A ALGORITHM

We provide the pseudocode for meta-training and meta-testing of Meta-dropout.

Algorithm 1 Meta-training
1: Input: Task distribution p(T ), Number of inner steps K, Inner step size α, Outer step size β.
2: while not converged do
3: Sample (Dtr,Dte) ∼ p(T )
4: θ0 ← θ
5: for k = 0 to K − 1 do
6: Sample z̃i ∼ p(zi|xtr

i ;φ,θk) for i = 1, . . . , N

7: θk+1 ← θk + α 1
N

∑N
i=1 log p(y

tr
i |xtr

i , z̃i;θk)
8: end for
9: θ∗ ← θK

10: θ ← θ − β 1
M

∑M
j=1∇θ log p(y

te
j |xte

j , zj = zj ;θ
∗)

11: φ← φ− β 1
M

∑M
j=1∇φ log p(yte

j |xte
j , zj = zj ;θ

∗)
12: end while

Algorithm 2 Meta-testing
1: Input: Number of inner steps K, Inner step size α, MC sample size S.
2: Input: Learned paramter θ and φ from Algorithm 1.
3: Input: Meta-test dataset (Dtr,Dte).
4: θ0 ← θ
5: for k = 0 to K − 1 do
6: Sample

{
z
(s)
i

}S
s=1

i.i.d∼ p(zi|xtr
i ;φ,θk) for i = 1, . . . , N

7: θk+1 ← θk − α 1
N

∑N
i=1

1
S

∑S
s=1 log p(y

tr
i |xtr

i , z
(s)
i ;θk)

8: end for
9: θ∗ ← θK

10: Evaluate p(yte
j |xte

j , zj = zj ;θ
∗) for j = 1, . . . ,M

B HOW TO VISUALIZE DECISION BOUNDARY

Visualization in Figure 4 shows 2D-mapped latent faetures and binary classification decision bound-
ary of two random classes in a task. After parameters are adapted to the given task, we make binary
classifier of random classes c1 and c2 by taking only two columns of final linear layer parameters :
W = [wc1 ,wc2 ] and b = [bc1 , bc2 ]. Then we compute the last latent features H(L) of data points
in the classes.

The decision hyperplane of the linear classifier in the latent space is given as,

h>db(wc1 −wc2) + (bc1 − bc2) = 0 (9)

X-coordinates in our 2D visualization are inner product values between latent features and the nor-
mal vector of the decision hyperplane i.e. latent features are projected to orthogonal direction of the
decision hyperplane.

cx = H(L) wc1 −wc2

||wc1 −wc2 ||
(10)

11



Under review as a conference paper at ICLR 2020

Y-coordinates are determined by t-distributed stochastic neighbor emgedding (t-SNE) to reduce all
other dimensions.

cy = tSNE

(
H(L) − cx

(wc1 −wc2)
>

||wc1 −wc2 ||

)
(11)

The points on the decision hyperplane is projected to a vertical line with following x-coordinate in
the 2D space.

cxdb = h>db
wc1 −wc2

||wc1 −wc2 ||
= − bc1 − bc2
||wc1 −wc2 ||

(12)

C MORE VISUALIZATIONS

In order to see the meaning of perturbation at input level, we reconstruct expected perturbed image
from perturbed features. A separate deconvolutional decoder network is trained to reconstruct orig-
inal image from unperturbed latent features, then the decoder is used to reconstruct perturbed image
from perturbed features of 3rd layer.

Original
Image

Without
Noise

With
Noise1

With
Noise2

(a)

Original
Image

Without
Noise

With
Noise1

With
Noise2

(b)

Original
Image

Without
Noise

With
Noise1

With
Noise2

(c)

Original
Image

Without
Noise

With
Noise1

With
Noise2

(d)

Figure 6: Feature Visualization Layer activations and perturbed activations in Omniglot datset.

12



Under review as a conference paper at ICLR 2020

Original
Image

Channel 1
Activation

Channel 1
Perturbed Activation

Channel 2
Activation

Channel 2
Perturbed Activation

(a) omniglot, layer 1

Original
Image

Channel 1
Activation

Channel 1
Perturbed Activation

Channel 2
Activation

Channel 2
Perturbed Activation

(b) mimiImageNet, layer 2

Figure 7: Visualization of stochastic features. We visualize the deterministic activations and the correspond-
ing stochastic activations with perturbation.

13


	Introduction
	Related Work
	Learning to Perturb Latent Features
	Meta-dropout
	Learning to regularize variational inference

	Experiments
	Few-shot Classification Experiments

	Conclusion
	Algorithm
	How to visualize decision boundary
	More visualizations

