
Under review as a conference paper at ICLR 2020

RELEVANT-FEATURES BASED AUXILIARY CELLS FOR
ROBUST AND ENERGY EFFICIENT DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks are complex non-linear models used as predictive analytics
tool and have demonstrated state-of-the-art performance on many classification
tasks. However, they have no inherent capability to recognize when their predic-
tions might go wrong. There have been several efforts in the recent past to detect
natural errors i.e. misclassified inputs but these mechanisms pose additional en-
ergy requirements. To address this issue, we present a novel post-hoc framework
to detect natural errors in an energy efficient way. We achieve this by append-
ing relevant features based linear classifiers per class referred as Relevant features
based Auxiliary Cells (RACs). The proposed technique makes use of the con-
sensus between RACs appended at few selected hidden layers to distinguish the
correctly classified inputs from misclassified inputs. The combined confidence of
RACs is utilized to determine if classification should terminate at an early stage.
We demonstrate the effectiveness of our technique on various image classifica-
tion datasets such as CIFAR10, CIFAR100 and Tiny-ImageNet. Our results show
that for CIFAR100 dataset trained on VGG16 network, RACs can detect 46% of
the misclassified examples along with 12% reduction in energy compared to the
baseline network while 69% of the examples are correctly classified.

1 INTRODUCTION

Machine learning classifiers have achieved high performance on various classification tasks such
as object detection, speech recognition, image classification among others. The decision made by
these classifiers can be critical when employed in real-world tasks such as medical diagnosis, self-
driving cars, security etc. Hence, identifying when a prediction is incorrect i.e. detecting abnormal
inputs and having a well-calibrated predictive uncertainty is of great importance to AI safety. Note
that abnormal samples include natural errors, adversarial inputs and out-of-distribution examples.
Natural errors are the samples in the training and test data which are misclassified by the final
classifier in the network.

Various techniques have been proposed in literature to address the issue of distinguishing abnormal
samples. Hendrycks & Gimpel (2017) proposed a baseline method for detecting natural errors and
out-of-distribution examples utilizing threshold based technique on maximal softmax response. A
simple unified framework to detect adversarial and out-of-distribution samples has been proposed by
Lee et al. (2018). They use the activations from the hidden layers along with a generative classifier
to compute Mahalanobis distance (Mahalanobis, 1936) based confidence score. However, this work
does not deal with the detection of natural errors. Hendrycks & Gimpel (2017); Mandelbaum &
Weinshall (2017); Bahat et al. (2019) focus on detecting natural errors. Mandelbaum & Weinshall
(2017) use distance based confidence method to detect natural errors based on measuring the point
density in the effective embedding space of the network. More recently, Bahat et al. (2019) showed
that KL-divergence between the outputs of the classifier under image transformations can be used
to distinguish correctly classified examples from adversarial and natural errors. To enhance natural
error detection, they further incorporate Multi Layer Perceptron (MLP) at the final layer which is
trained to detect misclassification. But none of these works evaluate the robustness against all three
types of abnormal inputs.

Most prior works on the line of error detection do not consider the latency and energy overheads
that incur because of the detector or detection mechanism. The advancement towards deeper net-

1

Under review as a conference paper at ICLR 2020

works has drastically increased the latency and energy required for feed-forward inference. Adding
a detector or detection mechanism on top of this will give rise to additional energy requirements.
This increase in energy may make these networks less feasible to employ in critical scenarios us-
ing portable devices where latency, energy and identifying abnormal inputs are important factors.
There has been plethora of efforts to enable energy efficiency based on early exit conditions placed
at individual layers of a convolutional neural network (CNN), aiming at bypassing later stages of a
CNN if the classifier has a confident prediction in earlier stages. Some of these techniques include
the adaptive neural networks (Stamoulis et al., 2018), the edge-host partitioned neural network (Ko
et al., 2018), the distributed neural network (Teerapittayanon et al., 2017), the cascading neural
network (Leroux et al., 2017), the conditional deep learning classifier (Panda et al., 2016) and the
scalable-effort classifier (Venkataramani et al., 2015). However, there is no unified technique which
enables energy efficiency and detects abnormal samples to improve robustness of deep neural net-
work (DNN). We aim to improve the robustness of the network by detecting abnormal samples while
being energy efficient.

In particular, we focus on detecting natural errors in an energy efficient manner. Our idea is to
determine set of relevant features corresponding to each class at hidden layers which are utilized
to detect natural errors and make early classifications. The relevant features are obtained from few
selected hidden layers which have maximal information. The chosen hidden layers are referred as
validation layers. We compute relevance scores of each feature map at validation layers with respect
to all the classes in the dataset. Relevance score of a feature map corresponding to class c indicates
its contribution in activating the final output node of c. Relevant features of c are the set of feature
maps at validation layers that have high relevance scores corresponding to class c in the dataset.
The relevant features thus obtained are fed to Relevant feature based Auxiliary Cells (RACs) which
are a set of binary linear classifiers appended to the DNN. We use the consensus between RACs to
detect natural errors and the combined confidence of RACs to decide on early classification. Thus
we achieve robustness by detecting natural errors and energy efficiency through early classification.

Figure 1: (a) Baseline Deep Neural Network (DNN). (b) DNN with Relevant features based Auxil-
iary Cells (RACs) added at validation layers (selected hidden layers) whose output is monitored to
detect early classification

2 FEATURE RELEVANCE MATRIX

Deep Neural networks (DNNs) trained for classification tasks compute a set of features at each
convolutional layer. At each layer, there might be few feature maps which are highly responsible for
activating a particular class node (say c) at the output compared to other feature maps. We consider
these features as relevant features of c. Relevant features can be computed at each layer for every
class in the dataset. We focus on determining the relevant features at few selected hidden layers

2

Under review as a conference paper at ICLR 2020

which have maximal information. These layers are referred as validation layers and are selected
heuristically (see sec. 4.1). For example, a filter at a higher layer i.e. a high-level feature can
represent whiskers which are relevant to classes like cat and dog but not to classes like truck and
airplane. So the feature map computed from this filter is considered as relevant feature to class cat
and dog. (Note that we are considering special case of DNN models which are Convolutional Neural
Networks (CNNs). However, our framework can be extended to any DNN model.)

Determining relevant features at validation layers plays a critical role in the proposed framework
as RACs are trained on these features. To obtain relevant features, we define a feature-relevance
matrix at each validation layer which assigns a class-wise relevance score to every feature map.
The relevance score of a feature map for any given class (say cat) indicates its contribution to the
softmax value of the final output node (corresponding to cat). Algorithm 1 shows the pseudo code for
computing the feature-relevance matrix. The process takes pre-trained Deep Neural Network (DNN)
and training data with corresponding labels as inputs and it outputs a feature-relevance matrix Fl for
a particular layer l. Each row in Fl indicates the relevance scores of all the features maps at layer
l corresponding to a unique class from the dataset. In particular, Fl(i, j) indicates the relevance
score of feature map fj at layer l corresponding to class i in the dataset. For example, consider a
VGGNet with 16 layers trained on CIFAR10 dataset. The 7th convolutional layer will output 256
feature maps and hence the feature-relevance matrix at this layer is of size 10 × 256. The first row
in the matrix F7 indicates the relevance scores of feature maps in layer 7 corresponding to class 0
i.e. airplane.

Algorithm 1: Methodology to Compute Feature-Relevance Matrix at layer l

Input: Trained DNN, Training data {(xi, yi)}Ni=1: xi ∈ input sample, yi ∈ true label
Parameters: number of classes = c, number of layers = L, feature maps at layer l:
{f1, f2, . . . , fr}, relevance score of node p at layer l = Rl

p

Initialize feature-relevance matrix for given layer l: Fl = zeros(c, r)
for each sample (xi, yi) in training data do

Forward propagate the input xi to obtain the activations of all nodes in the DNN
Compute relevance scores for output layer: RL

p = δ(p− yi) ∀p ∈ {1, . . . , c}
δ(p− yi) = Dirac delta function

for k in range(L− 1, l,−1) do
Back propagate relevance scores: Rk

p =
∑

q(α
apw

+
pq∑

p apw
+
pq
− β apw

−
pq∑

p apw
−
pq
)Rk+1

q

∀ p ∈ nodes of layer k, α− β = 1
ap = activations, wpq = weights

end for
Compute average relevance score per feature map at layer l
Relevance score vector at layer l: Rl =

{
Rl

fj
= 1∑

p∈fj
1

(∑
p∈fj

Rl
p

)}r
j=1

Update feature-relevance matrix: Fl(yi, :) = Rl

end for
Average rows of feature-relevance matrix: Fl(p, :) =

1∑
∀yi∈p

1Fl(p, :) ∀p ∈ {1, . . . , c}

return Feature-Relevance Matrix Fl

We use Layer-wise Relevance Propagation (LRP) proposed by Sebastian et al. (2015) to compute
the class-wise relevance scores of hidden feature maps. LRP computes the contribution of every
node in the network to the prediction made for an input image. The relevance scores at output nodes
are determined based on true label of an instance. For any input sample (xi, yi), the output node
corresponding to true class i.e. yi is given a relevance score of 1 and the remaining nodes get a score
of 0. These relevance scores are then back propagated based on αβ-decomposition rule (Wojciech
et al., 2016) with α = 2 and β = 1. After determining the relevance scores of each node in the
network, we compute the relevance score of every feature map fi at layer l by averaging the scores
of all the nodes corresponding to fi. The same procedure is repeated for all samples in the training
data. For every feature map at layer l, all the relevance values computed from the training data are

3

Under review as a conference paper at ICLR 2020

averaged class-wise to obtain one relevance score per class i.e. class relevance scores. The class
relevance scores of a feature map fi at layer l forms the ith column of feature-relevance matrix Fl.
The computed feature-relevance matrix is then utilized to determine the relevant features for each
class at the validation layers.

3 RELEVANT FEATURES BASED AUXILIARY CELL (RAC)

In this section, we present our approach to design the proposed Deep Neural Networks (DNNs) with
Relevant features based Auxiliary Cells (RACs). The DNN models that are trained for classification
behave as feature extractors by the removal of final output layer. We exploit the efficacy of the
hidden layer features to develop an architecture in which natural errors can be detected and easy
instances (Panda et al., 2016) can be classified earlier without activating the latter layers of the
DNN. Fig. 1 shows the conceptual view of DNNs with RACs. Fig. 1(a) consists of the baseline deep
neural network with L layers. We have not shown the pooling layers or the filters for the sake of
convenience in representation. Fig. 1(b) illustrates our approach wherein the output relevant features
from two hidden layer l, l+ 1 which are referred as validation layers are fed to RACs. Note that the
two validation layers need not be consequent.

An RAC consists of c binary linear classifiers (BLCs) where c represents number of output nodes
i.e. number of classes. Each binary linear classifier with in an RAC corresponds to a unique class in
the dataset and is trained on relevant features corresponding to that class. The output of binary linear
classifier of a class (say c) in an RAC indicates P (yi = c|xi) i.e the probability of a given instance
xi coming from class c. Every RAC outputs a class label and its probability which corresponds to
the binary linear classifier with maximum output value. The probability outputted by the RAC is
considered as its confidence score. Besides the RACs, an activation module is added to the network
(traingle in Fig. 1(b)) similar to that of Panda et al. (2016) . The activation module utilizes the
consensus of RACs and their confidence scores to decide if the next layers have to be activated for
an input instance.

3.1 TRAINING RACS

We proceed to train the RACs after determining the feature-relevance matrices (see sec. 2) at valida-
tion layers. Algorithm 2 shows pseudo code for training the RACs. The initial step in this process is
to determine the relevant features for each class at validation layers using feature-relevance matrix.
For every class j, we arrange the feature maps in descending order of their relevance score and top
‘k’ feature maps are marked as relevant features of class j. Once the relevant features for each class
are determined, they remain unchanged. The binary linear classifier of class j (BLC-j) are then
trained on the relevant features of class j from the training data. Note that the relevant feature maps
which are fed to RACs are obtained after the batch-norm and ReLU operation applied to selected
convolutional layer (validation layer).

Algorithm 2: Methodology to Train an RAC at layer l

Input: Trained DNN, Training data {(xi, yi)}Ni=1, feature-relevance matrix Fl

Parameters: number of class = c, feature-relevance matrix = Fl

for each class j ∈ 1, . . . , c do
Determine top k relevant features of class j at layer l from Fl(j, :)

Obtain relevant features i.e. xlji ∀i ∈ {1, . . . , N} by forward propagating xi through DNN
Get the binary labels for training data: ỹi = δ(j − yi) ∀i ∈ {1, . . . , N}
Initialize a binary linear classifier (BIC-j) with no hidden layers
Train BIC-j using {(xlji , ỹi)}Ni=1 as training data
return BIC-j

end for

The binary linear classifiers in an RAC can be trained in parallel as they are independent of each
other. We use relevant features to train RAC instead of using all the feature maps for the following
reasons:

4

Under review as a conference paper at ICLR 2020

(a) We found that at a given validation layer, the detection capability (detecting natural errors)
is higher if we use relevant feature maps than using all available features maps.

(b) Reduced number of additional parameters added to the baseline DNN.

3.2 EARLY CLASSIFICATION AND ERROR DETECTION

The overall testing methodology for DNNs with RACs is shown in algorithm 3. We adopt the early
exit strategy proposed by Panda et al. (2016) and modify it to perform efficient classification with
RACs. Given a test instance Itest, the methodology either produces a class label Ctest or makes no
decision (ND). If an input is classified at the RACs without activating the entire network i.e. without
activating the layers beyond validation layers then it is considered as an early classification. The
output from the RACs is monitored to decide if early classification can be made for an input. If the
decision made by RACs do not agree with each-other then the network outputs no decision indicating
the possibility of miss-classification by the final classifier. In this case, testing is terminated at layer
l+ 1 without activating the entire network which results in an early classification. If both the RACs
predict same class label c then we use pre-defined confidence threshold (δth) to decide on early
classification. Along with predicting same class label c, if the confidence scores provided by both
the RACs are greater than δth then we output c as final decision (early classification). The remaining
layers from l + 2 will be activated only if RACs output same class label but with confidence scores
lower than confidence threshold δth. In this case, final classifier’s decision is used to validate the
decision made by RACs because of their lower confidence.

Algorithm 3: Methodology to Test the DNN with RACs
Input: Test instance Itest, DNN with RAC-1 and RAC-2 at validation layers l and l + 1

respectively
Output: Indicates class label (Ctest) or detects abnormal input as No-Decision (ND)

Obtain the DNN layer features for Itest corresponding to layers l and (l + 1)
Activate and obtain the output from RAC-1 and RAC-2
If class label outputted by RAC-1 = RAC-2 do

If confidence value of each RAC is beyond a certain threshold δth do
Terminate testing at layer (l + 1)
Output Ctest = class label given by RACs

else do
Activate remaining layers and obtain decision of final classifier (FC)
If class label given by FC = RACs then output Ctest = class label given by FC
If class label given by FC 6= RACs then output ND

end if
else do

Terminate testing at layer (l + 1)
Output ND

end if

In summary, our approach tries to identify natural errors to improve robustness and modulates the
number of layers used for classification for energy efficiency. This results in an energy efficient
detection mechanism. The user defined threshold, δth, can be adjusted to achieve best trade-off
between efficiency improvements and better detection of natural errors. Thus, the proposed method-
ology is systematic and hence can be applied to all image recognition applications.

4 EXPERIMENTAL METHODOLOGY

In this section, we describe the experimental setup used to evaluate the performance of Deep Neural
Networks (DNNs) with relevant features based Auxiliary Cells (RACs). We demonstrate the ef-
fectiveness of our framework using deep convolutional networks, such as VGGNet (Szegedy et al.,
2015) and ResNet (He et al., 2016) for image classification tasks on CIFAR (Alex & Geoffrey,
2009) and Tiny-ImageNet (Jia et al., 2009) datasets. For the problem of detecting out-of-distribution

5

Under review as a conference paper at ICLR 2020

(OOD) samples, we have used LSUN (Fisher et al., 2015), SVHN (Yuval et al., 2011) and TinyIm-
ageNet datasets as OOD samples for networks trained on CIFAR10 and CIFAR100 datasets. For
testing on adversarial samples, we used three attack methods such as FGSM (Ian et al., 2015),
DeepFool (Seyed Mohsen et al., 2016) and CW (Nicholas & David, 2017) to generate adversarial
examples.

We measure the following metric to quantify the performance: percentage of good decisions, per-
centage of bad decisions and percentage of early decisions. The inputs which are either correctly
classified or classified as no-decision contribute towards good decisions. Note that DNN with RACs
outputs ‘no-decision’, when the input can be potentially misclassified by the baseline DNN i.e. by
the final classifier. The inputs which are misclassified even by the DNN with RACs are considered as
bad decisions. Therefore, inputs fall into three different buckets in case of DNN with RACs: (a) In-
puts which are correctly classified (b) Inputs which are classified as ‘no-decisions’ (c) Inputs which
are incorrectly classified. We report False Negative Rate (FNR) and True Negative Rate (TNR) to
evaluate the error detection capability and the average number of operations (or computations) per
input (# OPS) to measure energy efficiency. The negatives are the inputs that are misclassified by
the baseline DNN and positives are the inputs that are correctly classified by the baseline DNN.
True negative rate is the percentage of misclassified (by baseline DNN) inputs which are classified
as ‘no-decisions’ by DNN with RACs. False negative rate is the percentage of correctly classified
examples (by baseline DNN) which are classified as ‘no-decisions’ by DNN with RACs.

Our goal is to increase the true negative rate and improve energy efficiency (decrease # OPS) while
maintaining the false negative rate as low as possible. We observed that these three metrics i.e. true
negative rate, false negative rate and # OPS are sensitive to the hyper-parameters related to RACs
and so we have carried out series of experiments to determine their effect. The details of these
experiments are shown in the following section (Sec. 4.1).

4.1 TUNING HYPER-PARAMETERS

The following are the three hyper-parameters which affect true negative rate, false negative rate and
energy efficiency (# OPS):

• The choice of validation layers (l, l + 1)
• Number of relevant features (k) used at each validation layer
• Confidence threshold δth

We use heuristic based method to tune the above mentioned hyper-parameters. Firstly, lets under-
stand how the validation layers are chosen and their effect on detection capability. The validation
layers can not be the initial layers as they do not have the full knowledge of network hierarchy and
the feature maps at these layers are not class specific. We observed that the hidden layers just before
the final classifier (FC) make similar decisions as that of the final classifier and hence are not useful
to detect natural errors. Thus, the hidden layers which are in between the network (yet, closer to
FC) are suitable as validation layers. Fig. 2 shows the change in FNR, TNR and normalized #OPS
with respect to change in the choice of the validation layers for CIFAR-10 dataset trained on VGG16
network.

(a) (b) (c)

Figure 2: (a) Normalised #OPS as the validation layers are shifted towards the final classifier (b)
TNR and FNR as the confidence threshold δth is increased at RACs (c) Normalized #OPS as the
confidence threshold δth is increased at RACs.

6

Under review as a conference paper at ICLR 2020

(a) (b) (c)

Figure 3: (a) TNR and FNR as the no. of relevant features k is increased at RACs (b) TNR and
FNR as the confidence threshold δth is increased at RACs (c) Normalized #OPS as the confidence
threshold δth is increased at RACs.

As the validation layers move deeper into the network, both true negative rate and false negative rate
tend to decrease (Fig. 2b, 2c). We heuristically select a pair of hidden layers as validation layers
which result in the smallest false negative rate in the range of 5%-10%. For example, the smallest
FNR value in the range of 5%-10% is obtained when we choose layer 7 and layer 8 as validation
layers for VGG16 network trained on CIFAR10 dataset (Fig. 2c).

Number of relevant features ‘k’ is another hyper-parameter which affects the false negative and the
true negative rates. As we increase the number of relevant features k, both FNR and TNR decreases.
Fig. 3a shows the change in FNR and TNR with respect to change in number of relevant features
k for CIFAR-10 dataset trained on VGG16 network with validation layers at layer 7 and 8. The
optimal value of k depends on the dataset and the network used. We increment k by power of 2,
compute the corresponding FNR and TNR and select the optimal k value from these observations.
Note that # OPS increase as ‘k’ increases. For example, consider the case of VGG16 network trained
on CIFAR10 with validation layers at layer 7 and 8. When we increment k from 64 to 128 at these
validation layers, the FNR drops by 1.6% changing from 6.2% to 4.6% while TNR drops by 5%.
So, we choose k as 64 for CIFAR10 with VGG16 network.

The confidence threshold δth is a user defined hyper-parameter which also influences energy effi-
ciency and detection capability. The activation module discussed in Section. 3 compares this prob-
ability outputted by RACs to the confidence threshold δth to selectively classify the input at RAC
stage or at the final classifier. Thus, we can regulate δth to modulate the number of inputs being
passed to the latter layers. Note that δth has no contribution to the decision made when the RACs
do not output same class. The confidence threshold also affects the TNR and FNR of the detec-
tion mechanism. However, the change in FNR with confidence threshold is negligible (see Fig. 3b)
which is around 0.1% for 0.1 change in δth. Fig. 3c shows the variation in the normalized OPS (with
respect to baseline DNN which quantifies efficiency) with different δth for VGG16 network trained
on CIFAR10 dataset with RACs appended at layer 7 and 8.

Table 1: Baseline network details and the complexity of hidden linear classifiers used for our tech-
nique.

Dataset Network Baseline # of Params validation additional
Error layers # of params

CIFAR10
VGG16 7.88 33.6 M 7,8 0.08 M
Res18 5.76 11.2 M 12, 13 0.33 M

CIFAR100
VGG16 25.62 34.0 M 9, 10 0.41 M
Res34 24.56 21.3 M 31, 32 0.82 M

TinyImageNet Res18 43.15 11.3 M 15, 16 0.41 M

As we increase δth, TNR increases because higher δth would qualify more inputs to be verified
by the final classifier. However, beyond a particular δth, a fraction of inputs which are correctly
classified at early stages can be detected as natural errors because of increase in confusion. This
value of δth (0.9 in Fig. 3b) corresponds to maximum TNR that can be achieved for a DNN with
RACs (validation layers and k are fixed). Beyond this point (say δ∗th), TNR would decrease. The

7

Under review as a conference paper at ICLR 2020

number of OPS increases as we increase δth but the rate of increase is significant beyond δ∗th. In
Fig. 3b, we observe that the TNR increases from 39.34% (δth=0.8) to 43.15% (δth=0.9) while the
normalized #OPS increase from 0.66 to 0.67. Further increase in δth degrades the TNR and increases
#OPS by significant amount. Thus, δth serves as a knob to trade TNR for efficiency that can be easily
adjusted during runtime to get the most optimum results.

4.2 EXPERIMENTAL RESULTS

This section summarizes results on detection capability and energy efficiency obtained from DNN
with RACs. We train VGGNet with 16 layers and ResNet with 18 layers for classifying CIFAR10.
For training CIFAR100 dataset, we use VGGNet with 16 layers and ResNet with 34 layers. In
addition, we have trained ResNet 18 architecture with TinyImageNet dataset. Table. 1 indicates
baseline error, number of parameters in the baseline network, validation layers used and the addi-
tional number of parameters added due to inclusion of RACs. Table. 2 validates the performance
of our suggested technique and fig. 4a indicates the reduction in classification error for various net-
works and datasets. We observe that DNN with RACs can detect∼ (43−45)% of the natural errors
while maintaining the accuracy at ∼ (86 − 89)% for CIFAR10 dataset. For CIFAR100 dataset, we
observe slightly higher detection rate i.e. ∼ (46− 49)% with an accuracy range of (67− 69)%. The
detection rate is much higher for Tiny-Imagenet dataset trained on ResNet18 i.e. 62%. However, the
accuracy drops from 56.85% to 41.28%. This can be potentially improved by using deeper networks
such as DenseNet. Note that the decrease in accuracy is not because of miss-classification but is be-
cause of false detection and these falsely detected examples fall into no-decision bucket. Therefore,
even though the percentage of correctly classified examples decrease slightly, we avoid around 50%
of miss-classifications compared to the baseline network which is advantageous in critical applica-
tions. Figure. 4b shows the normalized improvement in efficiency with respect to the baseline DNN
for different datasets and networks. We observe that VGGNet has higher improvement in energy
than compared to the network with residual connections.

Table 2: Detecting incorrect classifications and making early decisions for image classification task.
All the values are percentages.

Dataset Network Good decisions (%) Bad FNR TNR Early
Correct No decisions (%) (%) (%) decisions
decisions decisions (Error) (%)

CIFAR10
VGG16 86.43 9.09 4.48 6.00 43.00 88.55
Res18 88.81 7.99 3.20 5.76 44.44 74.58

CIFAR100
VGG16 68.6 17.67 13.73 7.7 46.4 87.03
Res34 66.78 20.74 12.48 11.48 49.19 90.39

Tiny- Res18 41.28 42.26 16.46 27.39 61.85 95.24
ImageNet

Table 3: Performance of our technique on detecting adversarial and out-of-distribution data for
image classification task. The reported TNR for adversarial and OOD detection is computed at FNR
mentioned in Table. 2. All the values are percentages.

Dataset Network adversarial TNR(%) OOD TNR (%)
FGSM DeepFool CW Tiny- LSUN SVHN

ImageNet

CIFAR10
VGG16 33.75 32.42 18.41 44.25 48.10 63.96
Res18 45.97 53.48 20.31 60.55 68.46 70.13

CIFAR100
VGG16 44.16 35.51 23.70 43.03 38.28 38.02
Res34 65.36 44.04 24.76 58.55 60.30 58.56

We also evaluate the robustness of our framework against adversarial and out-of-distribution (OOD)
inputs for CIFAR10 and CIFAR100 datasets (Table. 3). The adversarial samples are generated using

8

Under review as a conference paper at ICLR 2020

(a) (b)

Figure 4: (a) Test error comparison between baseline DNN and DNN with RACs (b) Normalized
OPS benefits with respect to baseline

the following attacks: Fast Gradient Signed Method (FGSM), DeepFool and Carlini & Wagner
(CW) attack (refer Appendix). We assume that the attacker has no knowledge about the detection
mechanism but has complete knowledge about the baseline DNN (white-box attack with respect
to baseline DNN). We observe that our technique make the architectures with residual connections
more robust to adversarial and OOD samples as compared to VGG kind of networks. It can be
seen that our results are comparable to the baseline detection technique proposed by Hendrycks &
Gimpel (2017). The proposed framework not only helps in detecting natural errors but also provides
some robustness towards adversarial and out-of-distribution examples while being energy efficient
than the baseline network.

5 CONCLUSION

Deep neural networks are crucial for many classification tasks and require robust and energy efficient
implementations for critical applications. In this work, we device a novel post-hoc technique for
energy efficient detection of natural errors. In essence, our main idea is to append a set of binary
linear classifiers per class at few selected hidden layers referred as Relevant features based Auxiliary
Cells (RACs) which enable energy efficient error detection. With explainable techniques such as
Layerwise Relevance Propagation (LRP), we determine relevant hidden features corresponding to
a particular class which are fed to the RACs. The consensus between RACs (and final classifier if
there is no early termination) is used to detect natural errors and the confidence of RACs is utilized
to decide on early classification. We also found that our proposed framework provides robustness
towards adversarial inputs and out-of-distribution inputs to some extent. Beyond the immediate
application to increase robustness and reduce energy requirement, the success of our framework
suggests further study of energy efficient error detection mechanisms using hidden representations.

REFERENCES

Krizhevsky Alex and Hinton Geoffrey. Learning multiple layers of features from tiny images. 2009.

Yuval Bahat, Michal Iranu, and Gregory Shakhnarovich. Natural and adversarial error detection
using invariance to image transformations. In arXiv preprint arXiv:1902.00236v1. 2019.

Yu Fisher, Seff Ari, Zhang Yinda, Song Shuran, Funkhouser Thomas, and Xiao Jianxiong. Con-
struction of a large-scale image dataset using deep learning with humans in the loop. In arXiv
preprint arXiv:1506.03365. 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Computer Vision and Pattern Recognition (CVPR). 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations. 2017.

9

Under review as a conference paper at ICLR 2020

Goodfellow Ian, Shlens Jonathon, and Szegedy Christian. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations. 2015.

Deng Jia, Dong Wei, Socher Richard, Li Li-Jia, Li Kai, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In CVPR. 2009.

Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukhopadhyay. Edge-host parti-
tioning of deep neural networks with feature space encoding for resource-constrained internet-of-
things platforms. In 15th IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS). 2018.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In Advances in Neural Information Process-
ing Systems 31, pp. 7167–7177. 2018.

Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens,
and Bart Dhoedt. The cascading neural network: building the internet of smart things. In Knowl-
edge and Information Systems 52, issue 3. 2017.

Chandra Prasanta Mahalanobis. On the generalised distance in statistics. In Proceedings of the
National Institute of Sciences of India, pp. 49–55. 1936.

Amit Mandelbaum and Daphna Weinshall. Distance-based confidence score for neural network
classifiers. In arXiv preprint arXiv:1709.09844. 2017.

Carlini Nicholas and Wagner David. Adversarial examples are not easily detected: Bypassing ten
detection methods. In ACM workshop on AISec. 2017.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-
efficient and enhanced pattern recognition. In Design, Automation & Test in Europe Conference
& Exhibition (DATE). 2016.

Bach Sebastian, Binder Alexander, Montavon Gregorie, Klauschen Frederick, Muller Klaus-Robert,
and Samek Wojciech. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. In Plos One. 2015.

Moosavi Dezfooli Seyed Mohsen, Fawzi Alhussein, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Computer Vision and Pattern Recognition
(CVPR). 2016.

Dimitrios Stamoulis, Ting-Wu Chin, Anand Krishnan Prakash, Haocheng Fang, Sribhuvan Sajja,
Mitchell Bognar, and Diana Marculescu. Designing adaptive neural networks for energy-
constrained image classification. In ICCAD ’18 Proceedings of the International Conference
on Computer-Aided Design, Article No. 23. 2018.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Computer Vision and Pattern Recognition (CVPR). 2015.

Surat Teerapittayanon, Bradley McDanel, and H.T Kung. Distributed deep neural networks over the
cloud, the edge and end devices. In ICDCS, IEEE, pp. 328339. 2017.

Swagath Venkataramani, Anand Raghunathan, Jie Liu, and Mohammed Shoaib. Scalable-effort
classifiers for energy-efficient machine learning. In DAC. 2015.

Samek Wojciech, Montavon Gregorie, Binder Alexander, Lapuschkin Sebastian, and Muller Klaus-
Robert. Interpreting the predictions of complex ml models by layer-wise relevance propagation.
In arXiv preprint arXiv:1611.08191v1. 2016.

Netzer Yuval, Wand Tao, Coates Adam, Bissacco Alessandro, Wu Bo, and Ng Andrew Y. Reading
digits in natural images with unsupervised feature learning. In Neural Information Processing
Systems (NIPS) workshop. 2011.

10

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 ADVERSARIAL ATTACKS

We consider the following adversarial attacks to evaluate the robustness of the proposed frame-
work towards adversarial examples: fast gradient sign method (FGSM) (Ian et al., 2015), DeepFool
(Seyed Mohsen et al., 2016) and Carlini-Wagner (CW) (Nicholas & David, 2017). The FGSM
directly perturbs the input in the direction of the loss gradient. We have generated non-targeted
adversarial examples using FGSM. These examples are constructed as

xfgsm = x+ εsign(∇xL(y, P (ỹ|x)))

where ε is the magnitude of the noise, y is the ground truth label, P (ỹ|x) is the predicted output
probability and L is the loss function. We have chosen ε to be 0.05.

DeepFool method finds the closest adversarial examples with respect to a given distance measure.
CW is an optimization based method and is considered to me most effective method. The non
targeted CW attacks are constructed as

argmin
xcw

{λ.d(x, xcw)− L(y, P (ỹ|x))}

where λ is penalty parameter and d(.,.) is the distance measure and L is the loss function. λ is set
as 1 for our experiments. We have used L2 distance measure for both CW and DeepFool attack
methods.

11

	Introduction
	Feature Relevance Matrix
	Relevant features based Auxiliary Cell (RAC)
	Training RACs
	Early classification and Error detection

	Experimental methodology
	Tuning Hyper-parameters
	Experimental Results

	Conclusion
	Appendix
	Adversarial attacks

