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ABSTRACT

Trained generative models have shown remarkable performance as priors for
inverse problems in imaging. For example, Generative Adversarial Network priors
permit recovery of test images from 5-10x fewer measurements than sparsity priors.
Unfortunately, these models may be unable to represent any particular image
because of architectural choices, mode collapse, and bias in the training dataset.
In this paper, we demonstrate that invertible neural networks, which have zero
representation error by design, can be effective natural signal priors at inverse
problems such as denoising, compressive sensing, and inpainting. Our formulation
is an empirical risk minimization that does not directly optimize the likelihood
of images, as one would expect. Instead we optimize the likelihood of the latent
representation of images as a proxy, as this is empirically easier. For compressive
sensing, our formulation can yield higher accuracy than sparsity priors across
almost all undersampling ratios. For the same accuracy on test images, they can use
10-20x fewer measurements. We demonstrate that invertible priors can yield better
reconstructions than sparsity priors for images that have rare features of variation
within the biased training set, including out-of-distribution natural images.

1 INTRODUCTION

Training Truth Lasso DCGAN Ours

Figure 1: We train an invertible generative model with CelebA images (including those at left). When
used as a prior for compressed sensing, it can yield higher quality image reconstructions than Lasso
and a trained DCGAN, even on out-of-distribution images. Note that the DCGAN reflects biases of
the training set by removing the man’s glasses and beard, whereas our invertible prior does not.

Generative deep neural networks have shown remarkable performance as natural signal priors in
imaging inverse problems, such as denoising, inpainting, compressed sensing, blind deconvolution,
and phase retrieval. These generative models can be trained from datasets consisting of images of
particular natural signal classes, such as faces, fingerprints, MRIs, and more (Karras et al., 2017;
Minaee and Abdolrashidi, 2018; Shin et al., 2018; Chen et al., 2018). Some such models, including
variational autoencoders (VAEs) and generative adversarial networks (GANs), learn an explicit
low-dimensional manifold that approximates a natural signal class (Goodfellow et al., 2014; Kingma
and Welling, 2013; Rezende et al., 2014). We will refer to such models as GAN priors. With an
explicit parameterization of the natural signal manifold by a low dimensional latent representation,
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these generative models allow for direct optimization over a natural signal class. Consequently, they
can obtain significant performance improvements over non-learning based methods. For example,
GAN priors have been shown to outperform sparsity priors at compressed sensing with 5-10x
fewer measurements. Additionally, GAN priors have led to theory for signal recovery in the linear
compressive sensing and nonlinear phase retrieval problems (Bora et al., 2017; Hand and Voroninski,
2017; Hand et al., 2018), and they have also shown promising results for the nonlinear blind image
deblurring problem (Asim et al., 2018).

A significant drawback of GAN priors for solving inverse problems is that they can have representation
error or bias due to architecture and training. This can happen for many reasons, including because
the generator only approximates the natural signal manifold, because the natural signal manifold
is of higher dimensionality than modeled, because of mode collapse, or because of bias in the
training dataset itself. As many aspects of generator architecture and training lack clear principles,
representation error of GANs may continue to be a challenge even after substantial hand crafting and
engineering. Additionally, learning-based methods are particularly vulnerable to the biases of their
training data, and training data, no matter how carefully collected, will always contain degrees of
bias. As an example, the CelebA dataset (Liu et al., 2015) is biased toward people who are young,
who do not have facial hair or glasses, and who have a light skin tone. As we will see, a GAN prior
trained on this dataset learns these biases and exhibits image recovery failures because of them.

In contrast, invertible neural networks can be trained as generators with zero representation error.
These networks are invertible (one-to-one and onto) by architectural design (Dinh et al., 2016;
Gomez et al., 2017; Jacobsen et al., 2018; Kingma and Dhariwal, 2018). Consequently, they are
capable of recovering any image, including those significantly out-of-distribution relative to a biased
training set; see Figure 1. We call the domain of an invertible generator the latent space, and we
call the range of the generator the signal space. These must have equal dimensionality. Flow-based
invertible generative models are composed of a sequence of learned invertible transformations. Their
strengths include: their architecture allows exact and efficient latent-variable inference, direct log-
likelihood evaluation, and efficient image synthesis; they have the potential for significant memory
savings in gradient computations; and they can be trained by directly optimizing the likelihood of
training images. This paper emphasizes an additional strength: because they lack representation
error, invertible models can mitigate dataset bias and improve performance on inverse problems with
out-of-distribution data.

In this paper, we study generative invertible neural network priors for imaging inverse problems.
We will specifically use the Glow architecture, though our framework could be used with other
architectures. A Glow-based model is composed of a sequence of invertible affine coupling layers,
1x1 convolutional layers, and normalization layers. Glow models have been successfully trained to
generate high resolution photorealistic images of human faces (Kingma and Dhariwal, 2018).

We present a method for using pretrained generative invertible neural networks as priors for imaging
inverse problems. The invertible generator, once trained, can be used for a wide variety of inverse
problems, with no specific knowledge of those problems used during the training process. Our
method is an empirical risk formulation based on the following proxy: we penalize the likelihood
of an image’s latent representation instead of the image’s likelihood itself. While this may be
couterintuitive, it admits optimization problems that are easier to solve empirically. In the case
of compressive sensing, our formulation succeeds even without direct penalization of this proxy
likelihood, with regularization occuring through initialization of a gradient descent in latent space.

We train a generative invertible model using the CelebA dataset. With this fixed model as a signal prior,
we study its performance at denoising, compressive sensing, and inpainting. For denoising, it can
outperform BM3D (Dabov et al., 2007). For compressive sensing on test images, it can obtain higher
quality reconstructions than Lasso across almost all subsampling ratios, and at similar reconstruction
errors can succeed with 10-20x fewer measurements than Lasso. It provides an improvement of
about 2x fewer linear measurements when compared to Bora et al. (2017). Despite being trained
on the CelebA dataset, our generative invertible prior can give higher quality reconstructions than
Lasso on out-of-distribution images of faces, and, to a lesser extent, unrelated natural images. Our
invertible prior outperforms a pretrained DCGAN (Radford et al., 2015) at face inpainting and
exhibits qualitatively reasonable results on out-of-distribution human faces. We provide additional
experiments in the appendix, including for training on other datasets.
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2 METHOD AND MOTIVATION

We assume that we have access to a pretrained generative invertible neural network G : Rn → Rn.
We write x = G(z) and z = G−1(x), where x ∈ Rn is an image that corresponds to the latent
representation z ∈ Rn. We will consider a G that has the Glow architecture introduced in Kingma
and Dhariwal (2018). It can be trained by direct optimization of the likelihood of a collection of
training images of a natural signal class, under a standard Gaussian distribution over the latent space.
We consider recovering an image x from possibly-noisy linear measurements given by A ∈ Rm×n,

y = Ax+ η,

where η ∈ Rm models noise. Given a pretrained invertible generator G, we have access to likelihood
estimates for all images x ∈ Rn. Hence, it is natural to attempt to solve the above inverse problem by
a maximum likelihood formulation given by

min
x∈Rn

‖Ax− y‖2 − γ log pG(x), (1)

where pG is the likelihood function over x induced by G, and γ is a hyperparameter. We have found
this formulation to be empirically challenging to optimize; hence we study the following proxy:

min
z∈Rn

‖AG(z)− y‖2 + γ‖z‖. (2)

Unless otherwise stated, we initialize (2) at z0 = 0.

The motivation for formulation (2) is as follows. As a proxy for the likelihood of an image x ∈ Rn,
we will use the likelihood of its latent representation z = G−1(x). Because the invertible network G
was trained to map a standard normal in Rn to a distribution over images, the log-likelihood of a point
z is proportional to ‖z‖2. Instead of penalizing ‖z‖2, we alternatively penalize the unsquared ‖z‖. In
Appendix B, we show comparable performance for both the squared and unsquared formulations.

In principle, our formulation has an inherent flaw: some high-likelihood latent representations z
correspond to low-likelihood images x. Mathematically, this comes from the Jacobian term that relates
the likelihood in z to the likelihood in x upon application of the map G. For multimodel distributions,
such images must exist, which we will illustrate in the discussion. This proxy formulation relies on the
fact that the set of such images has low probability and that they are inconsistent with enough provided
measurements. Surprisingly, despite this potential weakness, we will observe image reconstructions
that are superior to BM3D and GAN-based methods at denoising, and superior to GAN-based and
Lasso-based methods at compressive sensing.

In the case of compressive sensing and inpainting, we take γ = 0 in formulation (2). The motivation
for such a formulation initialized at z0 = 0 is as follows. There is a manifold of images that are
consistent with the provided measurements. We want to find the image x of highest likelihood on
this manifold. Our proxy turns the likelihood maximization task over an affine space in x into the
geometric task of finding the point on a manifold in z-space that is closest to the origin with respect
to the Euclidean norm. In order to approximate that point, we run a gradient descent in z down the
data misfit term starting at z0 = 0.

In the case of GAN priors for G : Rk → Rn, we will use the formulation from Bora et al. (2017),
which is the formulation above in the case where the optimization is performed over Rk, γ = 0, and
initialization is selected randomly.

All the experiments that follow will be for an invertible model we trained on the CelebA dataset
of celebrity faces, as in Kingma and Dhariwal (2018). Similar results for models trained on birds
and flowers (Wah et al., 2011; Nilsback and Zisserman, 2008) can be found in the appendix. Due to
computational considerations, we run experiments on 64 × 64 color images with the pixel values
scaled between [0, 1]. The train and test sets contain a total of 27,000 and 3,000 images, respectively.
We trained a Glow architecture (Kingma and Dhariwal, 2018); see Appendix A for details. Once
trained, the Glow prior is fixed for use in each of the inverse problems below. We also trained a
DCGAN for the same dataset. We solve (2) using LBFGS, which was found to outperform Adam
(Kingma and Ba, 2014). DCGAN results are reported for an average of 3 runs because we observed
some variance due to random initialization.
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3 APPLICATIONS

3.1 DENOISING

We consider the denoising problem with A = I and η ∼ N (0, σ2I), for images x in the CelebA test
dataset. We evaluate the performance of a Glow prior, a DCGAN prior, and BM3D for two different
noise levels. Figure 2 shows the recovered PSNR values as a function of γ for denoising by the
Glow and DCGAN priors, along with the PSNR by BM3D. The figure shows that the performance of
the regularized Glow prior increases with γ, and then decreases. If γ is too low, then the network
fits to the noise in the image. If γ is too high, then data fit is not enforced strongly enough. The
left panel reveals that an appropriately regularized Glow prior can outperform BM3D by almost 2
dB. The experiments also reveal that appropriately regularized Glow priors outperform the DCGAN
prior, which suffers from representation error and is not aided by the regularization. The right panel
confirms that with smaller noise levels, less regularization is needed for optimal performance. A
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Figure 2: Recovered PSNR values as a function of γ for denoising by the Glow and DCGAN priors.
All the results are averaged over 12 test set images. For reference, we show the average PSNRs of the
original noisy images, after applyig BM3D, and under the Glow prior in the noiseless case (σ = 0).

visual comparison of the recoveries at the noise level σ = 0.1 using Glow, DCGAN priors, and
BM3D can be seen in Figure 3. Note that the recoveries with Glow are sharper than BM3D. See
Appendix B for more quantitative and qualitative results.
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Figure 3: Denoising results using the Glow prior, the DCGAN prior, and BM3D at noise level
σ = 0.1. Note that the Glow prior gives a sharper image than BM3D.

3.2 COMPRESSED SENSING

In compressed sensing, one is given undersampled linear measurements of an image, and the goal
is to recover the image from those measurements. In our notation, A ∈ Rm×n with m < n. As the
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image x is undersampled, there is an affine space of images consistent with the measurements, and an
algorithm must select which is most ‘natural.’ A common proxy for naturalness in the literature has
been sparsity with respect to the DCT or wavelet bases. With a GAN prior, an image is considered
natural if it lies in or near the range of the GAN. For an invertible prior under our proxy for likelihood,
we consider an image to be natural if it has a latent representation of small norm.

We study compressed sensing in the case that A is an m× n matrix of i.i.d. N (0, 1/m) entries, and
x is an image from the CelebA test set. Here, n = 64× 64× 3 = 12288. We consider the case where
η is standard iid Gaussian random noise normalized such that

√
E‖η‖2 = 0.1. We compare Glow,

DCGAN, and Lasso1 with respect to the DCT and wavelet bases.

Our main result is that the Glow prior with γ = 0 and initialization z0 = 0 outperforms both DCGAN
and Lasso in reconstruction quality over all undersampling ratios, as shown in the left panel of Figure
4. Surprisingly, in the case of extreme undersampling, Glow substantially outperforms these methods
even though it does not maintain a direct low-dimensional parameterization of the signal manifold.
The Glow prior (1) can result in 15 dB higher PSNRs than DCGAN, and (2) can give comparable
recovery errors with 2-3x fewer measurements at high undersampling ratios. This difference is
explained by the representation error of DCGAN. Additional plots and visual comparisons, available
in Appendix C, show notable improvements in quality of in- and out-of-distribution images using an
invertible prior relative to DCGAN and Lasso.
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Figure 4: The left panel shows recovered PSNRs averaged over 12 test set images under the Glow,
and DCGAN prior with γ = 0; and the Lasso with respect to the DCT and a Wavelet Transform.
We initialize with z0 = 0. See Appendix C for a zoom-in of the case of small m. The right panel
shows the resulting PSNR when m = 5000 with a Glow prior after different initialization strategies,
as described in the text. The highest PSNR was recovered with initialization z0 = 0 and γ = 0.

We conducted several additional experiments to understand the regularizing effects of γ and the
initialization z0. The right panel of Figure 4 shows the PSNRs under multiple initialization strategies:
z0 = 0, z0 ∼ N (0, 0.12I), z0 ∼ N (0, 0.72I), z0 = G−1(x0) with x0 given by the solution to Lasso
with respect to the wavelet basis, and z0 = G−1(x0) where x0 is x perturbed by a random point in the
null space of A. The best performance was observed with initialization z0 = 0. The hyperparameter
γ can be taken to be zero, which is surprising because then there is no direct penalization of likelihood
for this noisy compressive sensing problem. In the case of γ = 0, we observe that larger initializations
result in recovered images of lower PSNR. See Appendix C for additional experiments that show
this effect. We observe that initialization strategy can have a strong qualitative effect on the recovery
formulation. For example, if the optimization is initialized by the solution to the Lasso, then directly
penalizing the likelihood of z can improve reconstruction PSNR, though those reconstruction are
still worse than with initialization z0 = 0 and γ = 0. Suboptimal initialization procedures apparently
benefit from direct penalization of likelihood, whereas the z0 = 0 initialization apparently does not.

Finally, we observe that the Glow prior is much more robust to out-of-distribution examples than
the GAN Prior. Figure 5 shows recovered images using (2) for compressive sensing for images not
belonging to the CelebA dataset. DCGAN’s performance reveals biases of the underlying dataset and
limitations of low-dimensional modeling. For example, projecting onto the CelebA-trained DCGAN
can cause incorrect skin tone, gender, and age. It’s performance on out-of-distribution images is poor.
In contrast, the Glow prior mitigates this bias, even demonstrating image recovery for natural images

1The inverse problems with Lasso were solved by minz ‖AΦz − y‖22 + 0.01‖z‖1 using coordinate descent.
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that are not representative of the CelebA training set, including people who are older, have darker
skin tones, wear glasses, have a beard, or have unusual makeup. The Glow prior’s performance also
extends to significantly out-of-distribution images, such as animated characters and natural images
unrelated to faces. See Appendix C.2 for additional experiments.
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Figure 5: Compressed sensing (CS) with a number m = 2, 500 (≈ 20%) of measurements of out-
of-distribution images. Visual comparisons: CS under the Glow prior, DCGAN prior, Lasso-WVT,
and Lasso-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of the penalization

parameter γ to yield the best performance. We use γ = 0 for both DCGAN and Glow priors and
γ = 0.01 for Lasso-WVT, and Lasso-DCT, respectively.

3.3 INPAINTING

In inpainting, one is given a masked image of the form y =M � x, where M is a masking matrix
with binary entries and x ∈ Rn is an n-pixel image. The goal is to find x. We could rewrite (2) with
γ = 0 as

min
z∈Rn

‖y −M �G(z)‖2
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Figure 6: Inpainting: Recoveries under
DCGAN and Glow, both with γ = 0.

There is an affine space of images consistent with the mea-
surements, and an algorithm must select which is most nat-
ural. As before, using the minimizer ẑ, the estimated image
is given by G(ẑ). Our experiments reveal the same story as
for compressed sensing. If initialized at z0 = 0, then the
empirical risk formulation with γ = 0 exhibits high PSNRs
on test images. Algorithmic regularization is again occurring
due to initialization. In contrast, DCGAN is limited by its
representation error. See Figure 6, and Appendix D for more
results, including visually reasonable face inpainting, even
for out-of-distribution human faces.

4 DISCUSSION

We have demonstrated that pretrained generative invertible
models can be used as natural signal priors in imaging in-
verse problems. Their strength is that every desired image is in the range of an invertible model,
and the challenge that they overcome is that every undesired image is also in the range of the model
and no explicit low-dimensional representation is kept. We study a regularization for empirical loss
minimization that promotes recovery of images that have a high value of a proxy for image likelihood
under the generative model. We demonstrate that this formulation can quantitatively and qualitatively
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outperform BM3D at denoising. Additionally, it has lower recovery errors than Lasso across all levels
of undersampling, and it can get comparable errors from 10-20x fewer measurements, which is a
2x reduction from Bora et al. (2017). The superior recovery performance of the invertible prior at
very extreme undersampling ratios is particularly surprising given that invertible nets do not maintain
explicit low dimensional representations, as GANs do. Additionally, our trained invertible model
yields significantly better reconstructions than Lasso even on out-of-distribution images, including
images with rare features of variation, and on unrelated natural images.

The idea of analyzing inverse problems with invertible neural networks has appeared in Ardizzone
et al. (2018). The authors study estimation of the complete posterior parameter distribution under
a forward process, conditioned on observed measurements. Specifically, the authors approximate
a particular forward process by training an invertible neural network. The inverse map is then
directly available. In order to cope with information loss, the authors augment the measurements
with additional variables. This work differs from ours because it involves training a separate net for
every particular inverse problem. In contrast, our work studies how to use a pretrained invertible
generator for a variety of inverse problems not known at training time. Training invertible networks
is challenging and computationally expensive; hence, it is desirable to separate the training of
off-the-shelf invertible models from potential applications in a variety of scientific domains.

Why optimize a proxy for image likelihood instead of optimizing image likelihood directly?

As noted in Section 2, the immediate formulation one would write down for inverse problems under
an invertible prior is to optimize a data misfit term together with an image log-likelihood term.
Unfortunately, we found it difficult to get this optimization to converge in practice. The likelihood
term can exhibit rapid variation due to the Jacobian of the transformation z 7→ x = G(z); additionally
the likelihood term may in principle even contain local minima or other geometric properties that
make gradient descent difficult. Figure 7 compares the loss landscapes in x and z, illustrating that the
learned likelihood function in x may lead to difficulty in choosing appropriate step sizes for gradient
descent algorithms.

(a) ‖y−Ax‖2 − 200 log pG(x) (b) − log pG(x) (c) ‖y −AG(z)‖2 + 50‖z‖

Figure 7: Landscapes of (a) the loss surface in x-space, (b) just the image likelihood in x-space, and
(c) the loss surface in z-space, as functions of two random directions in either x or z, as appropriate.

In contrast, there are nice geometric properties that appear in latent space from an invertible model.
As an illustration, consider the compressive sensing problem with noiseless measurements. Here,
the formulation corresponds to a gradient descent down the data misfit term ‖AG(z)− y‖2 starting
at z0 = 0. The geometry of the sublevel sets of the data misfit term have a favorable geometry
for optimization: that are the inverse image of cylinders in x-space. Consequently, because of the
invertibility and smoothness of G, the sublevel sets of the misfit term in z all have a single connected
component, which is a favorable condition for the success of gradient descent. This property holds
even for G for which the likelihood function in x has local minima. There may be additional benefits
due to optimizing in z because the invertible net learns representations that permit interpolation
between images and semantically meaningful arithmetic, as reported in Kingma and Dhariwal (2018).

Why is the likelihood of an image’s latent representation a reasonable proxy for the image’s likelihood?

The training process for an invertible generative model attempts to learn a target distribution in
images space by directly maximizing the likelihood of provided samples from that distribution, given
a standard Gaussian prior in latent space. High probability regions in latent space map to regions
in image space of equal probability. Hence, broadly speaking, regions of small values of ‖z‖ are
expected to map to regions of large likelihoods in image space. There will be exceptions to this
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Figure 8: An invertible net was trained on the data points in x-space (left), resulting in the given plots
of latent z-likelihood versus x (middle), and x-likelihood versus latent representation z (right).

property. For example, natural image distributions have a multimodal character. The preimage of high
probability modes in image space will correspond to high likelihood regions in latent space. Because
the generator G is invertible and continuous, interpolation in latent space of these modes will provide
images of high likelihood in z but low likelihood in the target distribution. To illustrate this point, we
trained a Real-NVP (Dinh et al., 2016) invertible neural network on the two dimensional set of points
depicted in Figure 8 (left panel). The middle and right panels show that high likelihood regions in
latent space generally correspond to higher likelihood regions in image space, but that there are some
regions of high likelihood in latent space that map to points of low likelihood in image space and
in the target distribution. We see that the spurious regions are of low total probability and would be
unlikely to be the desired outcomes of an inverse problem arising from the target distribution.

How can solving compressive inverse problems be successful without direct penalization of the proxy
image likelihood?

If there are fewer linear measurements than the dimensionality of the desired signal, an affine space
of images is consistent with the measurements. In our formulation, regularization does not occur
by direct penalization of our proxy for image likelihood; instead, it occurs implicitly by performing
the optimization in z-space with an initialization of z0 = 0. The set of latent representations z
that are consistent with the compressive measurements define a m-dimensional nonlinear manifold.
As per the likelihood proxy mentioned above, the spirit of our formulation is to find the point on
this manifold that is closest to the origin with respect to the Euclidean norm. Our specific way of
estimating this point is to perform a gradient descent down a data misfit term in z-space, starting at the
origin. While a gradient flow typically will not find the closest point on the manifold, it empirically
finds a reasonable approximation of that point. In practice, one could further do a local search to
refine the output of this gradient flow, but we elect not to do so for the sake of simplicity.

Why does the invertible prior do so well, especially on out-of-distribution images?

One reason that the invertible prior performs so well is because it has no representation error. The
lack of representation error of invertible nets presents a significant opportunity for imaging with
a learned prior. Any image is potentially recoverable, even if the image is significantly outside of
the training distribution. In contrast, methods based on projecting onto an explicit low-dimensional
representation of a natural signal manifold will have representation error, perhaps due to modeling
assumptions, mode collapse, or bias in a training set. Such methods will see performance prematurely
saturate as the number of measurements increases. In contrast, an invertible prior would not see
performance saturate. In the extreme case of having a full set of exact measurements, an invertible
prior could in principle recover any image exactly.

It is natural to wonder which images can be effectively recovered using an invertible prior trained
on a particular signal class. As expected, we see the best reconstruction errors on in-distribution
images and performance degrades as images get further out-of-distribution. Nonetheless, we observe
that reconstruction errors of unrelated natural images are still of higher quality than with the Lasso.
It appears that the invertible generator learns some general attributes of natural images. This leads
to several questions: when a generative invertible net is trained, how far out-of-distribution can an
image be while maintaining a high likelihood? How do invertible nets learn useful statistics of natural
images? Is that due primarily to training, or is there architectural bias toward natural images, as with
the Deep Image Prior and Deep Decoder (Ulyanov et al., 2018; Heckel and Hand, 2018)?
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The results of this paper provide further evidence that reducing representational error of generators
can significantly enhance the performance of generative models for inverse problems in imaging. This
idea was also recently explored in Athar et al. (2018), where the authors trained a GAN-like prior
with a high-dimensional latent space. The high dimensionality of this space lowers representational
error, though it is not zero. In their work, the high-dimensional latent space had a structure that was
difficult to directly optimize, so the authors successfully modeled latent representations as the output
of an untrained convolutional neural network whose parameters are estimated at test time. Their paper
and ours raises several questions: Which generator architectures provide a good balance between low
representation error, ease of training, and ease of inversion? Should a generative model be capable of
producing all images in order to perform well on out-of-distribution images of interest? Are there
cheaper architectures that perform comparably? These questions are quite important, as solving
equation 2 in our 64×64 pixel color images experiments took 15 GPU-minutes. New developments
are needed on architectures and frameworks in between low-dimensional generative priors and fully
invertible generative priors. Such methods could leverage the strengths of invertible models while
being much cheaper to train and use.
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A EXPERIMENTAL SETUP

Simulations were completed mainly on CelebA-HQ dataset, used in Kingma and Dhariwal (2018); it
has 30,000 color images that were resized to 64× 64 for computational reasons, and were split into
27,000 training and 3000 test images. We also provide some additional experiments on the Flowers
Nilsback and Zisserman (2008), and Birds Wah et al. (2011) datasets. Flowers dataset contains 8189
color images resized to 64×64 out of which 500 images are spared for testing. Birds dataset contains
a total of 11,788 images, which were center aligned and resized to 64× 64 out of which 5794 images
are set aside for testing.

We specifically model our invertible networks after the recently proposed Glow Kingma and Dhariwal
(2018) architecture, which consists of a multiple flow steps. Each flow step comprises of an activation
normalization layer, a 1 × 1 convolutional layer, and an affine coupling layer, each of which is
invertible. Let K be the number of steps of flow before a splitting layer, and L be the number of times
the splitting is performed. To train over CelebA, we choose the network to have K = 48, L = 4 and
affine coupling, and train it with a learning rate 0.0001, and a batch size 6 at resolution 64× 64× 3.
The model was trained over 5−bit images with 10,000 warmup iterations as in Kingma and Dhariwal
(2018), but when solving inverse problems using Glow original 8−bit images were used. We refer
the reader to Kingma and Dhariwal (2018) for specific details on the operations performed in each of
the network layer.

We use LBFGS to solve the inverse problem. For best performance, we set the number of iterations
and learning rate for denoising, compressed sensing, and inpainting to be 20, 1; 30, 0.1; and 20, 1;
respectively. we use Pytorch to implement Glow network training and solve the inverse problem.
Glow training was conducted on a single Titan Xp GPU using a maximum allowable (under given
computational constraints) batch size of 6. In case of CS, recovering a single image on Titan Xp
using LBFGS solver with 30 steps takes 889.125 seconds (14.82 minutes). However, we can solve 6
inverse problems in parallel on the given hardware platform.

Unless specified otherwise, inverse problem under Glow prior is always initialized with z0 = 0.
Whereas under DCGAN prior, we initialize with z0 ∼ N (0, 0.12I) and report average over three
random restarts. In all the quantitative experiments over, the reported quality metrics such as PSNR,
and reconstruction errors are averaged over 12 randomly drawn test set images.

Figure 9: Samples from training set of CelebA downsampled to 64× 64× 3.

B DENOISING: ADDITIONAL EXPERIMENTS

We present additional quantitative experiments on image denoising here. Complete set of experiments
on average PSNR over 12 CelebA (within distribution2) test set images versus penalization parameter
γ under noise levels σ = 0.01, 0.05, 0.1, and 0.2 are presented in Figure 10 below. The central
message is that Glow prior outperforms DCGAN prior uniformly across all γ due to the representation
limit of DCGAN. In addition, striking the right balance between the misfit term and the penalization
term by appropriately choosing γ improves the performance of Glow, and it also approaches state-
of-the-art BM3D algorithm at low noise levels, and clearly visible in higher noise, for example, at a
noise level of σ = 0.2, the Glow prior improves upon BM3D by 2dB. Visually the results of Glow
prior are clearly even superior to BM3D recoveries that are generally blurry and over smoothed as
can be spotted in the qualitative results below. To avoid fitting the noisy image using the Glow model,
we force the recoveries to be natural by choosing large enough γ.

2The redundant ’within distribution’ phrase is added to emphasize that the test set images are drawn from
the same distribution as the train set. We do this to avoid confusion with the out-of-distribution recoveries also
presented in this paper.
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Figure 10: Image Denoising — Recovered PSNR values as a function of γ under Glow prior, and
DCGAN prior on (within-distribution) test set CelebA images. For reference, we show the average
PSNRs of the original noisy images, and under the Glow prior in the noiseless case (σ = 0) in both
panels. The average PSNR after applying BM3D, and the average PSNR under the Glow prior at
noise levels σ = 0.01, 0.05, 0.10, 0.20 are reported.

Recall that we are solving a regularized empirical risk minimization program

argmin
z∈Domain(G)

‖y −AG(z)‖2 + γ‖z‖.

In general, one can instead solve argmin
z∈Domain(G)

‖y−AG(z)‖2+H(‖z‖), whereH(·) is a monotonically

increasing function. Figure 11 shows the comparison of most common choices of linear (already
used in the rest of the paper), and quadratic H in the context of densoing. We find that the highest
achievable PSNR remains the same in both the cases, however, the penalization parameter γ has to
be adjusted accordingly.

We train Glow and DCGAN on CelebA. Additional qualitative image denosing results under higher
noise level σ = 0.1 and 0.2 comparing Glow prior against DCGAN prior, and BM3D are presented
below in Figure 12, and 13.

We also trained Glow model on Flowers dataset. Below we present its qualitative denoising perfor-
mance against BM3D on the test set Flowers images. We also show the effect of varying γ — smaller
γ leads to overfitting and vice versa.
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Figure 11: Image Denoising — Recovered PSNR values as a function of γ under Glow prior with
‖z‖ and ‖z‖2 penalization on (within-distribution) test set CelebA images. Comparison is provided
with BM3D denoising at noise level σ = 0.1
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Figure 12: Image Denoising — Visual comparisons under the Glow prior, the DCGAN prior, and
BM3D at a noise level σ = 0.1 on CelebA (within-distribution) test set images. Under DCGAN prior,
we only show the case of γ = 0 as this consistently gave the best performance for DCGAN. Under
Glow prior, the best performance over is achieved with γ = 1, overfitting of the image occurs with
γ = 0 and underfitting occurs at γ = 5. Note that the Glow prior with γ = 1 also gives a sharper
image than BM3D.
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Figure 13: Image Denoising — Visual comparisons under the Glow prior, the DCGAN prior, and
BM3D at noise level σ = 0.2 on CelebA (within-distribution) test set images. Under DCGAN prior,
we only show the case of γ = 0 as this consistently gives the best performance. Under Glow prior,
the best performance is achieved with γ = 2.5, overfitting of the image occurs with γ = 0 and
underfitting occurs with γ = 5. Note that the Glow prior with γ = 2.5 also gives a sharper image
than BM3D.
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Figure 14: Image Denoising — Visual comparisons under the Glow prior, and BM3D at noise level
σ = 0.1 on (within-distribution) test set Flowers images. Under Glow prior, the best performance is
obtained with γ = 1. Note that the Glow prior with γ = 1 also gives a sharper image than BM3D.
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C COMPRESSED SENISNG: ADDITIONAL EXPERIMENTS

Some additional quantitative image recovery results on test set of CelebA dataset are presented in
Figure 15; it depicts the comparison of Glow prior, DCGAN prior, LASSO-DCT, and LASSO-WVT
at compressed sensing. We plot the reconstruction error : = 1

n‖x − x̂‖22, where x̂ is the recovered
image and n = 12288 is the number of pixels in the 64× 64× 3 CelebA images. Glow uniformly
outperforms DCGAN, and LASSO across entire range of the number of measuremnts. LASSO-
DCT and LASSO-WVT eventually catch up to Glow but only when observed measurements are a
significant fraction of the total number of pixels. On the other hand, DCGAN is initially better than
LASSO but prematurely saturates due to limited representation capacity.
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Figure 15: Compressed sensing — Reconstruction error vs. number of measurements under Glow
prior, DCGAN prior, LASSO-DCT and LASSO-WVT on CelebA (within-distribution) test set
images. Noise η is scaled such that E‖η‖2 = 0.01 and the penalization parameter γ = 0 for Glow,
and DCGAN; and γ = 0.01 for LASSO-DCT, and LASSO-WVT.
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Figure 16: Compressed sensing — Zoomed-in version of the left panel of Figure 4 in the main paper
in the low measurement regime for CelebA. PSNR vs. number of measurements under Glow prior,
DCGAN prior, LASSO-DCT and LASSO-WVT on the CelebA (within distribution) test set images.
Noise η is scaled such that

√
E‖η‖2 = 0.1 and the penalization parameter γ = 0 for Glow and

DCGAN; and γ = 0.01 for LASSO-DCT, and LASSO-WVT.
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Figure 17: Compressed sensing under Glow prior. Performance comparison between LBFGS and
Adam solver for the inverse problem. For Adam solver, 2000 gradient steps were taken with learning
rate chosen to be 0.01. The rest of the parameters were fixed to be the same as with LBFGS.
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Figure 18: Residual error vs. number of iterations. Left panel compares DCGAN and Glow priors.
Both converge roughly at the same rate to their respective saturation levels. The right panel compares
LBFGS and Adam solvers for compressed sensing under Glow prior. LBFGS tends to converge far
more quickly than Adam. We choose γ = 0 in both the experiments.
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Surprisingly, we observe that no explicit penalization of likelihood is necessary for compressive
sensing with an invertible generative prior under formulation equation 2. That is, we can take γ = 0
when the optimization is initialized at z0 = 0. This indicates that algorithmic regularization is
occurring and that initialization plays a role.We performed some additional experiments to study the
role of initialization. The left panel in Figure 19 shows that as the norm of the latent initialization
increases, the norm of the recovered latent representation increases and the PSNR of the recovered
image decreases. Moreover, the right panel in Figure 19 shows the norm of the estimated latent
representation at each iteration of the optimization. In all our experiments, it monotonically grows
versus iteration number. These experiments provide further evidence that smaller latent initializations
lead to outputs that are more natural and have smaller latent representations.
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Figure 19: The left panel shows the average PSNR over 12 test set images and norm of the optimizer
ẑ as a function of the norm of the initialization for the LBFGS solver to equation 2 for Compressed
sensing under Glow prior with γ = 0. The initialization z0 was chosen randomly and rescaled to the
desired norm. The right panel shows the norm of the estimated latent representation as a function of
iteration number for multiple initializations. The Adam solver behaves similarly.

Recall that the natural face images correspond to smaller z0. In Figure 20, we plot the norm of the
latent codes of the iterates of each algorithm vs. the number of iterations. The central message is that
initializing with smaller norm z0 tends to yield natural (smaller latent representations) recoveries.
This is one explanation as to why in compressed sensing, one is able to obtain the true solution out of
the affine space of solutions without penalizing the unnaturalness of the recoveries.
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Figure 20: Compressed sensing — Norm of the latent codes with iterations. Left panel shows
how the norm of the latent codes evolves over iterations of the LBFGS solver under different size
initializations. Right panel shows the same experiment for the Adam solver (although over much
larger number of iterations as Adam requires comparatively more iterations to converge). Each point
is averaged over 12 test set images under random rescaled initializations z0. We set the penalization
parameter γ = 0 in both experiments.
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We now present visual recovery results on test images from the CelebA dataset under varying number
of measurements in compressed sesing. We compare recoveries under Glow prior, DCGAN prior,
LASSO-DCT, and LASSO-WVT.
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Figure 21: Compressed sensing visual comparisons — Recoveries on (within-distribution) test set
images with a number m = 200 (≈ 1.5%) of measurements under the Glow prior, the DCGAN prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for both DCGAN, and Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 22: Compressed sensing visual comparisons — Recoveries on the (within-distribution) test set
images with a number m = 300 (≈ 2%) of measurements under the Glow prior, the DCGAN prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for both DCGAN, and Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 23: Compressed sensing visual comparisons — Recoveries on (within-distribution) test set
images with a number m = 400 (≈ 3%) of measurements under the Glow prior, the DCGAN prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for both DCGAN, and Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 24: Compressed sensing visual comparisons — Recoveries on (within-distribution) test set
images with a number m = 500 (≈ 4%) of measurements under the Glow prior, the DCGAN prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for both DCGAN, and Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 25: Compressed sensing visual comparisons — Recoveries on (within-distribution) test set
images with a number m = 750 (≈ 6%) of measurements under the Glow prior, the DCGAN prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for both DCGAN, and Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 26: Compressed sensing visual comparisons — Recoveries on (within-distribution) test set
images with a number m = 1000 (≈ 8%) of measurements under the Glow prior, the DCGAN prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for both DCGAN, and Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 27: Compressed sensing visual comparisons — Recoveries on (within-distribution) test set
images with a number m = 2500 (≈ 20%) of measurements under the Glow prior, the DCGAN prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for both DCGAN, and Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 28: Compressed sensing visual comparisons — Recoveries on (within-distribution) test set
images with a number m = 5000 (≈ 41%) of measurements under the Glow prior, the DCGAN prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for both DCGAN, and Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 29: Compressed sensing visual comparisons — Recoveries on (within-distribution) test set
images with a number m = 7500 (≈ 61%) of measurements under the Glow prior, the DCGAN prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for both DCGAN, and Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 30: Compressed sensing visual comparisons — Recoveries on (within-distribution) test set
images with a number m = 10, 000 (≈ 81%) of measurements under the Glow prior, the DCGAN
prior, LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose

values of the penalization parameter γ to yield the best performance among the tested values. We
use γ = 0 for both DCGAN, and Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT,
respectively.
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C.1 COMPRESSED SENSING ON FLOWER AND BIRD DATASET

We also performed compressed sensing experiments similar to those on CelebA dataset above on
Birds dataset, and Flowers dataset. We trained a Glow invertible network for each dataset, and present
below the quantitative and qualitative recoveries for each dataset.

0 2000 4000 6000 8000 10000 12000
no. of measurements (m)

10

15

20

25

30

35

P
S
N

R

GLOW

LASSO-DCT

LASSO-WVT

0 2000 4000 6000 8000 10000 12000
no. of measurements (m)

10

15

20

25

30

35

P
S
N

R

GLOW

LASSO-DCT

LASSO-WVT

Figure 31: PSNR vs. number of measurements m in compressed sensing under Glow prior, LASSO-
DCT and LASSO-WVT on Birds dataset (left panel) and Flowers dataset (right panel). Noise η is
scaled such that

√
E‖η‖2 = 0.1 and the penalization parameter γ = 0 for Glow, and γ = 0.01 for

LASSO-DCT, and LASSO-WVT.
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Figure 32: Compressed sensing — Visual comparisons on (within-distribution) test set images from
Birds and Flowers dataset with a number m = 200 (≈ 1.5%) of measurements under the Glow prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 33: Compressed sensing — Visual comparisons on (within-distribution) test set images from
Birds and Flowers dataset with a number m = 300 (≈ 2%) of measurements under the Glow prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 34: Compressed sensing — Visual comparisons on (within-distribution) test set images from
Birds and Flowers dataset with a number m = 400 (≈ 3%) of measurements under the Glow prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 35: Compressed sensing — Visual comparisons on (within-distribution) test set images from
Birds and Flowers dataset with a number m = 500 (≈ 4%) of measurements under the Glow prior,
LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of

the penalization parameter γ to yield the best performance among the tested values. We use γ = 0
for Glow prior and γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 36: Compressed sensing — Visual comparisons on the test set images from Birds and Flowers
dataset with a number m = 750 (≈ 6%) of measurements under the Glow prior, LASSO-WVT, and
LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of the penalization

parameter γ to yield the best performance among the tested values. We use γ = 0 for Glow prior and
γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 37: Compressed sensing — Visual comparisons on the test set images from Birds and Flowers
dataset with a number m = 1, 000 (≈ 8%) of measurements under the Glow prior, LASSO-WVT,
and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of the penalization

parameter γ to yield the best performance among the tested values. We use γ = 0 for Glow prior and
γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 38: Compressed sensing — Visual comparisons on the test set images from Birds and Flowers
dataset with a number m = 2, 500 (≈ 20%) of measurements under the Glow prior, LASSO-WVT,
and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of the penalization

parameter γ to yield the best performance among the tested values. We use γ = 0 for Glow prior and
γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 39: Compressed sensing — Visual comparisons on the test set images from Birds and Flowers
dataset with a number m = 5, 000 (≈ 41%) of measurements under the Glow prior, LASSO-WVT,
and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of the penalization

parameter γ to yield the best performance among the tested values. We use γ = 0 for Glow prior and
γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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Figure 40: Visual comparisons of compressed sensing of the test set images from Birds and Flowers
dataset with a number m = 7, 500 (≈ 61%) of measurements under the Glow prior, LASSO-WVT,
and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of the penalization

parameter γ to yield the best performance among the tested values. We use γ = 0 for Glow prior and
γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.

Tr
ut

h
D

C
T

W
V

T
G

L
O

W

Figure 41: Visual comparisons of compressed sensing of the test set images from Birds and Flowers
dataset with a number m = 10, 000 (≈ 81%) of measurements under the Glow prior, LASSO-WVT,
and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose values of the penalization

parameter γ to yield the best performance among the tested values. We use γ = 0 for Glow prior and
γ = 0.01 for LASSO-WVT, and LASSO-DCT, respectively.
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C.2 COMPRESSED SENSING ON OUT OF DISTRIBUTION IMAGES

Lack of representation error in invertible nets leads us to an important and interesting question: does
the trained network fit related natural images that are underrepresented or even unrepresented in the
training dataset? Specifically, can a Glow network trained on CelebA faces be a good prior on other
faces; for example, those with dark-skin tone, faces with glasses or facial hair, or even animated
faces? In general, our experiments show that Glow prior has an excellent performance on such
out-of-distribution images that are semantically similar to celebrity faces but not representative of the
CelebA dataset. In particular, we have been able to recover faces of darker skin tone, older people
with beards, eastern women, men with hats, and animated characters such as Shrek, from compressed
measurements under the Glow prior. Recoveries under the Glow prior convincingly beat the DCGAN
prior, which shows a definite bias due to training. Not only that, the Glow prior also outperforms
unbiased methods such as LASSO-DCT, and LASSO-WVT.

Can we expect the Glow prior to continue to be an effective proxy for arbitrarily out-of-distribution
images? To answer this question, we tested arbitrary natural images such as car, house door, and
butterfly wings that are semantically unrelated to CelebA images. In general, we found that Glow is
an effective prior at compressed sensing of out-of-distribution natural images, which are assigned a
high likelihood score (small normed latent representations). On these images, Glow also outperforms
LASSO.

Recoveries of natural images that are assigned very low-likelihood scores by the Glow model generally
run into instability issues. During training, invertible nets learn to assign high likelihood scores
to the training images. All the network parameters such as scaling in the coupling layers of Glow
network are learned to behave stably with such high likelihood representations. However, on very
low-likelihood representations, unseen during the training process, the networks becomes unstable
and outputs of network begin to diverge to very large values; this may be due to several reasons,
such as normalization (scaling) layers not being tuned to the unseen representations. An LBFGS
search for the solution of an inverse problem to recover a low-likelihood image leads the iterates into
neighborhoods of low-likelihood representations that may lead the network to instability.

We find that Glow network has the tendency to assign higher likelihood scores to arbitrarily out-
of-distribution natural images. This means that invertible networks have at least partially learned
something more general about natural images from CelebA dataset — may be some high level features
that face images share with other natural images such as smooth regions followed by discontinuities,
etc. This allows Glow prior to extend its effectiveness as a prior to other natural images beyond just
the training set.

Figure 42, 43 , 44, 45, and 46 compare the performance of LASSO-DCT, LASSO-WVT, DCGAN
prior, and Glow prior on the compressed sensing of out-of-distribution images under varying number
of measurements.
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Figure 42: Compressed sensing (m = 1000 ≈ 8% of n) visual comparisons on out-of-distribution
images. We compare the recoveries under Glow (trained on CelebA) prior, DCGAN (trained on
CelebA) prior, LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case,

we choose values of the penalization parameter γ to yield the best performance. We use γ = 0
for both DCGAN, and Glow prior and and optimize γ for each recovery using LASSO-WVT, and
LASSO-DCT.
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Figure 43: Compressed sensing (m = 2500 ≈ 20% of n) visual comparisons on out-of-distribution
images. We compare the recoveries under Glow (trained on CelebA) prior, DCGAN (trained on
CelebA) prior, LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case,

we choose values of the penalization parameter γ to yield the best performance. We use γ = 0
for both DCGAN, and Glow prior and and optimize γ for each recovery using LASSO-WVT, and
LASSO-DCT.
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Figure 44: Compressed sensing (m = 5000 ≈ 41% of n) visual comparisons on out-of-distribution
images. We compare the recoveries under Glow prior (trained on CelebA), DCGAN prior (trained on
CelebA), LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose

values of the penalization parameter γ to yield the best performance. We use γ = 0 for both DCGAN,
and Glow prior and and optimize γ for each recovery using LASSO-WVT, and LASSO-DCT.
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Figure 45: Compressed sensing (m = 7500 ≈ 61% of n) visual comparisons on out-of-distribution
images. We compare the recoveries under Glow prior (trained on CelebA), DCGAN prior (trained on
CelebA), LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose

values of the penalization parameter γ to yield the best performance. We use γ = 0 for both DCGAN,
and Glow prior and and optimize γ for each recovery using LASSO-WVT, and LASSO-DCT.
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Figure 46: Compressed sensing (m = 10, 000,≈ 81% of n) visual comparisons on out-of-distribution
images. We compare the recoveries under Glow prior (trained on CelebA), DCGAN prior (trained on
CelebA), LASSO-WVT, and LASSO-DCT at a noise level

√
E‖η‖2 = 0.1. In each case, we choose

values of the penalization parameter γ to yield the best performance. We use γ = 0 for both DCGAN,
and Glow prior and and optimize γ for each recovery using LASSO-WVT, and LASSO-DCT.
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D IMAGE INPAINITING

Our experiments with inpainting reveal a similar story as with compressed sensing. Compared to
DCGAN, the recovered PSNRs using Glow prior are much higher under appropriate γ as depicted
in the right panel in Figure 47. If improperly initialized, then performance for γ = 0 could be poor.
Even if improperly initialized, sufficiently large γ leads to higher PSNRs.

As with compressive sensing, if the initialization is from a small latent variable, then the empirical
risk formulation with γ = 0 exhibits high PSNRs. Algorithmic regularization is again occurring due
to the small latent variable initialization.
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Figure 47: Inpainiting: PSNR (averaged over 12 test images of CelebA) vs. penalization parameter γ
under Glow prior and DCGAN prior (left panel) and using different initializations under Glow prior
(right panel).

We present here qualitative results on image inpainting under the DCGAN prior, and the Glow prior
on the CelebA test set. Compared to DCGAN, the reconstructions from Glow are of noticeably higher
visual quality.
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Figure 48: Image inpainiting results on CelebA test set. Masked images are recovered under DCGAN
prior and Glow prior. Recoveries under DCGAN prior are skewed and blurred whereas Glow prior
leads to sharper and coherent inpainted images. For both Glow and DCGAN, we set γ = 0.

D.1 IMAGE INPAINTING ON OUT OF DISTRIBUTION IMAGES

We now perform image inpainiting under Glow prior, and DCGAN prior each trained on CelebA.
Figure 49 shows the visuals of out-of-distribution inpainiting. As before, DCGAN continues to
suffer due to representation limits and data bias while Glow achieves reasonable reconstructions on
out-of-distribution images semantically similar to CelebA faces. As one deviates to other natural
images such as houses, doors, and butterfly wings, the inpainting performance deteriorates. At
compressed sensing, Glow performed much better on such arbitrarily out-of-distribution images as
good recoveries there only require the network only to assign a higher likelihood score to the true
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image compared to the all the candidate static images given by the null space of the measurement
operator.
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Figure 49: Image inpainiting results on out-of-distribution images. Masked images are recovered
under DCGAN prior and Glow prior. Recoveries under DCGAN prior are skewed and blurred
whereas Glow prior leads to sharper and coherent inpainted images. For both Glow and DCGAN, we
set γ = 0.

E DISCUSSION

Figure 50 confirms the intuition brought up in the Discussion Section of the main paper that trained
Glow network assigns lower likelihoods (larger latent representations) to noisy images. Histograms
show that noisy images are generally occupy the less likelihood regimes or equivalently, the larger
norm latent representations.
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Figure 50: Histograms of the norm of the latent representation, z, over 3000 test images under
additive Gaussian noise with σ = 0.1 (left), σ = 0.05 (middle), and σ = 0.01 (right).
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Our experiments verify that natural images have smaller latent representations than unnatural images.
Here we also show that adding noise to natural images increases the norm of their latent representa-
tions, and that higher noise levels result in larger increases. Additionally we provide evidence that
random perturbations in image space induce larger changes in z than comparable natural perturbations
in image space. Figure 51 shows a plot of the norm of the change in image space, averaged over 100
test images, as a function of the size of a perturbation in latent space. Natural directions are given by
the interpolation between the latent representation of two test images. For the denoising problem,
this difference in sensitivity indicates that the optimization algorithm might obtain a larger decrease
in ‖z‖ by an image modification that reduces unnatural image components than by a correspondingly
large modification in a natural direction.

Figure 51: The magnitude of the change in image space as a function of the size of a perturbation in
latent space. Solid lines are the mean behavior and shaded region depicts 95% confidence interval.

F LOSS LANDSCAPE: DCGAN VS. GLOW

In Figure 52, we plot ‖y−AG(z∗+αδv + βδw)‖2 versus (α, β) where δv and δw are scaled to have
the same norm as z∗, the latent representation of a fixed test image. For DCGAN, we plot the loss
landscape versus two pairs of random directions. For Glow, we plot the loss landscape versus a pair
of random directions and a pair of directions that linearly interpolate in latent space between z∗ and
another test image.

(a) DCGAN random dir. (b) DCGAN random dir. (c) Glow random dir. (d) Glow interpolating dir.

Figure 52: Loss landscapes for ‖AG(z)− y‖22 + γ‖z‖2 with γ = 0 around the latent representation
of a fixed image and with respect to either random latent directions or latent directions that interpolate
between images.

G IMAGE AND LATENT SPACE FORMULATIONS

As mentioned in the main paper, a natural formulation of the inverse problem is

min
x∈Rn

‖Ax− y‖2 − γ log pG(x), (3)

where pG(x) is the target density. We instead formulate the inverse problem as

min
z∈Rn

‖AG(z)− y‖22 + γ‖z‖2; (4)

a measurement misfit combined with a Gaussian prior on the latent space.
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We will denote the target distribution by pG(x) and the latent Gaussian distribution by p(z). To
illustrate the differences between equation 3 and equation 4, we train a Real-NVP model Dinh et al.
(2016) on a synthetic two-dimensional dataset, visualize both the log pG(x) and log p(z) in latent
and image space, and solve a simple compressive sensing recovery problem. Our two dimensional
data points are generated by sampling the first coordinate x1 from a bimodel Gaussian distribution
and the second coordinate x2 from a uniform distribution as shown in Figure 53.
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Figure 53: A point cloud of the synthetically generated data x ∈ R2

For comparison, we plot the x-likelihood versus x (left), latent z-likelihood versus x (middle), and
x-likelihood versus z (right) in Figure 54. These plots illustrate that generally high-likelihood x
points are also given higher latent z-likelihood, however, some low x-likelihood might be assigned a
higher Gaussian z-likelihood; these are, for example, the points living on the darker contour spearing
through the Gaussian bowl in the right plot. Figure 55 shows some of the points in the x-likelihood
(left) that map to this contour in the z-space (right).
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Figure 54: x-likelihood versus x (left), z-likelihood versus x (middle), and x-likelihood versus z
(right).
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Figure 55: Some points (red-crosses) in x-space mapped to z-space. The (unwanted, as it corresponds
to low-likelihood points) bridge connecting the models of the learned bimodal distribution is mapped
to the contour in the z-space.

G.1 COMPRESSIVE SENSING IN 2D

To compare latent-space formulation equation 4 and data-space formulation equation 3, we construct
a simple compressive sensing recovery problem for this two-dimensional data and illustrate the
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difference under both good and bad initializations. Specifically, we want to recover a vector x =
[x1 x2]

T from a single linear measurement y = 〈a, x〉 = x2, where a = [0 1]T. Figure 56 shows the
gradient descent path, and final solution, while solving equation 4 (left column), and equation 3 (right
column) from a good and a bad initialization. x-likelihood formulation seems more robust to a bad
initialization in this case compared to z-likelihood as z-likelihood might not be a good proxy for
x-likelihood for some points. This bad case is carefully crafted to illustrate the difference between the
two formulations, however, in practice, it seems unlikely that a low x-likelihood points that somehow
achieves higher z-likelihood will also obey the measurement constraints.
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Figure 56: We show gradient descent path from the initialization to the final estimate along with true
solution. In the first row, we initialized from z = 0 (good initialization) and in the second row we
used low likelihood data points as intializations (bad initialization).

G.2 COMPRESSIVE SENSING FOR CELEBA

In case of CelebA images, we found that optimizing over direct likelihood of images proved very hard
to tune. To better understand why equation 4 is easier compared to equation 3, we draw the landscape
of the loss surfaces of equation 4 versus z and equation 3 versus x under different γ in two random
directions around an the ground truth in z, or x, as appropriate; see Figure 57. In the x-formulation
the loss surfaces (first row) have a sharp dip at the ground truths, which comes from − log pG(x)
term. We believe that sharp dip in the loss surface makes it difficult to tune the γ parameter, the
learning rate, and makes the optimization using equation 3 numerically more challenging as observed
in our experiments. On the other hand, the loss surfaces for equation 4 (second row) appear smoother.

We now show a quantitative comparison of the x-likelihood formulation in equation 3, and z-
likelihood formulation in equation 4 on compressive sensing for CelebA test images versus m for
fixed values of γ; see Figure 58. We initialize with z0 = 0, and x0 = G(z0), as appropriate. We
simply choose γ = 0 in equation 4. However, we need to choose γ more carefully in equation 3, and
different values of γ are appropriate across different undersampling ratios. Even if one ignores the
difficulty of choosing the hyperparameter γ, the formulation in equation 4 generally performs much
better than equation 3 as evident from the plots.
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γ = 50 γ = 100 γ = 200

Figure 57: Landscapes of the loss surfaces in the x-space (first row), the loss surfaces of in the
z-space (second row) for various values of γ, and loss surface of x-likelihood − log p(x) (third row).
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Figure 58: We report PSNR against number of measurements m when optimizing in the latent space
equation 4 with γ = 0 and the image space equation 3 with γ set to 10, 50 and 100.

To show the effect of noise on recovery in compressive sensing under different values of γ and noise
levels, we plot PSNR of the iterates when solving equation 4 against iterations in Figure 59. This
plot shows, perhaps surprisingly, that even under noisy compressed measurements it is a good idea to
solve the inverse compressed sensing problem equation 4 with γ = 0.

G.3 DENOISING FOR CELEBA

For completeness, we also compare denoising using our latent space formulation equation 4, our
image space forumation equation 3 under different noise levels σ = 0.05 and σ = 0.10; see Figure
60 and Figure 61 respectively. For both noise levels, we observe equal performance (indicated by the
highest PSNR) when optimizing in the latent or image space. We do not report results over σ = 0.20
as it was hard to tune hyper paremeters for higher noise levels in equation 3.
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Figure 59: We plot PSNR against gradient iterations for compressive sensing at m = 5000 on a
single image under the presence and absence of noise with different values of γ with noise level√
E‖η‖2 = 0.1 (left) and

√
E‖η‖2 = 1 (right).
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Figure 60: Denoising comparision at σ = 0.05 when optimizing over latent space (left) versus image
space (right).
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Figure 61: Denoising comparision at σ = 0.10 when optimizing over latent space (left) versus image
space (right).
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