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ABSTRACT

Attention operators have been widely applied on data of various orders and di-
mensions such as texts, images, and videos. One challenge of applying attention
operators is the excessive usage of computational resources. This is due to the
usage of dot product and softmax operator when computing similarity scores. In
this work, we propose the Siamese similarity function that uses a feed-forward
network to compute similarity scores. This results in the Siamese attention opera-
tor (SAO). In particular, SAO leads to a dramatic reduction in the requirement of
computational resources. Experimental results show that our SAO can save 94%
memory usage and speed up the computation by a factor of 58 compared to the
regular attention operator. The computational advantage of SAO is even larger
on higher-order and higher-dimensional data. Results on image classification and
restoration tasks demonstrate that networks with SAOs are as effective as mod-
els with regular attention operator, while significantly outperform those without
attention operators.

1 INTRODUCTION

Deep learning networks with attention operators have demonstrated great capabilities of solving
challenging problems in various tasks such as computer vision (Xu et al., 2015; Lu et al., 2016),
natural language processing (Bahdanau et al., 2015; Vaswani et al., 2017), and network embed-
ding (Veličković et al., 2017). Attention operators are capable of capturing long-range relationships
and brings significant performance boosts (Li et al., 2018; Malinowski et al., 2018). The application
scenarios of attention operators range from 1-D data like texts to high-order and high-dimensional
data such as images and videos. However, attention operators suffer from the excessive usage of
computational resources when applied on high-order or high-dimensional data. The memory and
computational cost increases dramatically with the increase of input orders and dimensions. This
prevents attention operators from being applied in broader scenarios. To address this limitation, some
studies focus on reducing spatial sizes of inputs such as down-sampling input data (Wang et al., 2018)
or attending selected part of data (Huang et al., 2018). However, such kind of methods inevitably
results in information and performance loss.

In this work, we propose a novel and efficient attention operator known as Siamese attention opera-
tor (SAO) to dramatically reduce the usage of computational resources. We observe that the excessive
computational resource usage is mainly caused by the similarity function and coefficients normaliza-
tion function used in attention operators. To address this limitation, we propose the Siamese similarity
function that employs a feed-forward network to compute similarity scores. By applying the same
network to both input vectors, Siamese similarity function processes the symmetry property. By using
Siamese similarity function to compute similarity scores, we propose the Siamese attention operator,
which results in a significant saving on computational resources. Based on the Siamese attention
operator, we design a family of efficient modules, which leads to our compact deep models known as
Siamese attention networks (SANets). Our SANets significantly outperform other state-of-the-art
compact models on image classification tasks. Experiments on image restoration tasks demonstrate
that our methods are efficient and effective in general application scenarios.

2 BACKGROUND AND RELATED WORK

In this section, we describe the attention operator that has been widely applied in various tasks and
on various types of data including texts, images, and videos.
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2.1 ATTENTION OPERATOR

The inputs of an attention operator include three matrices; those are a query matrix Q =
[q1,q2, · · · ,qm] ∈ Rd×m with each qi ∈ Rd, a key matrix K = [k1,k2, · · · ,kn] ∈ Rd×n

with each ki ∈ Rd, and a value matrix V = [v1,v2, · · · ,vn] ∈ Rp×n with each vi ∈ Rp. To
compute the response of each query vector qi, the attention operator calculates similarity scores
between qi and each key vector kj using a similarity function. Frequently used similarity functions
include dot product (Luong et al., 2015), concatenation (Bahdanau et al., 2015), Gaussian function,
and embedded Gaussian function. It has been shown that dot product is the most effective one (Wang
et al., 2018), which computes sim(qi,kj) = kT

j qi. After the normalization with a softmax operator,
the response is computed by taking a weighted sum over value vectors

∑N
j=1 vjsoftmax(kT

j qi). For
all query vectors, the attention operator computes

O = V softmax(KTQ), (1)

where softmax(·) is the column-wise softmax operator. The matrix multiplication between KT

and Q computes a intermediate output matrix E that stores similarity scores between each query
vector qi and each key vector kj . The column-wise softmax operator normalizes E and makes every
column sum to 1. Multiplication between V and the normalized E gives the output O ∈ Rp×m.
Self-attention operator (Vaswani et al., 2017; Devlin et al., 2018) is a special case of the attention
operator with Q = K = V . In practice, we usually firstly perform linear transformations on input
matrices. For notation simplicity, we use original input matrices in following discussions. The
computational cost of the operations in Eq. (1) is O(m× n× (d+ p)), and the memory required to
store the intermediate output E is O(m× n). If m = n and d = p, the time and space complexities
of Eq. (1) are O(n2 × d) and O(n2), respectively.

The matrix multiplication order in Eq. (1) is determined by the softmax operator, which acts as the
normalization function. Wang et al. (2018) proposed to use scaling by 1/N as the normalization
function on similarity scores. By this, the response of qi is calculated 1

N

∑N
j=1 vjk

T
j qi. The attention

operator using scaling by 1/N computes all responses as:

O =
1

N
(V KT )Q. (2)

By computing V KT first, the time and space complexities of Eq. (2) are O(Nd2) and O(d2),
respectively. When N > d, this saves computational resources compared to the attention operator
in Eq. (1). In practice, we usually have N > d in some parts of a neural network, especially on
high-order data.

2.2 ATTENTION OPERATORS ON HIGH-ORDER DATA

Non-local operators (Wang et al., 2018) are essentially self-attention operators on high-order data
like images and videos. Take 2-D data as an example, the input to a non-local operator is an image,
which can be represented as a third-order tensor X ∈ Rh×w×c. Here, h, w, and c denote the height,
width, and number of channels, respectively. The non-local operator converts the tensor into a matrix
X(3) ∈ Rc×hw by unfolding along mode-3 (Kolda & Bader, 2009). Then the matrix is fed into an
attention operator by setting Q = K = V = X(3). The output of the attention operator is converted
back to a third-order tensor that is used as the final output. A challenging problem of non-local
operators is the excessive usage of computational resources. If h = w, the time and space complexity
of the non-local operator is O(h4 × d) and O(h4), respectively. The computational cost becomes
even bigger on higher-order data like videos. The excessive usage of computational resources limits
the application of attention operators in broader scenarios.

3 SIAMESE ATTENTION NETWORKS

In this work, we propose a learnable similarity function known as the Siamese similarity function.
This function uses a single-layer feed-forward network to compute similarity scores. Based on
Siamese similarity function, we propose the Siamese attention operator, which dramatically reduces
computational cost. We also describe how to build Siamese attention networks using this operator.
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Figure 1: Illustration of the similarity function using a single-layer feed-forward network (a) and the
Siamese similarity function (b). In (a), different input elements use different weights. In (b), two
input vectors share the same network. The lines with the same color indicate weights sharing.

3.1 SIAMESE SIMILARITY FUNCTION

We analyze the problem of learning a similarity function given two vectors. To learn a similarity
function, we employ a single-layer feed-forward neural network. Given two vectors a ∈ Rd and
b ∈ Rd, the similarity score is computed using a trainable vector w ∈ R2d as:

simw(a, b) = [aT , bT ]w =

d∑
i=1

ai × wi + bi × wd+i = aTwa + bTwb, (3)

where w = [wT
a ,w

T
b ]

T with wa ∈ Rd and wb ∈ Rd. Here, we ignore the bias term for notation
simplicity. We consider the similarity function defined in Eq. (3) as two feed-forward networks
that process two vectors separately. The similarity score is the sum of outputs from two different
networks.

Unlike distance metrics, the non-negativity or triangle inequality do not need to hold from similarity
functions. But we usually expect similarity measures to be symmetric, which means it outputs the
same similarity score when two input arguments are swapped. Apparently, the similarity function
defined by Eq. (3) does not have this property. To retain the symmetry property, we employ the same
network while using both vectors to compute the similarity score. This leads to our proposed Siamese
similarity function (Sia-sim), which follows the principle of Siamese networks (Bromley et al., 1994;
Bertinetto et al., 2016). The Siamese similarity function computes the similarity score between a and
b as:

Sia-simw(a, b) =

d∑
i=1

(ai + bi)× wi = (a+ b)Tw,= Sia-simw(b,a) (4)

where w ∈ Rd is a trainable parameter vector. Although the time complexity of computing Sia-sim
is the same as that of dot product, we show that Sia-sim leads to a very efficient attention operator in
Section 3.2. Figure 1 provides an illustration of the similarity functions defined in Eq. (3) and Eq. (4).

3.2 SIAMESE ATTENTION OPERATOR

We describe the Siamese attention operator in the context of 1-D data, but it can be easily applied
on high-order data by unfolding them into matrices. In this case, the inputs to an attention operator
are Q ∈ Rd×N , K ∈ Rd×N , and V ∈ Rd×N . We replace the similarity function in the attention
operator by our Siamese similarity function, leading to the Siamese attention operator (SAO). Given
a query vector qi in Q, SAO computes the response oi as:

oi =
1

N

N∑
j=1

vj(qi + kj)
Tw =

1

N

N∑
j=1

(vjq
T
i w + vjk

T
j w)

=

 1

N

N∑
j=1

vj

 qT
i w +

1

N

 N∑
j=1

vjk
T
j

w =vwTqi +
1

N
V KTw,

(5)

where v = 1
N

∑N
j=1 V:j ∈ Rd. SAO computes responses of all query vectors as:

O = vwTQ+
1

N
V KTw1T

N , (6)
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Table 1: Comparisons among three attention operators in terms of time and space complexities. Attn
and Attn1/N denote the regular attention operators using softmax and scaling by 1/N for similarity
scores normalization, respectively.

Operator Computation Time Complexity Space Complexity
Attn V softmax(KTQ) O(N2 × d) O(N2)
Attn1/N 1

N (V KT )Q O(N × d2) O(d2)
SAO vwTQ+ 1

NV KTw1T
N O(N × d) O(N × d)

where 1N is a vector of ones of size N .

Note that we use 1N here to make it mathematically precise. In practice, the term 1
NV KTw is

the same to all query vectors. This means we only need to compute it once and share it for the
computation of all responses. By computing KTw first, the time complexity of this term is O(N×d).
Similarly, the time complexity for computing the first term in Eq. (6) is O(N × d). Thus, the overall
time complexity of SAO is O(N × d). Notably, when Q = K, we can save the computational
cost by computing either wTQ or KTw. Table 1 provides the comparison of SAO and other
attention operators. It can be seen from the comparison results that our SAO can significantly save
computational resources compared to other attention operators.

In Eq. (5), the first response term vwTqi changes as the query vector qi, which we call a local
response term. The second term 1

NV KTw is the same for all query vectors, which is a global
response term. The local response term provides customized information to query vectors, while the
global response term may include global information for SAO. In the experimental study part, we
demonstrate the importance of the global response term to SAO.

3.3 SIAMESE ATTENTION MODULES

Attention models have been shown to be effective in various fields. However, they are not widely
applied in compact neural networks to date primarily due to their excessive computational cost. Based
on our efficient SAO, it is possible to integrate attention operators in compact convolutional neural
networks (CNNs) such as MobileNetV2 (Sandler et al., 2018). In this section, we design a family
of efficient Siamese attention modules (SAMs) that integrate our SAO with convolutional operators.
These modules can be used for designing compact CNNs.

BaseModule: Bottleneck blocks with inverted residuals are main components in MobileNetV2.
Each bottleneck consists of three layers; those are an 1×1 convolutional layer for expansion, a 3×3
depth-wise convolutional layer, and another 1×1 convolutional layer. The hyper-parameters of this
module include the expansion factor r and the stride s. Given the input tensor X(`) ∈ Rh×w×c

for the `th block, the first 1×1 convolutional layer expands it into (r − 1)c feature maps. We then

concatenate the output with the input, resulting in X̃
(`)
∈ Rh×w×rc. The depth-wise convolutional

layer with stride s outputs rc feature maps X̄
(`) ∈ Rh

s ×
w
s ×rc. Finally, the last 1×1 convolutional

layer outputs d feature maps Y(`) ∈ Rh
s ×

w
s ×d. A skip connection is applied between X(`) and Y(`)

when c = d and s = 1. The BaseModule is illustrated in Figure 2 (a).

AttnModule: We propose to integrate our SAO into the BaseModule, resulting in AttnModule as
shown in Figure 2 (b). Before the last 1×1 convolutional layer, we add a new parallel path by SAO,
which outputs c feature maps. An average pooling layer with stride s is followed when s > 1,
resulting in X̄

(`)
a ∈ Rh

s ×
w
s ×c. In the original path, both the first 1×1 convolutional layer and the

depth-wise convolutional layer output (r − 1)c feature maps X̄
(`)
b ∈ Rh

s ×
w
s ×(r−1)c. We concatenate

and feed them into the last 1×1 convolutional layer, which outputs d feature maps Y(`) ∈ Rh
s ×

w
s ×d.

In SAOs, we only apply linear transformation on the value matrix V to limit the computational cost
and the number of trainable parameters. The original path extracts locality-based features, while the
new path using SAO computes global features. In this way, AttnModule is capable of capturing both
local and global information. We add a skip connection between inputs and outputs of SAO to enable
better feature reuse and gradient back-propagation (He et al., 2016a).
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Figure 2: Architectures of the BaseModule (a) and AttnModule (b) as introduced in Section 3.3. The
skip connection between inputs and outputs is used when s = 1 and c = d. The one between inputs
and outputs of SAO is used when s = 1.

3.4 SIAMESE ATTENTION NETWORKS

In this section, we describe the model architecture of a compact convolutional neural network using
our proposed SAOs and modules in Section 3.3, leading to Siamese attention networks (SANets).
We follow the basic architecture of MobileNetV2 (Sandler et al., 2018) and replace inverted residual
blocks with our SAMs. The details of network architecture are described in Table 8 in the appendix.
Following the practices in Wang et al. (2018), we use AttnModules to replace the blocks with input
spatial sizes of 28 × 28, 14 × 14, and 7 × 7. For the rest of the blocks, we use BaseModule with
the same expansion factors. The SANet built on SAMs saves about 0.03 million parameters and 12
million MAdd compared to MobileNetV2. We show that SANets with SAOs significantly outperform
MobileNetV2 while using less computational resources.

4 EXPERIMENTAL STUDIES

In this section, we evaluate our methods using image classification and restoration tasks. We firstly
evaluate our SAO in terms of computational resource usage by comparing with regular attention
operators. We compare our designed SANets with compact CNNs on image classification tasks using
the ImageNet ILSVRC 2012 dataset (Russakovsky et al., 2015). We conduct ablation studies to
investigate the benefits of our SAO and the trainable parameters in it. We also evaluate our methods
in general application scenarios using image restoration tasks.

4.1 COMPARISON OF COMPUTATIONAL EFFICIENCY

The theoretical analysis in Section 3.2 shows that our SAO can achieve significant efficiency ad-
vantages over regular attention operator especially on high-order and high-dimensional data. In
this section, we use simulated experiments to evaluate the efficiency advantage of SAO over other
attention operators. We build networks using different attention operators. The network is composed
of a single attention operator to eliminate the influence of other factors. We apply the TensorFlow
profile tool (Abadi et al., 2016) and report the required memory and CPU time on 2-D simulated data.
To fully evaluate the efficiency of attention operators, we vary the number of channels and spatial
sizes of the input data.

The comparison results is summarized in Table 2. On the simulated data with the size of 562 × 256,
our SAO achieves 94.65% memory saving and 58.21 times speed-up compared to the regular attention
operator. Our propose SAO can significantly save computational resources. The efficiency advantage
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Table 2: Comparisons between the regular attention operator, the regular attention operator with a
pooling operation (Wang et al., 2018), and our proposed SAO in terms of the number of parameters,
number of MAdd, memory usage, and CPU inference time on simulated data of different sizes. The
input sizes are given in the format of “spatial sizes2× number of input channels”. “Attn” denotes the
regular attention operator. “Attn+Pool” denotes the regular attention operator which employs 2× 2
pooling operations on K and V input matrices to reduce required computational resources.

Input Operator MAdd Memory Saving Time Speedup

142 × 64

Attn 4.92m 20.97MB 0.00% 20.47ms 1.00×
Attn+Pool 1.23m 8.39MB 59.99% 5.07ms 4.04×
Attn1/N 1.61m 5.24MB 75.01% 6.97ms 2.94×
SAO 0.05m 4.29MB 79.54% 3.09ms 6.62×

282 × 128

Attn 157.35m 301.99MB 0.00% 450.22ms 1.00×
Attn+Pool 39.34m 100.66MB 66.67% 119.55ms 3.77×
Attn1/N 25.69m 37.75MB 87.50% 70.52ms 6.38×
SAO 0.40m 33.88MB 88.78% 31.76ms 14.18×

562 × 256

Attn 5,035.26m 5.04GB 0.00% 12.92s 1.00×
Attn+Pool 1,258.82m 1.34GB 73.38% 4.82s 2.68×
Attn1/N 411.04m 0.28GB 94.34% 1.02s 12.66×
SAO 3.21m 0.26GB 94.65% 0.22s 58.21×

of SAO over regular attention operators increases as the increase of spatial and dimension sizes. When
comparing with other attention operators, our SAO is shown to be the most computationally efficient
attention operator. The simulated results show that our SAO is an efficient attention operator that can
operate high-dimensional and high-order data by consuming very few computational resources.

4.2 RESULTS ON IMAGE CLASSIFICATION

Table 3: Comparisons between SANet and other
CNNs in terms of the top-1 accuracy, the number of
trainable parameters, and MAdd on the ImageNet
validation set.
Model Top-1 Params MAdd
GoogleNet 0.698 6.8m 1550m
VGG16 0.715 128m 15300m
SqueezeNet 0.575 1.3m 833m
MobileNetV1 0.706 4.2m 569m
ChannelNet-v1 0.705 3.7m 407m
ShuffleNet 1.5x 0.715 3.4m 292m
MobileNetV2 0.720 3.47m 300m
SANet (ours) 0.730 3.44m 288m

Based on our efficient SAO, we build a family
of compact CNNs in Section 3.4 for image clas-
sification tasks. To evaluate the effectiveness of
our SAO and SANets, we compare our models
with other compact CNNs (Howard et al., 2017;
Sandler et al., 2018; Zhang et al., 2017; Gao
et al., 2018) on the ImageNet ILSVRC 2012 im-
age classification dataset. It has been serving
as the benchmark dataset, especially for image
classification tasks. The dataset contains 1.2 mil-
lion images for training, 50 thousand images for
validation, and 50 thousand images for testing.
We provide the experimental setups on image
classification tasks in the appendix.

We compare our SANets with other compact
CNNs and report the top-1 accuracy, the number of parameters, and MAdd in Table 3. Mo-
bileNetV2 (Sandler et al., 2018) is the previous state-of-the-art model in terms of the computational
cost and model performance. Compared to MobileNetV2, our SANet significantly outperforms
MobileNetV2 by a margin of 1% with a smaller number of parameters. By using our SAO, SANet
can achieve new state-of-the-art performance with limited computational resources. Considering
that we only make minor modifications from the architecture of MobileNetV2, the performance
boost is significant. Compared to the module using regular convolutional layers, our proposed
module uses SAO to obtain global features and avoids the excessive usage of computational resources.
Our SAO successfully overcomes the limitations of regular attention operator and applies attention
mechanism on high-order and high-dimensional data with significant performance boost. Next, we
will show our SAO is as effective as regular attention operator but can dramatically reduce the usage
of computational resources.
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4.3 COMPARISON WITH REGULAR ATTENTION OPERATORS

Table 4: Comparisons between SANet, the net-
work using the same architecture as SANet with
regular attention operators (denoted as AttnNet),
the AttnNet using regular attention operators with
a pooling operation (AttnNet+Pool), and the At-
tnNet with regular attention operators using scaling
by 1/N (denoted as AttnNet1/N ) in terms of the
top-1 accuracy, the number of total parameters, and
MAdd on the ImageNet validation set.
Model Top-1 Params MAdd
AttnNet 0.730 3.44m 365m
AttnNet+Pool 0.729 3.44m 300m
AttnNet1/N 0.730 3.44m 312m
SANet 0.730 3.44m 288m

We have shown that our SAO has significant ef-
ficiency advantages over regular attention oper-
ators in Section 4.1. In this section, we conduct
experiments to compare our SAO with regular at-
tention operators based on SANets using image
classification tasks. Besides the regular atten-
tion operator, we also consider the one defined
in Eq. (2) using scaling by 1/N for coefficients
normalization, and the one with a pooling oper-
ation as in Wang et al. (2018). In the attention
operator with pooling operations, 2 × 2 pool-
ing operations are applied to key matrix K and
value matrix V , leading to reduced spatial sizes.
To ensure fair comparisons, we replace all SAOs
in SANets with attention operators, attention op-
erators with pooling operations, and attention
operators defined in Eq. (2), denoted as AttnNet, AttnNet+Pool, and AttnNet1/N , respectively.

We summarize the comparison results in Table 4. We can observe from the results that our SANet
using SAOs achieves the same performance as AttnNet with regular attention operators in terms
of the top-1 accuracy. The results demonstrate that our SAO is as effective as the regular attention
operator while dramatically reduces computational costs. The better performance of SANet over
AttnNet+pool indicates that our SAO is more efficient and effective compared to the regular attention
operator using pooling operations. Note that AttnNet1/N and SANet achieve the same performance
as AttnNet, which demonstrates the feasibility of replacing the expensive softmax(·) function with
scaling by 1/N .

4.4 ABLATION STUDIES

Table 5: Comparisons between MobileNetV2,
MobileNetV2 with SAOs (MobileNetV2+SAO),
SANet, SANet without SAO (SANet w/o SAO),
and SANet without the global item in Eq. (5) in
terms of the top-1 accuracy, and the number of
total parameters on the ImageNet validation set.

Model Top-1 Params
SANet 0.730 3.44m
SANet w/o SAO 0.721 3.44m
SANet w/o global term 0.728 3.44m
MobileNetV2+SAO 0.727 3.47m
MobileNetV2 0.720 3.47m

To fully demonstrate the effectiveness of our
SAO, we conduct ablation studies based on Mo-
bileNetV2 and SANets. We add SAOs to Mo-
bileNetV2 to observe if it benefits other net-
works like MobileNetV2. We replace some in-
verted residual blocks with our AttnModules by
referencing the structure of SANet, which we
denote as MobileNetV2 w SAO. We remove
SAOs from SANet by replacing AttnModule
with BaseModule, resulting in SANet w/o SAO.
We also explore the impact of the global item in
SAO on the performance of SANets.

The comparison results are summarized in Ta-
ble 5. By using SAOs, MobileNetV2 w SAO
obtains a performance boost of 0.7% over that of the original MobileNetV2. The performance of
SANet w/o SAO without using SAOs is 0.9% lower than that of SANet. Notably, SANet consumes
the least computational costs while achieving the best performance. The results demonstrate that
our SAO is consistently efficient and effective when being applied in different network architectures.
Notably, it can be observed that the global item is important by comparing the performances between
SANet and SANet w/o global term.

4.5 RESULTS ON 3-D IMAGE RESTORATION

In order to evaluate the effectiveness of our SAO in broader application scenarios, we conduct
experiments on biological image restoration tasks, in particular, the 3D image denoising and the 3D
image projection. The projection models map a noisy 3D image to a 2D plane, i.e., mapping 3D
images from Rh×w×c to 2D images in Rh×w. We perform experiments on three different datasets
collected by Weigert et al. (2018); those are Planaria, Tribolium and Flywing. Details of dataset
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Table 6: Comparison results between U-Net, U-Net with regular attention operator (U-Net+Attn), and
U-Net with SAO (U-Net+SAO) in terms of peak signal to noise ratio (PSNR), structural similarity
index (SSIM), and normalized root mean square error (NRMSE). On the metrics followed by an
↑, the higher value indicates the better performance. Conversely, lower value indicates the better
performance on the metrics followed by a ↓.

Dataset Metric U-Net U-Net+Attn U-Net+SAO

Planaria
PSNR↑ 31.571 31.951 31.929
SSIM↑ 0.7707 0.7919 0.7898
NRMSE↓ 0.0268 0.0257 0.0257

Tribolium
PSNR↑ 32.433 32.571 32.549
SSIM↑ 0.9171 0.9201 0.9196
NRMSE↓ 0.0241 0.0236 0.0239

Flywing
PSNR↑ 21.958 22.361 22.329
SSIM↑ 0.5592 0.5903 0.5916
NRMSE↓ 0.0798 0.0763 0.0767

are shown in Table 9 in the appendix. We adopt a general U-Net architecture (Ronneberger et al.,
2015; Çiçek et al., 2016) as our baseline model. We add attention operators and our SAOs in bottom
and decoder blocks. We apply linear transformations on Q, K and V in attention operators. The
details of experimental setups are provided in the appendix. The comparison results are summarized
in Table 6. Clearly, U-Net models with attention operators outperform the baseline model, which
demonstrates the effectiveness of attention mechanism. Compared to U-Net with regular attention
operators, SAOs result in similar results. This indicates our SAO is as effective as regular attention
operators. Overall, these experimental results demonstrate that our SAO retains its effectiveness in
broader application scenarios.

4.6 PARAMETER STUDY OF SAO

Table 7: Comparisons between SANet and the
SANet removing trainable parameters in SAOs
(SANet w/o params) in terms of the top-1 accuracy
and number of parameters.

Model Top-1 Params
SANet 0.730 3,448,448
SANet w/o params 0.728 3,449,408

Since SAO involves extra trainable parameters
in our Siamese similarity function, we study the
impact of these trainable parameters in SANets.
We use an all-ones vector to replace the trainable
parameters w in Eq. (6). We denote the resulting
model as SANet w/o params. Table 7 reports the
comparison results. We can observe that SANet
outperforms SANet w/o params by a margin of
0.2% with regard to the top-1 accuracy using
only 960 more parameters. This demonstrates that the trainable parameters in SAOs are necessary
since the importance of different features are weighted.

5 CONCLUSIONS

In this work, we propose Siamese attention operators to overcome the excessive usage of com-
putational resources of regular attention operators when being applied on high-order and/or high-
dimensional data. We observe that the similarity score in the attention operator is computed using the
dot product, which leads to high computational cost. To address this, we propose Siamese similarity
function, which employs a feed-forward network to compute the similarity score between two input
vectors. By using the shared network on two vectors, Siamese similarity function is symmetric.
We use Siamese similarity function to replace dot product in regular attention operator, leading to
Siamese attention operator. Theoretical analysis and experimental studies show that our SAOs signifi-
cantly reduce the usage of computational resources. Based on SAOs, we design a family of efficient
modules, leading to SANets. The evaluation on image classification tasks shows that our SANet
significantly outperforms previous state-of-the-art models while using fewer trainable parameters
and computational resources. In addition, we conduct experiments on 3-D image restoration to
demonstrate the effectiveness of our SAOs in broader application scenarios. The parameter study
shows that SAO brings great performance improvement with negligible extra trainable parameters.
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Appendix

1 THE SANETS ARCHITECTURE

Table 8 describes the SANets architecture. We use multiple heads with 4 heads in SAOs. The results
of 4 heads are concatenated as the output. We only perform linear transformations on value matrices
to save computational resources.

Table 8: Details of SANet architecture. Each line represents a sequence of operators and arguments
in the format of “input size / operator name / expansion rate / output channels / number of operators /
stride”. We use “Conv2D”, “AvgPool”, and “FC” to denote 2D convolutional layer, global average
pooling layer, and fully-connected layer, respectively. We use kernel size of 3 × 3 in depth-wise
convolutional layers. The first depth-wise convolutional layer in a sequence of operators applies
stride of s, while the other layers use stride of 1. We use k to denote the class number in the task.

Input Operator r c n s

2242×3 Conv2D 3× 3 - 32 1 2
1122×32 BaseModule 1 16 1 1
1122×16 BaseModule 6 24 2 2
562×24 BaseModule 6 32 2 2
282×32 AttnModule 6 32 1 1
282×32 BaseModule 6 64 1 2
142×64 AttnModule 6 64 3 1
142×64 AttnModule 6 96 3 1
142×96 BaseModule 6 160 1 2
72×160 AttnModule 6 160 2 1
72×160 AttnModule 6 320 1 1
72×320 Conv2D 1× 1 - 1280 1 1
72×1280 AvgPool + FC - k 1 -

2 EXPERIMENTAL SETUP FOR IMAGE CLASSIFICATION

We use the ImageNet ILSVRC 2012 image classification dataset in our experiments. We follow the
data argumentation methods used in He et al. (2016b). During training, we scale the image into
256 × 256 and then randomly crop a 224 × 224 patch. Center cropping is used when performing
inference. We use batch normalization to replace the scaling by 1/N in SAOs to enable a learnable
scaling factor. All trainable parameters are initialized by Xavier initialization (Glorot & Bengio,
2010). Standard stochastic gradient descent optimizer with a momentum of 0.9 (Sutskever et al.,
2013) is used to train the model for a total of 150 epochs. The learning rate is initially 0.1 and decays
by 0.1 at the 80th, 105th, and 120th epoch. We apply dropout (Srivastava et al., 2014) with a keep
rate of 0.8 after the global average pooling layer. We use 8 GeForce RTX 2080 Ti GPUs with a batch
size of 640 for training. Performance results on the validation dataset is reported since testing dataset
labels are not available.

3 EXPERIMENTAL SETUP FOR IMAGE RESTORATION

The networks for the denoising models are the 3D U-Net with depth 3, which consists of two encoder
blocks and two decoder blocks. The projection models consist of a decoder-encoder architecture that
reduces 3D images into 2D tensors and a 2D U-Net. The number of training batches is 16 and the
learning rates are 0.0004 for all the three tasks. The denoising models are trained for 200 epochs
while the projection model is trained for 100 epochs. The summary of the datasets used in this task is
provided in Table 9.
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Table 9: Summary of datasets used in our image restoration experiments. Planaria and Tribolium are
used for image denoising experiments and Flywing is used in image projection experiments.
Dataset Task # Training Patch Size # Testing Testing Size
Planaria Denoising 17,005 16×64×64×1 20 95×1024×1024
Tribolium Denoising 14,725 16×64×64×1 6 50×800×800
Flywing Projection 16,891 50×64×64×1 26 50×520×692
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All citations refer to the references in the main paper.
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