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ABSTRACT

A key challenge of existing program synthesizers is ensuring that the synthesized
program generalizes well. This can be difficult to achieve as the specification
provided by the end user is often limited, containing as few as one or two input-
output examples. In this paper we address this challenge via an iterative approach
that finds ambiguities in the provided specification and learns to resolve these by
generating additional input-output examples. The main insight is to reduce the
problem of selecting which program generalizes well to the simpler task of decid-
ing which output is correct. As a result, to train our probabilistic models, we can
take advantage of the large amounts of data in the form of program outputs, which
are often much easier to obtain than the corresponding ground-truth programs.

1 INTRODUCTION

Over the years, program synthesis has been successfully used to solve a range of tasks including
string, number or date transformations (Gulwani} [2011}; |Singh & Gulwani, |2012; 2016)), layout and
graphic program generation (Bielik et al., [2018; |Hempel & Chughl [2016), data extraction (Barowy
et al., 2014; |Le & Gulwani, |2014)), superoptimization (Phothilimthana et al.| 2016; |[Schkufza et al.,
2016) or code repair (Singh et al 2013} [Nguyen et al., 2013} D’ Antoni et al.| [2016). To capture
user intent in an easy and intuitive way, many program synthesizers let its users provide a set of
input-output examples Z which the synthesized program should satisfy.

Generalization challenge A natural expectation of the end user in this setting is that the synthe-
sized program works well even when 7 is severely limited (e.g., to one or two examples). This makes
the synthesis problem difficult as the limited amount of supervision provided by the user combined
with the rich hypothesis space over which programs are searched over, often leads to millions of
programs consistent with Z, with only a small number generalizing well to unseen examples.

Existing methods Several approaches have provided ways to address the above challenge, in-
cluding using an external model that learns to rank candidate programs returned by the synthesizer,
modifying the search procedure by learning to guide the synthesizer such that it returns more likely
programs directly, or neural program induction methods that replace the synthesizer with a neural
network to generate outputs directly using a latent program representation. However, regardless of
what other features these approaches use, such as conditioning on program traces (Shin et al., 2018;;
Ellis & Gulwani, |2017; |Chen et al.,[2019) or pre-training on the input data (Singh|, 2016)), they are
limited by the fact that their models are conditioned on the initial, limited user specification.

This work We present a new approach for program synthesis from examples which addresses
the above challenge. The key idea is to resolve ambiguity by iteratively strengthening the initial
specification Z with new examples. To achieve this, we start by using an existing synthesizer to find
a candidate program p; that satisfies all examples in Z. Instead of returning p;, we use it to find a
distinguishing input z* that leads to ambiguities, i.e., other programs p; that satisfy Z but produce
different outputs p;(x*) # p;(x*). To resolve this ambiguity, we first generate a set of candidate
outputs for z*, then use a neural model (which we train beforehand) that acts as an oracle and selects
the most likely output, and finally, add x=* and its predicted output to the input specification Z. The
whole process is then repeated. These steps are similar to those used in Oracle Guided Inductive
Synthesis (Jha et al.,[2010) with two main differences: (i) we automate the entire process by learning
the oracle from data instead of using a human oracle, and (ii) as we do not use a human oracle to
produce a correct output, we need to ensure that the set of candidate outputs contains the correct one.
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Figure 1: An overview of our approach which introduces a refinement loop around a black-box
synthesizer that incrementally extends the input specification Z = {(x1,y1)}, which in this case
contains a single example, with additional input-output examples until all ambiguities are resolved.

Example of augmenting an existing synthesizer As a concrete example, Figure T]illustrates our
approach instantiated with a state-of-the-art synthesizer, called InferUI (Bielik et al 2018)), that
creates an Android layout program which when rendered, places all components at their specified
position. Here, each input-output example (z,y) consists of a set of views and their absolute view
positions y on device z. In our example, the input specification Z contains a single example with
absolute view positions for a Nexus 4 device and the InferUI synthesizer easily finds multiple
programs that satisfy it (dashed box). To apply our method and resolve the ambiguity, we find
a distinguishing input x*, in this case a narrower P4 Pro device, on which some of the candidate
programs produce different outputs. Then, instead of asking the user to manually produce the correct
output, we generate additional candidate outputs (to ensure that the correct one is included) and our
learned neural oracle automatically selects one of these outputs (the one it believes is correct) and
adds it to the input specification Z. In this case, the oracle selects output po(z*) as both buttons are
correctly resized and the distance between them was reduced to match the smaller device width. In
contrast, p; («*) contains overlapping buttons while in p,, (*), only the left button was resized.

Automatically obtaining real-world datasets An important advantage of our approach is that
we reduce the problem of selecting which program generalizes well to the simpler task of deciding
which output is correct. As a result, obtaining a suitable training dataset can be easier as we do not
require the hard to obtain ground-truth programs, for which currently no large real-world datasets
exists (Shin et al.l2019). In fact, it is possible to train the oracle using unsupervised learning only,
with a dataset consisting of correct input-output examples Dy;. For example, in layout synthesis an
autoencoder can be trained over a large number of views and their positions extracted from running
real-world applications, while for string processing tasks we can train a language model over the
rows or columns of the Excel spreadsheet. However, instead of training such an unsupervised model,
in our work we use Dy to automatically construct a supervised dataset Dg by labelling the samples
in Dy as positive and generating a set of negative samples by adding suitable noise to the samples
in Dy. Finally, we also obtain the dataset Dg that additionally includes the input specification Z.
In the domain of Android layouts, although it is more difficult, such a dataset can also be collected
automatically by running the same application on devices with different screen sizes.

Our contributions We present a new approach to address the ambiguity in existing program syn-
thesizers by iteratively extending the user provided specification with new input-output examples.
The key component of our method is a learned neural oracle used to generate new examples trained
with datasets that do not require human annotations or ground-truth programs. We evaluate our
approach by applying it to an existing Android layout synthesizer InferUI. To improve generaliza-
tion, InferUI already contains a probabilistic model that scores programs ¢(p | Z) as well as a set
of handcrafted robustness properties, achieving 35% generalization accuracy on a dataset of Google
Play Store applications. We show that our method leads to a significant improvement and achieves
71% accuracy even when both optimizations of InferUI are disabled. This result suggests that our
method is a promising step in increasing generalization capabilities of existing synthesizers.
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2  RELATED WORK
In this section we discuss the work most closely related to ours.

Guiding program synthesis To improve scalability and generalization of program synthesizers
several techniques have been proposed that guide the synthesizer towards good programs. The
most widely used approach is to implement a statistical search procedure which explores candidate
programs based on some type of learned probabilistic model — log-linear models (Menon et al.|
2013 Long & Rinard, [2016), hierarchical Bayesian prior (Liang et al.| |2010), probabilistic higher
order grammar (Lee et al., 2018) or neural network (Balog et al.l [2017). |[Kalyan et al.|(2018)) also
takes advantage of probabilistic models but instead of implementing a custom search procedure,
they use the learned model to guide an existing symbolic search engine. In addition to approaches
that search for a good program directly (conditioned on the input specification), a number of works
guide the search by first selecting a high-level sketch of the program and then filling in the holes
using symbolic (Ellis et al., 2018} [Murali et al) [2017; Nye et al., 2019), enumerative or neural
search (Bosnjak et al.l |2017; |Gaunt et al., | 2016). A similar idea is also used by (Shin et al., |2018]),
but instead of generating a program sketch the authors first infer execution traces (or condition on
partial traces obtained as the program is being generated (Chen et al., 2019)), which are then used
to guide the synthesis of the actual program.

In comparison to prior work, a key aspect of our approach is to guide the synthesis by generating
additional input-output examples that resolve the ambiguities in the input specification. Guiding the
synthesizer in this way has several advantages — (i) it is interpretable and the user can inspect the
generated examples, (ii) it can be used to extend any existing synthesizer by introducing a refinement
loop around it, (iii) the learned model is independent of the actual synthesizer (and its domain
specific language) and instead is focused only on learning the relation between likely and unlikely
input-output examples, and (iv) often it is easier to obtain a dataset containing program outputs
instead of a dataset consisting of the actual programs. Further, our approach is complementary to
prior works as it treats the synthesizer as a black-box that can generate candidate programs.

Learning to rank To choose among all programs that satisfy the input specification, existing pro-
gram synthesizers select the syntactically shortest program (Liang et al.,[2010; [Polozov & Gulwani,
2015; [Raychev et al.l 2016), the semantically closest program to a reference program (D’ Antoni
et al.,[2016) or a program based on a learned scoring function (Liang et al., 2010; Mandelin et al.,
2005} [Singh & Gulwanil [2015; [Ellis & Gulwanil [2017; Singh, 2016). Although the scoring function
usually extracts features only from the synthesized program, some approaches also take advantage of
additional information —|Ellis & Gulwanil (2017)) trains a log-linear model using a set of handcrafted
features defined over program traces and program outputs while Singh| (2016)) leverages unlabelled
data by learning common substring expressions shared across the input data.

Similar to prior work, our work explores various representations over which the model is learned.
Because we applied our work to a domain where outputs can be represented as images (rather than
strings or numbers), to achieve good performance we explore different types of models (i.e., convo-
lutional neural networks). Further, we do not assume that the synthesizer can efficiently enumerate
all programs that satisfy the input specification as in|Ellis & Gulwani|(2017);[Singh|(2016)). For such
synthesizers, applying a ranking of the returned candidates will often fail since the correct program
is simply not included in the set of synthesized programs. Therefore, the neural oracle is defined
over program outputs instead of actual programs. This reduces the search space for the synthesizer
as well as the complexity of the machine learning models.

Neural program induction |Devlin et al.|(2017)) and [Parisotto et al.|(2017) explore the design of
end-to-end neural approaches that generate the program output for a new input without the need
for an explicit search. In this case the goal of the neural network is not to find the correct program
explicitly, but rather to generate the most likely output for a given input based on the input speci-
fication. These approaches can be integrated in our work as one technique for generating a set of
candidate outputs for a given distinguishing input instead of obtaining them using a symbolic synthe-
sizer. However, the model requirements in our work are much weaker — whereas the goal of program
induction is to achieve 100% precision for all possible inputs (as otherwise the network is producing
mistakes), in our work it is enough if the correct output is among the top n most likely candidates.
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3 LEARNING TO GENERATE NEW INPUT-OUTPUT EXAMPLES

Let Z = {(z;,v:)}Y; denote the input specification consisting of input-output examples provided
by the user. Further, we assume we are given an existing synthesizer which can find a program p that
satisfies all examples in Z, i.e., Ip € L,V(x;,y:) € Z. p(x;) =y;, where p(z;) denotes the output
obtained by running program p on input x;. To reduce clutter, we use the notation p = Z to denote
that program p satisfies all examples in Z. We extend the synthesizer such that a program p not only
satisfies all examples in Z but also generalizes well to unseen examples as follows:

1. Generate a candidate program p; |= Z that satisfies the input specification Z.

2. Find a distinguishing input x* and candidate outputs y = [p1(z*);p2(x*);- - ;pn(z)],
such that all programs p;,...,p, satisfy the input specification Z but produce different
outputs when evaluated on x*. If no distinguishing input z* exists, return program p .

3. Query an oracle to determine the correct output y* € y for the input z*.

4. Extend the input specification with the distinguishing input and its corresponding output
Z <+ ZU{(z*,y*)} and continue with the first step.

Finding a distinguishing input To find the distinguishing input =* we take advantage of existing
symbolic synthesizers by asking the synthesizer to solve 3x* € X', pa € L. po EZ Ap2(x*) # p1(x*),
where X is a set of valid inputs and L is a hypothesis space of valid programs. The result is both
a distinguishing input x* as well as a program p, that produces a different output than p; . Programs
p1 and po form the initial sequence of candidate outputs y = [p1 (z*); p2(2*)] which is extended until
the oracle is confident enough that y contains the correct output (described later in this section).

To make our approach applicable to any existing synthesizer, including those that can not solve the
above satisfiability query directly (e.g., statistical synthesizers), we note that the following sampling
approach can also be applied: first, use the synthesizer to generate the top n most likely programs,
then randomly sample a valid input z* not in the input specification, and finally check if that input
leads to ambiguities by computing the output of all candidate programs.

Finding candidate outputs To extend y with additional candidate outputs once the distinguishing
input * is found, three techniques can be applied: (i) querying the synthesizer for another program
with a different output: Ip € L. p |= ZAVy,cyp(2*) # v;, (ii) sampling a program induction model
P(y | *,7) and using the synthesizer to check whether each sampled output is valid, or (iii) simply
sampling more candidate programs, running them on z* and keeping the unique outputs. It is pos-
sible to use the second approach as we are only interested in the set of different outputs, rather than
the actual programs. The advantage of (i) is that it is simple to implement for symbolic synthesizers
and is guaranteed to find different outputs if they exist. In contrast, (ii) has the potential to be faster
as it avoids calling the synthesizer and works for both statistical and symbolic synthesizers. Finally,
(iii) is least effective, but it does not require pretraining and can be applied to any synthesizer.

Neural oracle The key component of our approach is a neural oracle which selects the cor-
rect program output from a set of candidate outputs y. Formally, the neural oracle is defined
as argmax,. ¢, fo(v/ | «*,y*,T), where f is a function with learnable parameters 6 (in our
case a neural network) that returns the probability of the output y* being correct given the in-
put z* and the input specification Z. We train the parameters 6 using a supervised dataset
Dsy = {(vV,2i, 40, L)}y U{(X, 25,95, Z;)}}L, which, for a given distinguishing input 2* and
input specification Z, contains both the correct (v) as well as the incorrect (X) outputs. Because it
might difficult to obtain such a dataset in practice, we also define a simpler model fo(v" | 2*,y*)
that is trained using a supervised dataset Ds = {(v/, 2, 4:) oy U {(X, z;, ;) }}L, which does not
include the input specification. In the extreme case, where the dataset contains only the correct input-
output examples Dy = {(z;,v:)}L,, we define the oracle as fs(y* | *). Even though the dataset
does not contain any labels, we can still train f in an unsupervised manner. This can be achieved
for example by splitting the output into smaller parts y; = y; - - -y} (such as splitting a word into
characters) and training f as an unsupervised language model. Alternatively, we could also train an
autoencoder that first compresses the output into a lower dimensional representation, with the loss
corresponding to how well it can be reconstructed. To achieve good performance, the architecture
used to represent f is tailored to the synthesis domain at hand, as discussed in the next section.
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Figure 2: Illustration of three different models used to implement the neural oracle — CNN, RNN and
MLP. All models include a fully-connected ReLU layer and a softmax layer (not shown in the image)
which computes the probability that the output y is correct. Note, that the features in the MLP model
are shown unnormalized, that is, centered = 3 denotes that three views are centered.

Dynamically controlling the number of generated candidate outputs Since generating a large
number of candidate outputs is time consuming, we allow our models to dynamically control the
number of sampled candidates for each distinguishing input =*. That is, instead of generating all
candidate outputs y first and only then querying the neural oracle to select the most likely one,
we query the oracle after each generated candidate output and let the model decide whether more
candidates should be generated. Concretely, we define a threshold hyperparameter ¢ € RI%! which
is used to return the first candidate output y* for which the probability of the output being correct is
above this threshold. Then, only if there are no candidate outputs with probability higher that ¢, we
return arg max of all the candidates. Note for ¢ = 1 this formulation is equivalent to returning the
arg max of all the candidates while for ¢ = 0, it corresponds to always returning the first candidate,
regardless of its probability of being correct. We show the effect of different threshold values as well
as the number of generated candidate outputs in Section 5

4 INSTANTIATION OF OUR APPROACH TO ANDROID LAYOUT SYNTHESIS

In this section we describe how to apply our approach to the existing Android layout program syn-
thesizer InferUI (Bielik et al., [2018). Here, the input = € R* defines the absolute positions of the
given device screen while the output y € R"*# consists of n views and their absolute positions.

Finding a distinguishing input and candidate outputs Because InferUI uses symbolic search,
finding a distinguishing input and candidate outputs is encoded as a logical query solved by the syn-
thesizer as described in Section [3] However, instead of synthesizing the layout program containing
correct outputs of all the views at once (as done in InferUI), we run the synthesizer n times, each
time predicting the correct output for only a single view (starting from the largest view) which is
then added as an additional input-output example. This is necessary since there are exponentially
many combinations of the view positions when considering all the views at once and the InferUI
synthesizer is not powerful enough to include the correct one in the set of candidate outputs (e.g.,
for samples with more than 10 views in less than 4%). The advantage of allowing the position of
only a single view to change, while fixing the position of all prior views, is that the correct candidate
output is much easier to include. The disadvantage is that the neural oracle only has access to partial
information (consisting of the prior view positions) and therefore performs a sequence of greedy
predictions rather than optimizing all view positions jointly.

Neural oracle Because the input x has the same dimensions as each view, we encode it as an addi-
tional view in all our network architectures. In Figure[2] we show three different neural architectures
that implement the oracle function f, each of which uses a different way to encode the input-output
example into a hidden representation followed by a fully-connected ReLU layer and a softmax that
computes the probability that the output is correct. In the following, we describe the architecture of
all the models. The formal feature definitions are included in Appendix
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In (CNN), the output is converted to an image (each view is drawn as a rectangle with a 1px black
border on a white background) and used as an input to a convolutional neural network (CNN) with
3 convolutional layers with 5 x5 filters of size 64, 32 and 16 and max pooling with kernel size 2 and
stride 2. To support outputs computed for different screen sizes, the image dimensions are slightly
larger than the largest device size. We regularize the network during training by positioning the
outputs with a random offset such that they are still fully inside the image, instead of placing them
in the center. This is possible as the image used as input to the CNN is larger than the device size.

In (MLP), the output is transformed to a normalized feature vector and then fed into a feedforward
neural network with 3 hidden layers of size 512 with ReL.U activations. To encode the properties of
a candidate output y, we use high-level handcrafted features adapted from InferUT such as the num-
ber of view intersections or whether the views are aligned or centered. By instantiating the features
for both horizontal and vertical orientation we obtain a vector of size 30, denoted as @up(z*, y*),
which is used as input to the neural network. For the model f(v | z*,y*,Z) the network input
is a concatenation of output features (as before) pwp(z*,y*), features of each sample in the in-
put specification [pwp (2, Y)](z,y)ez. and their difference [pure (2%, ¥*) — Vure (2, Y)] (2,y)ez- This
difference captures how the views have been resized or moved between the devices with different
screen dimensions. This allows the model to distinguish between outputs that are all likely when
considered in isolation but not when also compared to examples in 7.

In (RNN), we use the fact that each output consists of a set of views y* = [v1;. .. ;v,] by using an en-
coder to first compute a hidden representation of each view. These are then combined with a LSTM
to compute the representation of the whole output. To encode a view v;, we extract pairwise feature
vectors with all other views (including the input) waw(vi, *,y*) = [¢(vi, V))]v,efa* juy=\v, and
combine them using a LSTM. Here, ¢ : R* x R* — R" is a function that extracts n real valued
features from a pair of views. For each pair of views, we apply 11 simple transformations of the
view coordinates, capturing their distance (4 vertical, 4 horizontal), the size difference (in width and
height) and the ratio of the aspect ratios. For the model f(v' | «*, y*) we additionally use 17 high-
level features computed for each view that are adapted from InferUI. When using f(v | z*,y*,Z),
these additional high-level features are not required and instead we only use the 11 simple transfor-
mations combined in the same way as for the MLP model. That is, by concatenating @gyy (v;, £*, y*),

[orm (Vi, T, Y)](2,y)ez and their difference [wrm (vi, 2%, y*) — Crm(Vs, T, Y)] (2,y) -

Datasets To train our models we obtained three datasets Dy, Dg and D, each containing an
increasing amount of information at the expense of being harder to collect.

The unsupervised Dy = {(z;, ;) } Y, is the simplest dataset and contains only positive input-output
samples obtained by sampling ~ 22, 000 unique screenshots (including the associated metadata of
all the absolute view positions) of Google Play Store applications taken from the Rico dataset (Deka
et al., 2017). Since the screenshots always consist of multiple layout programs combined together,
we approximate the individual programs by sorting the views in decreasing order of their size and
taking a prefix of random length (of up to 30 views). For all of the datasets, we deduplicate the
views that have the same coordinates and filter out views with a negative width or height.

The supervised Ds = {(v, %4, ¥i) } (21 ,5:)eD0 U { Uf:lf{()(, Tiy Yi +e,‘j)}}(m )EDY contains both

correct and incorrect input-output examples. In our work this dataset is produced synthetically from
Dy by extending it with incorrect samples. Concretely, the positive samples correspond to those
in the dataset Dy and for each positive sample we generate up to 15 negative samples by applying
a transformation ¢;; to the correct output. The transformations considered in our work are sampled
from the common mistakes the synthesizer can make — resizing a view, shifting a view horizontally,
shifting a view vertically or any combination of the above.

The supervised dataset is Dgy = {(v', i, yi, Zi) } 12y U{(X, 25,15, Z;) } L, , where each Z; contains
the same application rendered on multiple devices. We downloaded the same applications as used
in the Rico dataset from the Google Play Store and executed them on three Android emulators with
different device sizes. The number of valid samples is ~ 600 since not all applications could be
downloaded, executed or produced the same set of views (or screen content) when executed on three
different devices. The negative examples are generated by running the synthesizer with the input
specification Z containing a single sample and selecting up to 16 outputs that are inconsistent with
the ground-truth output for the other devices.
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Table 1: Generalization accuracy of the existing InferUI synthesizer.

InferUI pEZ argmax,_7 q(p | Z) arg max,za4(p 4(p | Z)
(Bielik et al., 2018) baseline + probabilistic model + probabilistic & robustness model
Accuracy 15.5% 24.7% 35.2%

Table 2: Generalization accuracy of different models used as neural oracle in our approach.

Accuracy
Training Dataset Model MLP CNN RNN RNN + CNN
Dg f ] x* y%) 14.3% 14.2% 23.8% 32.1%
Ds4+ fV | z*,y*,T) 20.7% 33.2% 63.4% 71.0%

5 EVALUATION

We evaluate our approach by applying it to an existing Android layout synthesizer called
InferUI (Bielik et al., [2018) as described in Section[d} InferUI is a symbolic synthesizer which
encodes the synthesis problem as a set of logical constraints that are solved using the state-of-the-art
SMT solver Z3 (De Moura & Bjgrner, [2008)). To improve generalization, InferUI already im-
plements two techniques — a probabilistic model that selects the most likely program among those
that satisfy the input specification, and a set of handcrafted robustness constraints ¢(p) that prevent
synthesizing layouts which violate good design practices. We show that even if we disable these
two optimizations and instead guide the synthesizer purely by extending the input specification with
additional input-output examples, we can still achieve an accuracy increase from 35% to 71%.

In all our experiments, we evaluate our models and InferUI on a test subset of the Dg, dataset
which contains 85 Google Play Store applications, each of which contains the ground truth of the
absolute view positions on three different screen dimensions. We use one screen dimension as the
input specification Z, the second as the distinguishing input and the third one only to compute the
generalization accuracy. The generalization accuracy of a synthesized program p |= Z is defined as
the percentage of views which the program p renders at the correct position.

InferUI Baseline To establish a baseline, we run InferUI in three modes as shown in Table [T}
The baseline mode returns the first program that satisfies the input specification, denoted as p |= Z,
and achieves only 15.5% generalization accuracy. In the second mode the synthesizer returns the
most likely program according to a probabilistic model q(p | Z) which leads to an improved ac-
curacy of 24.7%. The third mode additionally defines a set of robustness properties ¢(p) that the
synthesized program needs to satisfy, which together with the probabilistic model achieve 35.2%
accuracy. The generalization accuracy of all InferUI models is relatively low as we are using
a challenging dataset where each sample contains on average 12 views. Note however, that this is
expected since increasing the number of views leads to an exponentially larger hypothesis space.

Further, to establish an upper bound on how effective a candidate ranking approach can be, we
query the synthesizer for up to 100 different candidate programs (each producing a unique output)
and check how often the correct program is included. While for small samples (with up to 4 views)
the correct program is almost always included, for samples with 6 views it is among the synthesized
candidates in only 30% of the cases and for samples with more than 10 views in less than 4%.
Sampling more outputs will help only slightly as increasing the number of views would require
generating exponentially more candidates.

Our Work We apply our approach to the InferUT synthesizer by iteratively generating additional
input-output examples that strengthen the input specification. The specification initially contains
absolute positions of all the views for one device and we extend the specification by adding one
view at a time (rendered on a different device) as described in Section 4]
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Table 3: Effect of the threshold ¢ and the maximum number of generated candidate outputs |y| on
the accuracy and the average number of generated candidate outputs per view (shown in brackets).

t=0.9 t=1

Model ly| <4 lyl <9 ly| <16 ly| =16

f/a*y*;Z) RNN+CNN 40.8% (2.8) 68.3% (4.7) 71.3% (6.0) 71.0% (14.7)

Generalization Accuracy The results of our approach instantiated with various neural oracle mod-
els are shown in Table[2] The best model trained on the dataset Dg has almost the same accuracy as
InferUI with all its optimizations enabled. This means that it is possible to replace existing opti-
mizations and handcrafted robustness constraints by training on an easy to obtain dataset consisting
of correct outputs and their perturbations. More importantly, when training on the harder to obtain
dataset Dg. , the generalization accuracy more than doubles to 71% since the model can also condi-
tion on the input specification Z. However, the results also show that the design of the model using
the neural oracle is important for achieving good results. In particular, both MLP models achieve
poor accuracy since the high level handcrafted features adapted from the InferUI synthesizer are
not expressive enough to distinguish between correct and incorrect outputs. The CNN models achieve
better accuracy but are limited for the opposite reason, they try to learn all the relevant features from
the raw pixels which is challenging as many features require pixel level accuracy across large dis-
tances (e.g., whether two views in the opposite parts of the screen are aligned or centered). The
RNN model performs the best, especially when also having access to the input specification. Even
though it also processes low level information, such as distance or size difference between the views,
it uses a more structured representation that first computes individual view representations that are
combined to capture the whole output.

Number of Candidate Outputs We show the effect of different threshold values ¢ used by the neural
oracle to dynamically control whether to search for more candidate outputs as well as the maximum
number of candidate outputs in Table[3] We can see that using the threshold both slightly improves
the accuracy (4+0.3%) but more importantly, significantly reduces the average number of generated
candidate outputs from 14.7 to 6.0 using the same number of maximum generated outputs |y| = 16.

Incorporating User Feedback Even though our approach significantly improves over the InferUI
synthesizer, it does not achieve perfect generalization accuracy. This is because for many synthesiz-
ers the perfect generalization is usually not achievable — the correct program and its outputs depends
on a user preference, which is only expressed as severely underspecified set of input-output exam-
ples. For example, for a given input specification there are often multiple good layout programs
that do not violate any design guidelines and which one is chosen depends on a particular user. To
achieve 100% in practice, we perform an experiment where the user can inspect the input-output
examples generated by our approach and correct them if needed. Then, we simply count how many
corrections were required. The applications in our dataset have on average 12 views and for our
best model, no user corrections are required in 30% of the cases and in 27%, 15%, 12%, 5% of
the cases the user needs to provide 1, 2, 3 or 4 corrections, respectively. In contrast, InferUI with
all optimizations enabled requires on average twice as many user corrections and achieves perfect
generalization (i.e., zero user corrections) in only 3.5% of the cases.

6 CONCLUSION

In this work we present a new approach to improve the generalization accuracy of existing program
synthesizers. The main components of our method are: (i) an existing program synthesizer, (ii)
a refinement loop around that synthesizer, which uses a neural oracle to iteratively extend the input
specification with new input-output examples, and (iii) a neural oracle trained using an easy to
obtain dataset consisting of program outputs. To show the practical usefulness of our approach we
apply it to an existing Android layout synthesizer called InferUI (Bielik et al., 2018)) and improve
its generalization accuracy by 2x, from 35% to 71%, when evaluated on a challenging dataset of
real-world Google Play Store applications.
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APPENDIX

We provide two appendices. Appendix [A]contains an in depth description of the feature transforma-
tions for the MLP and RNN models. Appendix [B| provides visualizations of positive and negative
candidate outputs and the CNN regularization.

A FEATURE DEFINITIONS

In this section we describe in detail the feature transformations used in Section[d As mentioned in
SectionE]each view consists of the 4 coordinates: 7 (Zieft), Yt Ytop)s Tr (Tright)> Yo Woottom ). We
use v.w for the width, v.h for the height and v.r for the aspect ratio (v.w/v.h) of view v.

A.1 MLP

In Table ] we define the 7 feature types that lead to a vector of size 30 used in the MLP model. All
the features are normalized (divided) by the factor in the normalization column.

Table 4: Feature definitions for the MLP.

Size Name Description Normalization

1 Number of off-screen views - V|

3 Number of views with a spe- Instantiated for the ratios 1, V|

cific aspect ratio [3/4, 4/3] and [9/16, 9/16]

1 Number of view intersections  Pairwise comparison if two |V |2
views intersect  (without
counting fully contained
views.)

1 Number of views which have The same dimension is defined |V |2

the same dimension as: vi.w = ve.w A v1.h =
’Ug.h
1 vertical +  Number of view alignments Pairwise comparison if two V]2
1 horizontal views align (e.g. for verti-
cal alignment: vy.z; = vo.2; V
V1.2] = V2.2, VU1.Zp = V2.2V
V1.Lp = V2.Zp )
9 vertical +  Number of views with a spe- Instantiated for the margins 0, |V |2
9 horizontal  cific margin to another view 16, 28, 32, 40, 48, 60, 64 and
96.
1 vertical +  Number of centered views Pairwise comparison if one \4E
1 horizontal view is centered within an-
other view.
1 vertical +  Number of centered views be- Comparison if one view is vV

1 horizontal

tween two different views

centered between 2 other
VIEWS.

A.2 RNN

We formally define the 11 transformations used as the pairwise view feature vector ¢: R*xR* — R"
in the RNN model. These features capture properties like the view’s distance to the other view or the
size difference. The feature vectors extracted for each pair of views are combined to a fixed length
representation by passing them through the LSTM, in the decreasing order of view size. In Figure 3]
all the properties are listed and visualized.
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View 2
View 1 . 4 .
View 2 View 2
Distance Size difference Ratio
Name Description Formula

Distance Horizontal distance from one view to an-  dj(v1,v2) = v1.2; — V2.2
other view dip(v1,v2) = 0.2 — V2.2
dri(v1,v2) = v1.T—v2.2y
dpr(V1,v2) = V1T, —V2.T,
Vertical distance from one view to another  dy (v, vo = U1.Yr — V2.Ys
view dip(v1,v2) = v1.Yr — V2.Yp
dpt(v1,v2) = V1.Yp —V2.Ys
( = U1.Yp —V2.Yp

Size difference  Size difference of two views

Ratio

Relation of the aspect ratio

Sw (vla V2
Sh (Ul, V2

)
)
)
dpp(v1, v2)
)
)
)

r(vi, va

= V1w — v w
= Ul.hf’l)g.h

= v.r/vg.r

Figure 3: Definition of the pairwise view feature vector ¢: R* x R* — R™ used in the RNN model
(bottom) and their visualization (top).

To guide the model for f(v | x*, y*), we defined 17 more abstract features, adapted from InferUI,
which are defined using the simple transformations shown in Figure 3] Concretely, we define the
following 17 features:

For alignments (8 features: 4 horizontal, 4 vertical): Compare if view vy is aligned with vg,
such that one of the 4 distance functions is 0, e.g. dj;(v1,v2) =0

For centering (2 features: 1 horizontal, 1 vertical): Compare if view v; is centered in vg,

such that dy; (v, v2) = —dp(v1, V2).

For overlaps (4 features: 2 horizontal, 2 vertical): Check if the v; and vs can possibly
intersect, i.e. have overlapping x-coordinates in the horizontal case: vi.z; > vo.x; and

V1.2] < V9.2,

For the same size (2 features): Compare if the height or width difference of v; and vs is

equal to 0, such that s,,(v1,v2) = 0 and sp,(v1,v2) = 0.

For the same ratio (1 feature): Compare if the ratio v; and vo’s aspect ratios is 1, such that

r(vy,v) = 1.
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B VISUALIZATION

Here, we provide visualizations of two concepts introduced in Section [4]— the rendered output can-

didates and how the CNN input is shifted for regularization.

B.1 POSITIVE AND NEGATIVE OUTPUT CANDIDATES

Figure [4] visualizes four different rendered output candidates. The correct candidate is on the left
and the three incorrect ones are on the right. The candidates differ in their 6th view which is moved
around and overlaps in all of the three incorrect candidates. The three negative examples are gen-
erated by the synthesizer as described in Section [] (for dataset Dg) or applying perturbations
sampled from the synthesizer mistakes (for dataset D).

vs‘

V6

A\

[ v |

Correct

Incorrect Incorrect

Figure 4: One positive example (left) and 3 negative examples (right).

B.2 CNN REGULARIZATION

Figure 5] visualizes how the robustness of the CNN is increased by placing the input randomly within

the input image as described in Section 4]

392

Figure 5: Illustration of three possible shifts (denoted by different colors) of the CNN input used

during training.
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