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ABSTRACT

Causal reasoning has been an indispensable capability for humans and other in-
telligent animals to interact with the physical world. In this work, we propose to
endow an artificial agent with the capability of causal reasoning for completing
goal-directed tasks. We develop learning-based approaches to inducing causal
knowledge in the form of directed acyclic graphs, which can be used to contex-
tualize a learned goal-conditional policy to perform tasks in novel environments
with latent causal structures. We leverage attention mechanisms in our causal
induction model and goal-conditional policy, enabling us to incrementally generate
the causal graph from the agent’s visual observations and to selectively use the
induced graph for determining actions. Our experiments show that our method
effectively generalizes towards completing new tasks in novel environments with
previously unseen causal structures.

1 INTRODUCTION

Causal reasoning is an integral part of natural intelligence. The capacity to reason about cause and
effect has been observed in humans and other intelligent animals as a means of survival (Blaisdell
et al., 2006; Taylor et al., 2008). Such capacity plays a crucial role for young children in their
interaction with the physical world. As behavioral psychology studies have shown, young children
discover the underlying causal mechanisms from their play with the world (Schulz & Bonawitz, 2007),
and their knowledge of causality in turn facilitates their subsequent learning of objects, concepts,
languages, and physics (Rehder, 2003; Corrigan & Denton, 1996).

Nowadays, data-centric methods in artificial intelligence, such as deep networks, have achieved
tremendous success in learning associations between inputs and outputs from large amounts of data,
such as images to class labels (He et al., 2016). However, empirical evidence indicates that the absence
of correct causal modeling in these methods has posed a major threat to generalization, causing image
captioning models to generate unrealistic captions (Lake et al., 2017), deep reinforcement learning
policies to fail in novel problem instances (Edmonds et al., 2018), and transfer learning models to
adapt slower to new distributions (Bengio et al., 2019).

In this work, we propose to endow a learning-based interactive agent with the capacity of causal
reasoning for completing goal-directed tasks in visual environments. Imagine that a household robot
enters a new home for the first time. Without prior knowledge of the wiring configuration, it has to
toggle the switches and sort out the correspondences between lights and switches, before it can be
commanded to turn on the kitchen light or the bathroom light. We refer to the first phase of toggling
switches as causal induction, where the agent discovers the latent cause and effect relations via
performing actions and observing their outcomes; and we refer to the second phase of turning on
specific lights as causal inference, where the agent uses the acquired causal relations to guide its
actions for the completion of a task. To build an effective computational model for causal induction
and inference, we have to address generalization towards novel causal relations and new task goals at
the test time, both of which can be unseen during training.

We cast this as a meta-learning problem of two phases following Dasgupta et al. (2019). In the first
stage, we use a causal induction model to construct a causal structure, i.e., a directed acyclic graph
of random variables, from observational data from an agent’s interventions. In the second stage, we
use the causal structure to contextualize a goal-conditional policy to perform the task given a goal.
However, in contrast to Dasgupta et al. (2019) we explicitly construct the causal structure instead of a
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Figure 1: Overview of Causal Induction and Inference Procedure. During training each episode
samples one of K training environments and uses the interaction policy πI to probe the environment
and collect a trajectory of visual observations. Using supervised learning we train the causal induction
model F , which takes as input the trajectory of observational data and constructs Ĉ, the estimate of
Ck

train, which captures the underlying causal structure. Then, the predicted structure Ĉ is provided
as input to the policy πG conditioned on goal g, which learns to use the causal model to efficiently
complete a specified goal in the training environments. At test time, F and πG are fixed and the agent
is evaluated on new environments with unseen causal structures.

latent feature encoding, leading to substantially better generalization towards new problem instances
in long-horizon tasks as opposed to simplistic one-step querying.

To this end, we propose two technical contributions: 1) an iterative causal induction model with atten-
tion, which learns to incrementally update the predicted causal graph for each observed interaction in
the environment, and 2) a goal-conditioned policy with an attention-based graph encoding, forcing
it to focus on the relevant components of the causal graph at each step. We find that by factorizing
the induction and inference processes through the use of causal graphs, it generalizes well to unseen
causal structures given as few as 50 training causal structures. We compare our approach to using the
ground-truth causal structure (which provides oracle performance), a non-iterative architecture which
directly predicts the causal structure, and encoding the observation data into the LSTM (Hochreiter
& Schmidhuber, 1997) memory of the policy similar to prior work (Dasgupta et al., 2019). We
demonstrate that our method outperforms the baselines and achieves close to oracle performance
in terms of both recovering the causal graph and success rate of completing goal-conditioned tasks,
across several task sizes, types, and number of training causal structures.

2 PROBLEM STATEMENT

We formulate the agent’s interaction in a Goal-Conditioned Markov Decision Process (MDP) defined
by a six tuple (S,A, p,G, r, γ), where S is the state space, A is the action space, p : S × A → S
defines the transition dynamics, G is the goal space, r : S ×A× G → R is a reward function where
r(s, a, g) gives the one-step immediate reward conditioned on the goal g ∈ G, and γ is the discount
factor. Our goal is to learn a goal-conditioned policy πG : S × G → A that maximizes the expected
sum of rewards Rt =

∑∞
k=t γ

k−tr(sk, ak, g).

In this work, we not only want πG to generalize well across goals in G, but consider a more ambitious
aim of making πG generalize across a set of MDPs. We considerM = {M (1),M (2), . . . ,M (K)}
as the entire set of K MDPs with the same state space and action space but different transition
dynamics, where M (k) is defined by (S,A, p(k),G, r, γ). The dynamics p(k) determines underlying
causal relations between states and actions. Taking the same action at the same state could lead to
a different next state under a different dynamics. We expect our agent to operate on its first-person
vision and has no access to the latent causal relations. It receives high-dimensional RGB observations

2



Under review as a conference paper at ICLR 2020

𝐶"#

𝑎%𝑅%

𝐶"' 𝐶"

state
residual

Attention
𝛼

Per node 
weighting

action 𝑎)𝑅)

Edge Decoder

Edge 
Update
Δ𝑒

Predicted 
Graph 
Update

Flattened 𝐶"'

Observation
Encoder

Observation
Encoder

Observation
Encoder

Edge
Decoder

Transition
Encoder

Edge
Decoder

Edge
Decoder

𝐶"
Encoder

Transition
Encoder

t = 1 t = 2 t = 3 t = H
Input

Induced
Causal Graph

Figure 2: Iterative Causal Induction Network. Our iterative network architecture for inducing the
causal structure from a visual trajectory of observational data with horizon H . First each frame is
encoded into a latent state embedding s. Then the difference between state embeddings across time
steps (state residual) is computed, and concatenated with the corresponding action. This is fed into
the Edge Decoder module, which predicts an edge update, as well as an attention vector which is
used to weight how the edge update is applied to nodes. On the last step one more edge update based
on the current graph is applied, and a final predicted graph is outputted.

and has to induce a causal model from observational data. As illustrated in Figure 1, the overall
procedure has two stages: 1) we execute an interaction policy πI to collect a sequence of transitions
τ = {(s1, a1), (s2, a2), . . .}, which is consumed by an induction model F to construct a latent causal
model Ĉ = F (τ); and 2) we use the causal model Ĉ to contextualize a goal-conditioned policy πG
such that it can perform tasks in the new MDP with novel causal relations. We formulate this as a
meta-learning problem (Dasgupta et al., 2019; Finn et al., 2017). We partition the set of all MDPs
M into two disjoint setsMtrain andMtest. During training, we learn our induction model F and
goal-conditioned policy πG withMtrain. During testing, we evaluate whether F is able to learn
from the observational data from πI in a novel MDP fromMtest to construct a causal model that can
be used by πG to perform tasks in this new MDP.

Direct modeling of causal relations in raw pixel space is intractable due to the large dimensionality.
Following Chalupka et al. (2014), we assume that cause and effect in our problems can be defined on
a handful of causal macro-variables. For example, the illuminance of the kitchen (the agent’s visual
observation) is determined by the on and off of the kitchen light (macro-variable), which is caused
by toggling the state of the switch that controls the light (another macro-variable). This assumption
enables us to construct a directed acyclic causal model Ĉ to represent the causal effects of actions on
these macro-variables. Given the set of macro-variables, the induction model F predicts directed
edges between them from visual observations. A primary challenge here is the confounders raised
from partial observability and spurious correlations in the agent’s visual perception. For example,
illuminance changes in the kitchen might be due to turning on/off the kitchen light or the living room
light. Hence, it requires the agent to disentangle the correct causal relations from visual inputs.

3 METHOD

The goal of our method is to enable a policy to complete goal-conditioned vision-based control tasks
in environments with unseen causal structures, given only a short trajectory of observational data
in the environment. Prior work (Dasgupta et al., 2019) has shown promising results on simplistic
one-step querying problems using an LSTM-based policy which encodes the interaction into the
policy’s memory. Our hypothesis is that to generalize in complex multi-step control problems, a more
structured induction and policy scheme will be required. To address this, we propose iterative updates
and attention bottlenecks in the induction model Ĉ = F ({(s1, a1), (s2, a2), . . .}) and in the policy

3



Under review as a conference paper at ICLR 2020

a = πG(s, g, Ĉ) respectively, which we demonstrate significantly improves generalization to unseen
causal structures.

3.1 ITERATIVE CAUSAL INDUCTION NETWORK

Inducing the causal structure from raw sensory observations requires accurately capturing the unique
effect of each action on the environment, while accounting for confounding effects of other actions.
We hypothesize that the causal induction network that best generalizes will be one which disentangles
individual actions and their corresponding effect, and only updates the relevant components of the
causal graph.

We implement this idea in our iterative model, where we begin with an initial guess of the causal
structure Ĉ which has all edge weights of 0 (meaning we assume no causal relationships). We
then use an Observation Encoder to map each image of the observational data to an encoding s and
compute the state residual R between subsequent time steps. This R, which captures the change in
state is then concatenated with the corresponding action, and then fed into the Edge Decoder module.
The output of the Edge Decoder module is an update to the edge strengths of the causal graph ∆Ĉ.
This update is applied to each observed transition, that is Ĉt+1 = ∆Ĉ + Ĉt, and at the final layer the
whole graph is encoded to do a final edge update before the causal graph is predicted (see Figure 2).
The Edge Decoder takes either the encoded R and a, or the encoded edge matrix of ĈH , and outputs
a 1×N soft attention vector α and a 1×N change to the edge weights ∆e, where N is the number
of actions in the environment. The attention vector α is used to weight which nodes in the causal
graph the edge update ∆e should be applied to. Thus at each iteration the update amounts to:

Ĉt+1 = (αT ∆e) + Ĉt, α = φ(R, a)

where φ is the Transition Encoder, a fully connected module (see Appendix A for details). Using this
attention mechanism further encourages the module to make independent updates, which we observe
enables better generalization.

3.2 LEARNING GOAL-CONDITIONED POLICIES

The objective of the policy is given an initial image s0, a goal image g, and the predicted causal
structure Ĉ, reach the goal within T time steps. Additionally, the policy πG(s, g, Ĉ) is a reactive one,
and thus can only solve the goal-conditioned task if it can learn to use the predicted causal structure
Ĉ. That is — since the policy has no memory, it cannot learn to induce the graph internally during
inference time, and thus must use the causal graph Ĉ.

We hypothesize that like the causal induction model, the policy which best generalizes is one which
learns to focus exclusively on the edges in the causal graph which are relevant to the current step of
the task. To that end we propose an attention bottleneck in the graph encoding, which encourages the
policy to select edges pertaining to one “effect” at each step, which enables better generalization.

Specifically, the policy encodes the current image s and goal image g. Based on this encoding it
outputs an attention vector α of size 1×N over the “effects” in the causal graph. This vector is used
to perform a weighted sum over the outputs of the N ×N causal graph (N causes, N effects, and
edges between them), resulting in a size N vector of the selected edges e. The selected edges and
visual encodings are used to output the final action:

a = φ3(E(s, g), φ2(e)), e = Ĉ · αT , α = φ1(E(s, g))

where E has identical architecture to the image encoder as F , but which encodes both current and
goal image and φi are all fully connected layers (see Figure 3).

3.3 MODEL TRAINING

The induction network F is trained using supervised learning in the limited set of training environ-
ments, specifically to minimize the `2 reconstruction loss between the ground-truth causal graph C
and the predicted causal graph Ĉ = F ({(s1, a1), (s2, a2), . . .}).

The policy πG is trained using the DAgger (Ross et al., 2010) algorithm by imitating a planner using
the ground-truth causal graph in the training environments. Then πG is tested in unseen environments
with only visual inputs and goal images. Specifically, in the training environments, the planner uses
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Figure 3: Types of Causal Structures (Left) We explore four types of causal structures, ONE-TO-
ONE, ONE-TO-MANY, MANY-TO-ONE, and MASTERSWITCH. These cover a standard causal
mapping, common cause causal patterns, common effect causal patterns, and causal chains. Goal-
Conditioned Policy (Right). The policy takes as input the current image, goal image, and predicted
causal graph Ĉ. The current image and goal image are concatenated channel wise and encoded. This
encoding is used to predict an attention vector over the “effects” in Ĉ which extract the relevant
edges, which is then concatenated with the image encoding to predict the action.

the ground-truth graph and privileged low dimensional state/goal information to compute an optimal
plan to the goal. At each time step, the expert’s action is added to the memory of the policy, which
is then trained using a standard cross entropy loss to imitate the expert given the current image and
goal image. The policy is also injected with ε-greedy noise during training, with ε = 0.3. Network
architectures and additional training details can be found in the appendix.

4 EXPERIMENTS

Through our experiments, we investigate three complementary questions: 1) Does our iterative
induction network enable better causal graph induction?, 2) Does our attention bottleneck in the
graph encoding in πG enable the policy to generalize better to unseen causal structures?, and 3) By
combining our proposed F and πG, are we able to outperform the current state-of-the-art Dasgupta
et al. (2019) on visual goal-directed tasks?

4.1 EXPERIMENTAL SETUP

Task Definition: We examine the multi-step task of light switch control. In particular an agent has
control of N switches (macro-variables) , which have some underlying causal structure of how they
control N lights (macro-variables). However, the macro-variables of the lights manifest themselves in
noisy visual observations, whose partial observability and overlap result in confounding factors. The
objective of the agent is starting from an initial state s0, to control the switches to reach a specified
lighting goal g, where both the state and goal are 32× 32× 3 images. However as specified in the
problem setup, the underlying causal structure is unknown to the agent, all that is provided is limited
observational data from the environment. Thus the agent must (1) induce the causal structure between
the switches and lights from the observational data, then (2) use it to reach the goal.

We explore 4 different types of causal patterns between the switches and lights (See Figure 3). The
first type of causal structure is ONE-TO-ONE, in which each switch maps to one light. The second
type of causal structure is MANY-TO-ONE (Common Effect (Keil, 2006)), where each switch controls
one light, but multiple switches may control the same light. The third type is ONE-TO-MANY
(Common Cause (Keil, 2006)), where all lights are controlled by at most one switch, but a single
switch may control more than one light. Lastly, we also explore the MASTERSWITCH domain in
which there is a Causal Chain (Keil, 2006) where only once one master switch is activated can the
other switches causal effects be observed, applied on top of a ONE-TO-ONE causal structure. In our
method we represent the causal structure C as a graph with directed edges between N switch states
and N light states in the environment, with edge strength corresponding to the likelihood that that
switch controls the indicated light, with an additional N edges in the MASTERSWITCH setting.
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Figure 4: F1 Score on Unseen Causal Structures. The F1 Scores of edges on the predicted causal
structure compared to the ground-truth on unseen causal structures. We compare across variable
numbers of seen structures {10, 50, 100, 500} and problem size {5, 7}. Our iterative approach with
attention outperforms the comparisons across almost all settings.

Environment Setup: The trajectory of observational data from which we induce the causal structure
is in visual space, consisting of a 32× 32× 3 image as well as an size A = N action vector for each
timestep of the H timestep trajectory. The visual scene consists of the N lights mounted in a MuJoCo
(Todorov et al., 2012) simulated house with 3 rooms, where the lights are mounted in the rooms and
hallway, and the effect of each light is rendered onto the floor when they are turned on, which is
captured by a top down camera. The illumination from the lights overlap, resulting in confounding
factors, which must be disentangled by the model in order to correctly predict the causal structure.
The state space (and goal space) of the policy are also 32× 32× 3 images of the same environment
and camera. The action space A consists of size N , one discrete action for each switch. During
policy learning, the goals are sampled uniformly from the space of possible lighting configurations
under the environments causal structure, i.e., the set of all reachable states in the environment.

Collecting Observational Data: The observational data is collected using a heuristic interaction
agent πI , which executes a simple policy. In the all but the MASTERSWITCH case, the policy simply
takes each action once (horizon H = N ). In the MASTERSWITCH setting the exploratory agent
presses each switch until one has an effect on the environment, and then proceeds to press each of the
other switches (horizon up to H = 2N − 1).

4.2 EVALUATION METHODS

We evaluate the following methods and baselines to examine the effectiveness of our causal induction
model and goal-conditioned policy.

First to examine how much our iterative causal induction network (ICIN) improves performance on
inducing the causal graph we compare against a non-iterative induction model which uses temporal
convolutions (TCIN), as well as an ablation of our method which uses an iterative model without
the attention mechanism (ICIN (No Attn)). We compare these approaches based on F1 score of
recovering the ground-truth causal graph.

Next, we compare the performance of the goal conditioned policy using all variants (ICIN, ICIN
(No Attn), TCIN), compared to the previous work of Dasgupta et al. (2019) which induces the graph
using the latent memory of the policy (Memory). Specifically, we provide the policy πG with LSTM
memory, and before running DAgger, feed the interaction trajectory one step at a time through the
policy. This end-to-end approach allows the causal graph to be encoded into the latent memory of the
policy, to be used when doing a goal-directed task. We also compare to Memory (RL/Low Dim),
a version of Dasgupta et al. (2019) which has access to privileged state information (ground-truth
states), and is trained using model-free reinforcement learning with a dense reward. In this setting the
same visual interaction trajectory is encoded into the policy’s LSTM memory, but the actual policy
receives a binary vector for state and goal and is trained using the PPO algorithm (Schulman et al.,
2017). We also add a comparison to using the ground-truth causal graph (even at test time) as an
Oracle (Oracle), which provides an upper bound on performance. All methods are compared based
on success rates in unseen environments. Implementation details can be found in Appendix B.
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Figure 5: Policy Success Rates (Unseen Causal Structures). The final success rates of the goal-
conditioned policy for each method on unseen causal structures for either 10, 50, 100, or 500 seen
causal structures for 5 or 7 switches. Our iterative approach achieves the best generalization on
unseen tasks across almost all settings.

Lastly, to understand how critical the attention bottleneck in the goal-conditioned policy is for
generalization, we compare the success rates in unseen causal structures of the goal-condition policy
using a graph induced by ICIN, with and without the attention bottleneck.

4.3 CAUSAL INDUCTION EVALUATION

First we examine our approach’s ability to induce the causal model from the trajectory of observational
data. We report the F1 score (threshold=0.5) between edges of the predicted causal graph and ground-
truth causal graph. We compute the F1 scores across up to 100 unseen tasks given 10, 50, 100, or
500 seen structures in the 5 and 7 switch problems (see Figure 4). We observe that across almost all
settings, our iterative approach with attention (ICIN) dominates. While our method without attention
generally outperforms the non-iterative baseline, both fall significantly behind our final approach,
suggesting that the modularity that attention provides plays a large role in enabling generalization.
Furthermore, we observe that our iterative attention approach especially outperforms the others when
there are less training causal structures, which would suggest that by forcing the network to make
independent updates, it is able to learn a general method for induction with limited training examples.
This is likely because the attention forces the model to learn to update a single edge given a single
observation, while being agnostic to the total graph, which is far less likely to overfit to the training
structures. Qualitative examples of ICIN can be found in Appendix C.

4.4 GOAL-CONDITIONED POLICY EVALUATION

We examine the success rate of the converged policy πG on 500 trials in unseen causal structures
with randomized goals in Figure 5. We observe in most settings that the Memory based approach
of Dasgupta et al. (2019) provides a strong baseline, outperforming the TCIN and ICIN (No Attn)
baselines. We suspect that it learns that to best imitate the expert, it has to encode relevant information
from the interaction trajectory into its latent memory, implicitly performing induction. While this
works, it generalizes to unseen structures much worse than our proposed method, likely due to
the compositional structure of our approach. The memory baseline which uses low dimensional
states (Memory (RL/Low Dim)), and is trained via model-free RL also performs well, in fact
beating our approach on a few cases in the 7 switch, MANY-TO-ONE setting. However in general
the performance of this approach is much lower than ours, and likely the cases in which it does
succeed can be attributed to its use of privileged information (ground-truth states) instead of visual
observations. In almost all cases ICIN significantly outperforms all baselines. In fact, in the 5 switch
case our ICIN method nearly matches the Oracle, suggesting that it almost perfectly induces C.

Finally, we study the importance of our proposed attention bottleneck in the graph encoding in
πG(s, g, Ĉ) , which forces the policy to focus on only relevant edges at each timestep. We examine
the success rate of using πG with the attention bottleneck compared to just flattening Ĉ given the
current image, goal image, and predicted causal graph from ICIN.
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πG 1:1 1:K K:1 MS
No Attn 0.84 0.51 0.59 0.90
Ours 1.0 0.95 0.94 0.98

Table 1: Policy Attention Bottleneck.
We observe in that across all settings using
the attention bottleneck in the graph en-
coder of the policy significantly improves
performance. Tested on 5 switches and 50
seen structures.

We find that using the attention bottleneck in the graph
encoder of πG yields a roughly 10% increase in success
rate in the ONE-TO-ONE (1:1) and MASTERSWITCH
(MS) cases, and a roughly 40% increase in success rate
in the ONE-TO-MANY (1:K) and MANY-TO-ONE (K:1)
cases. This is because by encouraging the policy to pick
relevant edges, it has led to a modular policy which can
1) identify the changes it wants to make in the environ-
ment and 2) predict the necessary action based on the
causal graph Ĉ, enabling better generalization.

5 RELATED WORK

Causal reasoning has been extensively studied by a broad range of scientific disciplines, such as social
sciences (Yee, 1996), medical sciences (Kuipers & Kassirer, 1984), and econometrics (Zellner, 1979).
In causality literature, structural causal model (SCM) (Pearl, 2009) has offered a formal framework
of modeling causation from statistical data and counterfactual reasoning. SCMs are a directed graph
that represents causal relationships between random variables. Both causal induction (constructing
SCMs from observational data) (Shimizu et al., 2006; Hoyer et al., 2009; Peters et al., 2014; Ortega
& Braun, 2014) and causal inference (using SCMs to estimate causal effects) (Bareinboim et al.,
2015; Bareinboim & Pearl, 2016) algorithms have been developed. Conventional methods have
limited applicability in complex domains where observational data is high-dimensional and partially
observable. Recent work has shown that causal learning can take advantage of the representational
power of deep learning methods for inducing causal relationships from interventions (Dasgupta et al.,
2019) and for improving policy learning via counterfactual reasoning (Buesing et al., 2018). However,
they have focused on toy-sized problems with low-dimensional states. In contrast, our model induces
and makes use of the causal structure for complex interactive tasks from raw image observations.

Lake et al. (2017) are among the first to discuss the limitations of state-of-the-art deep learning models
in causal reasoning. There has been a growing amount of efforts in marrying the complementary
strengths of deep learning and causal reasoning. Causal modeling has been explored in several
contexts, including image classification (Chalupka et al., 2014), generative models (Kocaoglu et al.,
2017), robot planning (Kurutach et al., 2018), policy learning (Buesing et al., 2018), and transfer
learning (Bengio et al., 2019). Pioneer work on causal discovery with deep networks has applied to
time series data in healthcare domains (Kale et al., 2015; Nauta et al., 2019). In addition, adversarial
learning (Kalainathan et al., 2018), graph neural networks (Yu et al., 2019), and gradient-based DAG
learning (Lachapelle et al., 2019) have been recently introduced to causal discovery, but largely
focusing on small synthetic datasets. Most relevant to ours are Dasgupta et al. (2019) and Edmonds
et al. (2018), which investigated causal reasoning in deep reinforcement learning agents. In contrast to
them, our method directly learns an explicit causal structure from raw observations to solve multi-step,
goal-conditioned tasks.

Generalization to new environments and new goals has been a central challenge for learning-based
interactive agents. This problem has been previously studied in in the context of domain adapta-
tion (Tzeng et al., 2015; Peng et al., 2017), system identification (Yu et al., 2017; Zhou et al., 2019),
meta-learning (Finn et al., 2017; Sæmundsson et al., 2018), and multi-task learning (Andrychowicz
et al., 2017; Schaul et al., 2015). These works have addressed variations in dynamics, visual appear-
ances, and task rewards, while assuming fixed causal structures. Instead, we focus on changes in the
latent causal relationships that determine the preconditions and effects of actions.

6 CONCLUSIONS

We have proposed novel techniques for 1) causal induction from raw visual observations and 2) causal
graph encoding for goal-conditioned policies, both of which lead to better generalization to unseen
causal structures. Our key insight is that by leveraging iterative predictions and attention bottlenecks,
it facilitates our causal induction model and goal-conditioned policy to focus on the relevant part of
the causal graph. Using this approach we show better generalization towards novel problem instances
than previous works with limited training causal structures.

In this work, we induce the causal structure from observational data collected by a heuristic policy.
We plan to explore more complex tasks where probing the environment to discover the causal structure
requires more sophisticated strategies, and develop algorithms that jointly learn the interaction policy.
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A ARCHITECTURE DETAILS

A.1 INDUCTION MODELS

A.1.1 OBSERVATION ENCODER

The image encoder used in all models takes as input a 32 × 32 × 3 image of the scene, feeds it
through 3 convolutional layers with each followed by ReLU activation and 2× 2 Max Pooling. The
output filters of the convolutions are 8, 16, and 32 respectively, and the resulting 4× 4× 32 tensor is
mapped to latent vector of size N using a single fully connected layer, where N is the number of
switches/lights.

A.1.2 ICIN TRANSITION ENCODER

The transition encoder used in our iterative model takes as input a state residual of dimension N and
an action of size N + 1 concatenated together, and feeds it through fully connected layers of size
1024 and 512 each with ReLU activation, followed by another layer which outputs an attention vector
of size N (or N + 1 in the MASTERSWITCH case) with SoftMax activation and an edge update of
size N with Sigmoid activation. The first two layers are trained with dropout of 30%.

A.1.3 ICIN Ĉ ENCODER

The causal graph encoder used in the last step our iterative model takes as input the N × N (or
N +N ×N in the MASTERSWITCH Case) flattened edge weights of the current graph ĈH and feeds
them though a single fully connected layer, which outputs an attention vector of size N (or N + 1
in the MASTERSWITCH Case) with SoftMax activation and an edge update of size N with Sigmoid
activation.

A.1.4 ICIN (NO ATTN)

The non-iterative ablation of our method has an identical architecture, but instead of the third fully
connected layer outputting an attention vector of size N with SoftMax activation and an edge update
of size N with Sigmoid activation, it instead updates a full set of N ×N edge weights with Sigmoid
activation.

A.1.5 TCIN

The temporal convolution induction network uses the same image encoder as our approach. However
the size N state encodings are then concatenated with the size N + 1 action labels, and then are
passed through three layers of temporal convolutions, with filter size [256, 128, 128] and a size 3
kernel with stride 1. The horizon H by 128 dimensional output is then flattened and fed through fully
connected layers of size 1024 and 512, each with 30% dropout. Finally, the size N ×N causal graph
is outputted with Sigmoid activation.

A.2 POLICY ARCHITECTURE

A.2.1 ATTENTION BASED πG

The same image encoder as the induction models is used for the policy, except as input it takes a
32 × 32 × 6 image which contains the current image and goal image, concatenated channel wise.
The encoded image is then flattened and fed through a fully connected layer of size 128, which then
outputs an attention vector of size N , which is used to do a weighted sum over the edges of the
N ×N causal graph, producing a vector of size N . This is then encoded to size 128, concatenated
with the 128 dim image encoding, and def through 2 more fully connected layers of size 64 and
ultimately outputting the final action prediction of size N .

In the non attention version the architecture is identical except the full graph is flattened, then encoded
and concatenated directly with the image encoding.

A.3 MEMORY BASELINE

In this baseline we use an image encoder as above, except there is an additional input for action.
There is also an LSTM Cell of hidden dimension 256 which the image encoding and action encoding
are fed into, which is then fed through fully connected layers of size 256, 64 which output the action.

12



Under review as a conference paper at ICLR 2020

A.4 MEMORY (RL/LOW DIM) BASELINE

The policy is a MLP-LSTM policy as implemented in Hill et al. (2018), with two fully connected
layers of size 64, and an LSTM layer with 256 hidden units. It is augmented with additional input
heads for each step of the observational data, namely 32× 32× 3 images and size N actions.

B TRAINING DETAILS

B.1 CAUSAL INDUCTION MODEL (F ) TRAINING

Each causal induction model is trained for each split of seen/unseen causal structures as described in
the experiments. The F is trained offline on all τktrain and corresponding Ck

train, for 60000 training
iterations using Adam optimizer (Kingma & Ba, 2015) with learning rate 0.0001 and batch size 512.
They are implemented using PyTorch (Paszke et al., 2017) and trained on an NVIDIA Titan X GPU.

B.2 DAGGER POLICY TRAINING

The policies trained with DAgger (Ross et al., 2010) are trained in the training environments with
episode horizon T = 2N . The policy takes actions in the environment, and at each step an expert
action is appended to the policy’s memory buffer. The policy is then trained to imitate the experience
in the memory. The expert uses the ground-truth causal graph and ground-truth low dimensional
states to compute the difference between the goal and current state, and based on the graph what
action needs to be taken. Each policy is trained for 100000 episodes, with learning rate 0.0001 and
batch size from the memory of 32.

B.3 RL POLICY TRAINING

The Memory (RL/Low Dim) baseline is trained using the Proximal Policy Optimization algo-
rithm (Schulman et al., 2017) as implemented in Stable-Baselines (Hill et al., 2018). They use
hyper-parameters γ = 0.99, 128 steps per update, entropy coefficient 0.01, learning rate 0.00025,
value function coefficient 0.0001 and λ = 0.95. The policy itself consists of two fully connected
layers of size 64, as well as an LSTM layer consisting of a 256 size hidden state. The policy is
trained until the policy performance converges on unseen causal structures, and capped at a max of 9
million episodes. In this experiment, we set the horizon T of each episode equal to the number of
switches/lights N .

C CAUSAL INDUCTION QUALITATIVE EXAMPLES

Here we demonstrate an example trajectory and how the causal induction model iteratively builds the
causal graph.

Switch 1

Observation

Action Switch 2 Switch 3 Switch 4 Switch 5

Predicted 
Graph 
Update

Figure 6: Sample of Causal Induction. Here we show an example of our Iterative Causal Induction
Model for 5 switches, in the “One-to-Many” case. Given the trajectory of actions and images of
the scene, the model needs to reason about which lights were turned on, and how what update this
implies in the graph. In this example, the first observed action turns on one of the switches, and the
model makes the corresponding update to the graph. The next switch does not change the lighting
so the model outputs no update to the graph. The next action sees one light go on, and updates the
corresponding switch. The next action turns on two lights, and the graph is updated to reflect this.
Lastly, since one light remains unaccounted for, the model knows to add that edge to the graph. Note:
The edges and updates are soft updates, but the model learns to predict close to exactly 1 for edges
and exactly 0 for non-edges.
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