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ABSTRACT

A typical experiment to study cognitive function is to train animals to perform
tasks, while the researcher records the electrical activity of the animals neurons.
The main obstacle faced, when using this type of electrophysiological experiment
to uncover the circuit mechanisms underlying complex behaviors, is our incom-
plete access to relevant circuits in the brain. One promising approach is to model
neural circuits using an artificial neural network (ANN), which can provide com-
plete access to the “neural circuits” responsible for a behavior. More recently,
reinforcement learning models have been adopted to understand the functions of
cortico-basal ganglia circuits as reward-based learning has been found in mam-
malian brain. In this paper, we propose a Biologically-plausible Actor-Critic
with Episodic Memory (B-ACEM) framework to model a prefrontal cortex-basal
ganglia-hippocampus (PFC-BG) circuit, which is verified to capture the behav-
ioral findings from a well-known perceptual decision-making task, i.e., random
dots motion discrimination. This B-ACEM framework links neural computation
to behaviors, on which we can explore how episodic memory should be considered
to govern future decision. Experiments are conducted using different settings of
the episodic memory and results show that all patterns of episodic memories can
speed up learning. In particular, salient events can be prioritized to propagate re-
ward information and guide decisions. Our B-ACEM framework and the built-on
experiments give inspirations to both designs for more standard decision-making
models in biological system and a more biologically-plausible ANN.

1 INTRODUCTION

A hallmark of higher brain function is the ability to form decisions from sensory inputs to guide
appropriate behavioral responses. Understanding the relationship between an animal’s behavioral
responses, and how this is encoded in the brain, is a major goal in neuroscience. Neurophysiologists
have began to undertake studies on behavior training of nonhuman primates in a variety of decision
tasks, such as perceptual discrimination (Shadlen & Newsome, 2001; Romo et al., 2004; Heekeren
et al., 2008). These electrophysiological experiments have uncovered neural signals at the single-
neuron level that are correlated with specific aspects of decision computation. However, in the
mammalian brain, a decision is not made by single neuron, but by the collective dynamics of a
neural circuit. Unfortunately, the animal experiment does not allow us to access to a complete
record of all relevant neural circuits in the brain. Therefore, neural circuit modeling using ANN can
provide a valuable tool to uncover circuit mechanisms underlying complex behaviors.

Reinforcement learning (RL) has greatly influenced the neuroscience study of recognitive function,
which integrates computational modeling and empirical research in neuroscience. A wide array
of evidence shows that the cortico-basal ganglia circuit appears to implement RL algorithm
(O’Doherty et al., 2004; Sohal et al., 2009), which is driven by a reward prediction error (RPE).
This RPE signal, conveyed by dopamine, is thought to gate Hebbian synaptic plasticity in the
striatum (PR Montague & Sejnowski, 1996). Over the last decade, this approach has produced
explicit models to understand the functions of dopamine and cortico-basal ganglia circuits (Cohen
& Frank, 2009; Maia, 2009). Recent functional magnetic resonance imaging (fMRI) studies in
humans revealed that the activation in the hippocampus, a central for storing episodic memory
(Paller & Wagner, 2002)), is modulated by reward, which demonstrates a link between episodic
memory and RL (Wittmann et al., 2005; Krebs et al., 2009). However, the existing RL models
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does not take into account the effect of episodic memory, which is necessary for those who want to
explore cognitive functions using modeling circuits.

In this paper, we propose a Biologically-plausible Actor-Critic with Episodic Memory (B-ACEM)
(Figure 1, right), based on biological anatomy and RL algorithms for artificial systems, to model
cortico-basal ganglia-hippocampus circuits (Figure 1, left). B-ACEM is an actor critic-based frame-
work modeled by recurrent neural network (RNN), which is a natural class of models to study mech-
anisms in neuroscience systems because they are both dynamical and computational (Mante et al.,
2013). This framework was trained for a classical perceptual decision-making task, i.e. random dots
motion discrimination, in which a monkey is asked to arbitrarily choose the direction (left or right)
of a flow of moving dots. We show that an agent that accesses episodic memories reproduces qual-
itative results including (i) psychometric function, a tool for analyzing the relationship between ac-
curacy and stimulus strength (Figure 3, top), and (ii) chronometric function, a tool for analyzing the
relationship between response time and stimulus strength (Figure 3, bottom). We need to empha-
size that, unlike most machine learning applications, our aim in training B-ACEM framework
is not simply to maximize its performance, but to train networks so that their performance
matches that of behaving animals while the architecture is as close to biological systems as pos-
sible. On the other hand, anatomical and electrophysiological studies in animals, including humans,
suggest that the episodic memory in the hippocampus is critical for adaptive behavior. Yet existing
theory fails to describe how the brain selects experiences, from many possible options, to govern the
decisions that are made. To address this gap, we investigated which episodic memories should be
accessed to enable the most rewarding future decisions using the validated, biologically plausible B-
ACEM model. The results show that all patterns of episodic memories can speed up learning, where
salient events in memory replay are prioritized to propagate reward information and guide decisions.

2 BIOLOGICALLY-PLAUSIBLE ACTOR-CRITIC WITH EPISODIC MEMORY

2.1 RECURRENT NEURAL NETWORK

In this section, we present an RNN unit in biological contexts. Some neuroscientists have introduced
RNNs into the field of neuroscience systems. Wilson & Cowan (1972) initially exploited a recurrent
neural network to describe the average firing rate of neural populations in a biological context. A
more modern and general definition of an RNN unit is given by (Sussillo, 2014):

τ
dx

dt
= −x+W recr +W inu+ b, (1)

where the ith component, xi, of the vector x, can be viewed as the the sum of the filtered synaptic
currents at the soma of a biological neuron. The variable ri is the instantaneous, positive firing
rate, which is obtained by a threshold-linear activation function [x]+ = max(0, x). The vector u
presents the external inputs to the network. Each unit in the network receives a bias, bi. The time
constant τ sets the timescale of the network. On the other hand, a parallel neural system allows
biological agents to solve learning problems on different timescale. Theoretical and modelling stud-
ies indicate that learning with a multiple timescale can improve performance (Koutnik et al., 2014)
and speed up learning (Neil et al., 2016). This multiplicity of timescales is also an important fea-
ture of gated recurrent units (GRUs) indicated by Roitman & Shadlen (2002), in which each unit
learns to adaptively capture dependencies over different time scales. Therefore, in this work we use
modified GRUs, which is modified through Equation (1) and combined with the standard GRUs. A
continuous-time form of the modified GRUs is described in Appendix, which can be discretized to
Euler form in time steps of size ∆t as follows:

αt = σg(W
rec
α rt−1 +W in

α ut + bα), (2)

βt = σg(W
rec
β rt−1 +W in

β ut + bβ), (3)

xt = (1 − λt) ◦ xt−1 + λt ◦ f(W rec(β ◦ rt−1) +W inut + bt +

√
2
τσ2

rec

∆t
N(0, 1)), (4)

rt = [xt]
+, (5)

zt = W outrt, (6)
where ◦ denotes the Hadamard product, σg is sigmoid function. The function f(x) = x is a linear
function. The vector λt = ∆t

τ αt, and the size of update gate αt is scaled by τ and ∆t. N(0, 1) are
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Figure 1: Biologically-plausible Actor-Critic with episodic memory framework. (Left) Compo-
nents of a B-ACEM framework, based on biological connections and functions of the PFC (robust
active maintenance of task-relevant information), BG (dynamic gating of PFC active maintenance),
DA (training the BG gating), Hippocampus (storing episodic memory). Sensory inputs are pro-
cessed by PFC-BG circuit and corresponding motor signals are sent out by Thalamus (not shown
here). Working memory representations in PFC are updated via dynamic gating by the BG. These
gating functions are learned by BG on the basis of modulatory input from dopaminergic neuron
(blue dotted line), i.e., dopamine drives incremental learning (slow RL) in BG regions. Moreover,
dopamine modulates episodic memories in the hippocampus, supporting adaptive behaviors (fast
RL). The synaptic weights in the PFC-BG network are adjusted by an RL procedure, in which DA
conveys a reward prediction error signal. (Right) The computational framework of B-ACEM.
The PFC-BG circuits in the brain were mapped to the actor-critic framework (green box). At each
time step, the actor receives an observation o and selects an action a based on the past experience
(working memory stored in RNN). The reward R is given followed by the chosen action and the
environment moves the next state. Replay buffers are used to store episodic memories, similar to
the function of the hippocampus. The weights of the neural networks are updated through gradient
descent, whose error is driven by DA.

standard, normal distributed random numbers, which are scaled by σrec. We note that in the case
where ∆t = τ , i.e., λt = αt, the only difference from standard GRUs is that there is threshold-linear
activation function [xt]

+ in the system.

2.2 BIOLOGICALLY-PLAUSIBLE FRAMEWORK

The framework we proposed is based on four assumptions listed below:

1. Actor-critic architecture for RL in biological system. This assumption states that a cortex-basal
ganglia (PFC-BG) circuit can be modeled as an actor-critic architecture (Dayan & Balleine,
2002; Suri et al., 2001; Joel et al., 2002; O’Doherty et al., 2004; Haber, 2014). In this process
the midbrain dopamine neurons play a central role, which code reinforcement prediction error.
Frank (2005) has demonstrated that basal ganglia (BG) can perform dynamic gating through the
modulatory mechanism of ‘No-Go’ pathway, facilitating maintenance of task-related information in
the prefrontal cortex and suppressing other distracting information (Figure 1, left). The actor-critic
view of action selection in the brain suggests that the dorsal striatum in PFC-BG is responsible for
learning stimulus-response association, which can be thought of as the ‘actor’ in the actor-critic
architecture. The ventral striatum in BG, together with cortex, is mainly used to learns state values,
which is akin to the ‘critic’ in this framework (Maia, 2009; 2010).

2. Recurrent neural networks reproduce neural population dynamics. This assumption states that
we can conceptualize a PFC-BG system using recurrent neural networks (RNNs), for both actor
and critic. There are many essential similarities between RNNs and biological neural circuits:
First, RNNs units are nonlinear and numerous. Second, the units have feedback connections, which
allows them to generates temporal dynamic behavior within the circuit. Third, individual units are
simple, so they need to work together in a parallel and distributed manner to implement complex
computations. RNNs are very powerful. As long as the number of hidden units is sufficient, an
optimized RNNs can approximate any dynamical system. Both dynamical and computational
features of RNNs make it an ideal model for studying the mechanisms of system neuroscience
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(Rajan et al., 2016; Sussillo, 2014; Mante et al., 2013). Since basal ganglia can perform dynamic
gating via reinforcement learning mechanisms (Figure 1, left), here we consider more sophisticated
units, i.e., gated recurrent units (GRUs) to implement this gating mechanism. At the computational
level, our model is most closely related to GRUs, whose dynamic gating signals are trained by error
backpropagation (Cho et al., 2014).

3. Episodic memory contributes to decision making. This assumption states that episodic memory,
depending crucially on the hippocampus and surrounding medial temporal lobe (MTL) cortices,
can be used as a complementary system for reinforcement learning to influence decisions. First, in
addition to its role in remembering the past, the MTL also supports the ability to imagine specific
episodes in the future (Hassabis et al., 2007), with direct implications for decision making (Peters
& Büchel, 2010). Second, episodic memories are constructed in a way that allows relevant elements
of a past event to guide future decision (Shohamy & Wagner, 2008).

4. There are two different forms of learning in biological systems: slow learning and fast learn-
ing. Many researchers believe that cortex-basal ganglia circuits appear to implement reinforcement
learning Frank et al. (2004). Hence, we assumed that the synaptic weights of dopamine targets
(striatum in BG) in the circuit, including the PFC network, can be modulated by a model-free RL
procedure. As mentioned earlier, this method of incremental parameter adjustment makes it a slow
form of learning. On the other hand, the hippocampus has been shown to support encoding of single
events, and episodic memories stored in hippocampus impact reward-based learning to bias related
behavior. Thus, the hippocampus can serve as a supplementary system to reinforcement learning.
From this we assumed that episodic memories in replay buffer (a function similar to the hippocam-
pus) can be used to estimate the value of actions and states to guide reward-based decision-making
(Wimmer et al., 2014), which is a fast form of learning.

These assumptions are all based on existing research. For demonstration, we abstract the neural
basis of RL in biological systems (Figure 1 left) into a simple computational model (Figure 1 right),
an actor-critic equipped with episodic memory architecture, in which actor network leverages per-
ceptual data provided by the environment to make a choice, while the critic network emits the value
of the selected option. We exploit recent advances in deep RL, specifically the application of the
policy gradient algorithm to RNN (Bakker, 2002), to update the weights of the network. Here the
networks can be trained for a well-known perceptual decision-making task (Figure 2 left), which is
characterized by an input-output mapping. On each trial, the value of GRU cells is updated based
on the inputs and the last value of the GRU cells in the network, which enables the hidden layer to
track relevant history information (refer to the working memory in biology). Through this training,
the actor network learns to extract history experiences into the hidden state in the form of a working
memory (WM). This working memory is thought to be facilitated by the prefrontal cortex, which
instructs the actor system to select rewarding actions. The critic system learns a value function to
train the actor network, which in turn furnishes a dynamic gating mechanism to control the updating
of working memory.

3 THE ROLE OF MEMORY IN RL

3.1 MEMORIES CONTRIBUTE TO RL: A PICTURE IN BIOLOGICAL SYSTEM

Memory is essential to make decisions, enabling organisms to draw on past events to predicting
possible future outcomes. Working memory, a temporary storage in the brain, has been shown to
guide choices by maintaining and manipulating task-relevant information (Krebs et al., 2009). Ober-
auer (2009) suggested that the working memory model can be divided into two largely independent
subsections: One subsection represents procedural memory (implicit memory) and the other subsec-
tion represents declarative memory (explicit memory). RL theory has recognized the relationship
between RL, and procedural memory and declarative memory. Procedural memory, created by re-
peating complex activities over and over again, is responsible for generating model-free policies or
action values in reinforcement learning. Declarative memory refers to general world knowledge of
the world that is independent of personal experience and can be clearly articulated. Furthermore,
declarative memory contains information about reinforcement learning models or environmental
mappings. Yet, early work demonstrates that working memory capacity is limited, resulting in de-
cisions that are often made with finite information. Therefore, with a transient characteristic caused
by the limited capacity and fast decay rate of working memory, it is not an ideal memory system
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Figure 2: (Left) Pipeline for Random Dots Motion Discrimination (RDMD) task. Monkeys are
trained to discriminate the direction of motion in a random dot stimulus that contained horizontal
coherent motion. After fixation (screen 1), the two choice targets appeared in the periphery (screen
2). After a variable delay period, dynamic random dots appeared in a 5◦ diameter aperture (screen
3). The monkey was allowed to make a saccadic eye movement to a choice target at any time
after onset of random-dot motion to indicate the direction of perceived motion (screen 4). Reaction
time (RT) is defined as the elapsed time from motion onset to the initiation of the saccade, which
was controlled by the monkeys and could be measured. (Right) Examples of random-dot motion
stimulus of variable motion coherence. Stimulus strength is varied by changing the proportion of
dots moving coherently in a single direction, which determines the difficulty of the task. The lower
(higher) the coherence levels, the more difficult (easier) the task is. Coherently moving dots are the
“signal”, and randomly moving dots are the “noise”.

to support decision-making independently. For this reason the brain needs other complementary
systems, such episodic memory, to support reinforcement learning along with working memory.

Episodic memory, the type of memory that we mainly consider here, has also been implemented in
decision-making. Psychologically, episodic memory refers to the capacity for consciously recollect-
ing an autobiographical memory of events that occurred in a particular times and places. Compu-
tationally, we often mainly emphasize the notion of one-time episodes (like one-trial learning in a
task). Earlier research suggests that episodic memory could be used to store the specific rewarding
sequence of state-action pairs then later, attempt to mimic the sequence in a process termed episodic
control (Lengyel & Dayan, 2008). Based on this idea, we propose a different computational princi-
ple, in which episodic memory is used to optimize the policy rather than directly extract policy.

3.2 MEMORY IN B-ACEM FRAMEWORK

The link between reward-guided choice and episodic memory brings us to two areas of research,
which have a well-developed bodies of computational theory and widespread impact on cognition.
This opens the door for utilizing many other features of episodic memory to make decisions. How-
ever, it seems reasonable to suspect that decision makers can have access to episodic information to
estimate value. It is necessary to further study how the episodic characteristics of memory samples
affect their sampling process. For this reason, we leverage the B-ACEM framework to explore how
episodic memory should be sampled in order to better facilitate agents to learn a task. We store the
agent’s experiences (a sequence of observations, actions and rewards) at each time-step, pooled over
many episodes (an episodic memory is a trial) into a replay buffer as shown in Figure 1. Unlike the
classical method of replay experience, described in Mnih et al. (2015), a complete episodic memory
(such as a complete trial) that meets certain conditions is stored here. The agent will learn behavior
strategy with episodic memory to maximize the future accumulation of rewards.

How does memory, including working memory and episodic memory, in this B-ACEM architecture
works in practice? On the one hand, working memory as represented by hidden states keeps track of
the reward probabilities. To evaluate these quantities, working memory must maintain information
about its past behavior and states. On the other hand, when the last step of the trial is reached,
the agent will save the activation of the current working memory as long-term memory in the form
of episodic memory. These episodic memories will be retrieved with a certain probability used to
evaluate these quantities. As mentioned in section 2.2, there are two different forms of learning
in biological systems: slow learning (implemented by working memory) and fast learning (imple-
mented by episodic memory). Here, working memory encodes the outcome state and rewards as a
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short-term memory, which focus primarily on current and relevant information, while ignoring the
remaining information (a form of “executive” attention). Once the information is stored as long-term
memory, the agent can utilize this important episodic information to make model-free evaluations
of trial information retrieved from long-term memory.

4 EXPERIMENTS

4.1 RANDOM DOTS MOTION DISCRIMINATION TASK

Animal behavior Agent behavior

Motion strength(% coherence) Motion strength(% coherence)

Figure 3: Behavior comparison of the animal
and the agent during training in the RDMD
task reflected in psychometric functions (top)
and chronimetric fucntions (bottom). The left
is animal behavioral data from one experience
(reproduced from Roitman & Shadlen (2002)).
The right is our agent behavioral data. (Top) Psy-
chometric functions from reaction time version of
the RDMD. The probability of a correct direction
judgment is plotted as a function of motion
strength and fitted by sigmiod functions. (Bot-
tom) Effect of motion strength on reaction time
(average reaction time of correct trials). The re-
lationship between the log scaled motion strength
and the reaction time fits a linear function.

We begin with a general description of the
RDMD task (reaction-time version) as shown
in Figure 2, in which a monkey chooses be-
tween two visual targets. First, the monkey was
required to fixate a central point until the ran-
dom dot motion appears on the screen. Then,
the monkey indicated its decision in the direc-
tion of dots, by making a saccadic eye move-
ment to the target of choice. In the standard re-
inforcement learning model, an RL agent learns
by interacting with its environment and receiv-
ing rewards for performing actions. Accord-
ingly, in the RDMD task, the actual direction
of moving dots can be considered to be a state
of the environment, which is partially observ-
able, because the monkey does not know the
precise direction of coherent motion. There-
fore, the monkey needs to integrate the noisy
sensory stimuli to figure out the direction. A
positive reward, such as a fruit juice, is given
for choosing correct target after the fixation cue
turns off, such as a juice reward. Either break-
ing fixation too early or not making a choice
during the stimulus period leads to negative re-
ward in the form of timeouts. During the stim-
ulation, the incorrect response was neither re-
warded by the juice nor timeouts, with a cor-
responding reward of zero. Given the reward
schedule, the policy could be modeled and op-
timized by the method of policy gradient.

4.2 BIOLOGICAL PLAUSIBILITY OF ACER FRAMEWORK

We first investigated whether the B-ACEM framework we built, captures behavioral characteris-
tics of animals in cognitive experiments. To empirically test this, we trained B-ACEM to perform
a reaction-time version of RDMD task and then compared its behavior to the animal observed by
Roitman & Shadlen (2002). The results are consistent with behavioral findings from the RDMD ex-
periment, which are mainly reflected in psychometric function and chronometric function as shown
in Figure 3. Performance accuracy on the RDMD task depends on the strength of sensory input,
and the psychometric functions is a good tool for analyzing such relationship. The percentage of a
correct direction judgment is plotted as a function of motion strength (is measured by the proportion
of coherently moving dot). The Figure 3 shows that accuracy is high during strong motion, while
it showed less accuracy as with more chance and a weaker motion, suggesting that the agent in our
B-ACEM framework captures this important behavioral feature. Moreover, the theory of chrono-
metric functions has a constraint on the relationship between response time and accuracy. When the
task is difficult (weaker stimuli strength), it requires the agent to take more time to make a decision
(Figure 3). This means that the additional viewing time for difficult trials was devoted to integrat-
ing sensory information. Thus the appropriate speed-accuracy trade-off is learned by this B-ACEM
framework. We need to emphasize that, unlike the usual machine learning goals, our objective is

6



Under review as a conference paper at ICLR 2020

not to achieve “perfect” performance, but rather to train agents to match the smooth psychometric
characteristics and chronometric characteristics observed in behaving monkeys.

4.3 EPISODIC MEMORY SPEEDS UP LEARNING

Episodic memory making representations of past experiences plays a critical role in enabling us
to act appropriately in the world. One of the unanswered questions in cognitive neuroscience
is what types of samples of episodic memory should be selected. That is, how is the prior-
ity function defined to select samples from episodic memory? In the terms of non-parametric
statistical or kernel-based model, this function corresponds to the kernel, which can be modi-
fiable by past experience. Here, we combine reaction time task with B-ACEM model to in-
vestigate the impact of memories of individual trials on state-value estimation, so as to clar-
ify computational nature of interactions between episodic memory and reinforcement learning.

Figure 4: Learning curves of the agent with
episodic memory (blue line) and without episodic
memory (orange line) on the RDMD task. (Left)
Average reward per trial. (Right) Percent correct,
for trials on which the network made a decision.

We first need to verify whether B-ACEM’s
episodic memory is performing effectively. For
this purpose, we assessed the B-ACEM’s per-
formance in the case that all types of individual
memories are stored, which act as as a baseline
to measure the impact of a single, selected ex-
perience on decision-making. The blue lines in
Figure 4 (left) show the learning curve of agents
with memory for RDMD task (averaged return
in 2000 trial samples). For comparison, an
agent without episodic memory was trained and
tested in exactly the same way, and the training
curve is also shown in blue line. We can see
that, the agent with episodic memory perform
significantly faster in RDMD tasks than the one
without episodic memory, although both models eventually reached the same baseline performance.
These results are consistent with some recent research showing that animal decisions can indeed be
guided by samples of individual past choices (Murty et al., 2016; Jang et al., 2019).

The correct percent of trial is shown in Figure 4 (right), which is calculated by Nright/Nchoice. The
term Nchoice represents number of trials in which the monkey made a choice (right or wrong) in
2000 trials and Nright is the number of correct choice. We can see that, at the beginning of the
trial, the correct percentage of agents who cannot extract episodic memory from the replay buffer
is maintained at around 50% (orange line), that is, the motion direction of the dot is randomly
selected. It is only after substantial training (about 18, 000 trials) that the agent can achieve the
baseline accuracy rate. Whilst the common GRU agent solves the task relatively successfully (as
long as the training sample is sufficient), the agent being equipped with episodic memory shows
better execution efficiency.

Like the monkeys in the RDMD trial, the network we built also converges on an optimal strategy:
the agent not only successfully maintains gaze at the beginning of each trial, but also always chooses
the direction that was rewarded starting on the second trial of each episode, regardless of whether
the direction was left or right in the first trial. This reflects the agent’s implicit understanding of task
structure: After observing one trial results, the agent binds an unfamiliar environment to a specific
task role.

4.4 EPISODIC MEMORY FOR SALIENT EVENT

In the previous section, we have verified that episodic memory can indeed speed up the agent learn-
ing tasks. In this section, we will examine the questions raised at the beginning, regarding the types
of events that should be stored as episodic memories to guide choice. The relationship between
events is often clear only when they are reviewed. For example, when something positive happens,
we want to know how to repeat this event. However, when an event occurs before the reward is
given, how do we know what causes it? This is the ‘temporal credit assignment problem’ mentioned
early, which can be solved by saving all potential determinants, such as rewards, of behaviorally rel-
evant events into working memory. We proposed the question: How does episodic memory balance
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the need to represent these potential determinants of reward outcomes to deal with credit assign-
ment? One solution may be to enhance episodic memory for notable events we refer to as ‘salient
memory’, which are potential determinants of reward.

Both expectancy violations and expectancy conformance can be considered salient events to be
stored in memory buffer. Because such long-term memories are potentially predictive of reward
outcomes, it will provide a computationally feasible way to obtain future rewards. In the RDMD
task, salient events included trials in which the right choice was made (rewarded with a glass of
juice; expectancy conformance) or the fixation was broken (punished; expectancy violations). In a
gaze-breaking trial, the agents policy can not be optimized due to insufficient interaction with the
environment, thus we only choose expectancy conformance as a salient event. In the third type of
trial, the monkeys make a response before a trial was over, but the choice was wrong. The incorrect
response was neither rewarded by the juice nor punished. Such trial can be considered as a common
event, because it’s not a particular event for monkeys.

Figure 5: Learning curves of the agent on the
RDMD task for different types of episodic mem-
ory, such as salient memory (orange line), com-
mon episodic memory (green line) and all types
of episodic memory (blue). (Left) Average reward
per trial. (Right) Percent correct.

To investigate if salient events in memory
buffer can bias reward-guided choice more ef-
fectively than common events, we plot learn-
ing curve of B-ACEM with different types
of episodic memory. Comparing the orange
(salient events) and green (common events)
curves, in Figure 5, it is apparent that B-ACEM
with salient event outperforms B-ACEM with
trivial event. As in figure 5 (left), if the agent
extracts salient memories from the memory
pool at a certain probability to train the net-
work, it can make the network converge to the
baseline policy faster (orange line). After fluc-
tuating around the baseline (about 4.2) for a pe-
riod of time, the agent’s episodic reward con-
tinues to increase, and finally is significantly higher than the baseline level. However, when agent
extracts common event from memory pool (green line), the rewards obtained by agents will always
be lower than the baseline level. In this case, the correct percentage of agent also always maintained
at around 50% (random selection), suggesting that episodic memory about common events did not
help the monkeys determine the direction of movement of random dots. In contrast, salient episodic
memory is able to improve the final accuracy (orange line in Figure 5(right)) using exactly the same
architecture and learning parameters as our baseline.

Salient episodic memory is essential to future goal-directed behavior, which allows past relevant
experience to improve choice and actions. Much research in humans has investigated how the hip-
pocampus builds adaptive memory for past events. Our result suggesting that memory encoding was
stronger for trials that involved salient events. The monkey would make the salient episodic memory
in hippocampus more likely to be sampled during the ensuing choice.

5 FUTURE WORK

In this work, we developed a B-ACEM framework for the hippocampus, the prefrontal cortex, and
basal ganglia based on anatomy and psychology. This framework supports reward-based learning
in the brain, in which one circuit directly computes the policy to be followed, with one component
computing the expected future reward to guide learning and one component acting as a comple-
mentary system for reinforcement learning. Although we have performed a few analyses using our
B-ACEM, it is still an open problem of the detailed mechanisms by which episodic sampling can
speed up learning and perform better than incremental learning alone. Many interesting and chal-
lenging questions remain. For example, training of spike neurons and reinforcement learning with
spike-timing-dependent plasticity (STDP), a biological process that adjusts the strength of connec-
tions between neurons in the brain, is promising and future work will include these advances. Other
physiologically relevant phenomena such as bursting, adaptation, and oscillations are currently not
captured by our B-ACEM framework, which will be incorporated in the future.
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A CONTINUOUS-TIME FORM OF RNNS IN B-ACEM

α = σg(W
rec
α r +W in

α u+ bα), (7)

β = σg(W
rec
β r +W in

β u+ bβ), (8)

τ
dx

dt
= −α ◦ x+α ◦ (W rec(β ◦ r) +W inu+ b+

√
2τσ2

recξ), (9)

r = [x]+, (10)

z = W outr, (11)

where the vector ξ are N = 256 (the number of recurrent unit) independent Gaussian white
noise process with unit variance and present noise intrinsic to the RNN, which are scaled by σrec.
Threshold-linear activation function [x]+ guarantees that Equation (7)-(11) is a nonlinear dynamic
system. These leaky threshold-linear units are modulated by the time constant τ , with an update
gate α and reset gate β.

B DISCRETIZATION PROCESS OF RNNS IN B-ACEM

We mainly give the derivation from equation (9) to (4):

According to Euler’s Method:

dx

dt
≈ xt − xt−1

∆t
(12)

The equation (7) can be written as

xt − xt−1 =
∆t

τ
[−αt ◦ xt−1 +αt ◦ (W rec(βt ◦ rt) +W inut + bt +

√
2τσ2

recξt)], (13)

Then we have

xt = xt−1 +
∆t

τ
αt[−xt−1 + (W rec(βt ◦ rt) +W inut + bt +

√
2τσ2

recξt)], (14)

i.e.,

xt = (1 − λt) ◦ xt−1 + λt ◦ f(W rec(β ◦ rt−1) +W inut + bt +

√
2
τσ2

rec

∆t
N(0, 1)), (15)

where λt = ∆t
τ αt, ξt = N(0, 1), f(x) = x.

C IMPLEMENTATION DETAILS

Table 1. Parameters for B-ACEM framework training.

Parameters List
Parameter Default value Parameter Default value
Learnig rate 0.001 Dropout 0.01
Size of actor/critic 256 Discount factor 0.99
Time step (∆t) 10 ms max-gradient-norm 40
time constant (τ ) 50ms Recurrent noise(σ2

rec) 0.01
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