Under review as a conference paper at ICLR 2020

REVISITING THE GENERALIZATION OF ADAPTIVE
GRADIENT METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

A common belief in the machine learning community is that using adaptive gra-
dient methods hurts generalization. We re-examine this belief both theoretically
and experimentally, in light of insights and trends from recent years. We revisit
some previous oft-cited experiments and theoretical accounts in more depth, and
provide a new set of experiments in larger-scale, state-of-the-art settings. We con-
clude that with proper tuning, the improved training performance of adaptive opti-
mizers does not in general carry an overfitting penalty, especially in contemporary
deep learning. Finally, we synthesize a “user’s guide” to adaptive optimizers, in-
cluding some proposed modifications to AdaGrad to mitigate some of its empirical
shortcomings.

1 INTRODUCTION

Adaptive gradient methods have remained a cornerstone of optimization for deep learning. They
revolve around a simple idea: scale the step sizes according to the observed gradients along the
execution. It is generally believed that these methods enjoy accelerated optimization, and are more
robust to hyperparameter choices. For these reasons, adaptive optimizers have been applied across
diverse architectures and domains.

However, in recent years, there has been renewed scrutiny on the distinction between adaptive meth-
ods and “vanilla” stochastic gradient descent (SGD). Namely, several lines of work have purported
that SGD, while often slower to converge, finds solutions that generalize better: for the same op-
timization error (training error), adaptive gradient methods will produce models with a higher sta-
tistical error (holdout validation error). This claim, which can be shown to be true in a convex
overparameterized examples, has perhaps muddled the consensus between academic research and
practitioners pushing the empirical state of the art. For the latter group, adaptive gradient meth-
ods have largely endured this criticism, and remain an invaluable instrument in the deep learning
toolbox.

In this work, we revisit the generalization performance of adaptive gradient methods from an em-
pirical perspective, and examine several often-overlooked factors which can have a significant effect
on the optimization trajectory. Addressing these factors, which does not require trying yet another
new optimizer, can often account for what appear to be performance gaps between adaptive methods
and SGD. Our experiments suggest that adaptive gradient methods do not necessarily incur a gen-
eralization penalty: if an experiment indicates as such, there are a number of potential confounding
factors and simple fixes. We complete the paper with a discussion of inconsistent evidence for the
generalization penalty of adaptive methods, from both experimental and theoretical viewpoints.

1.1 OUR CONTRIBUTIONS

Our work investigates generalization of adaptive gradient methods, and constructively comments on
the following:

The brittleness of simple experiments and simple abstractions. We attempt a replication of the
experiments from [Wilson et al.[(2017), finding that they have not stood up to unknown hardware
and software differences. We show simple theoretical settings where adaptive methods can either

Under review as a conference paper at ICLR 2020

fail or succeed dramatically, as compared to SGD. Though each can shed interesting insights, neither
abstraction is reflective of the truth.

The perils of choosing a large . The innocuous initial accumulator value hyperparameter de-
stroys adaptivity at parameter scales smaller than y/e. This really matters in large-scale NLP; a
foolproof solution is to use our proposed “c = 0” variant of AdaGrad.

The subtleties in conducting a proper optimizer search. The differences between Adam, Ada-
Grad, and RMSprop are not fundamental; some, like AdaGrad’s lack of momentum, are easily
fixable. Upon disentangling these differences, and with enough tuning of the learning rate schedule,
we suggest that all three are equally good candidates in optimizer search, and can match or beat
SGD.

1.2 RELATED WORK

Adaptive regularization was introduced along the AdaGrad algorithm in parallel in (Duchi et al.
2011; McMahan & Streeter, [2010). A flurry of extensions, heuristics and modifications followed,
most notably RMSprop (Tieleman & Hintonl 2012)) and Adam (Kingma & Bal 2014). Today, these
papers have been cited tens of thousands of times, and the algorithms they propose appear in every
deep learning framework. For an in-depth survey of the theory of adaptive regularization and its
roots in online learning, see (Hazan, [2016)).

Upon a quick perusal of recent literature, there is plenty of evidence that adaptive methods continue
to be relevant in the state of the art. Adam in particular remains a staple in recent developments in
fields such as NLP (Devlin et al., 2018} |Yang et al.,2019; Liu et al.,2019)), deep generative modeling
(Karras et al., 2017 Brock et al.| 2018 Kingma & Dhariwal| 2018)), and deep reinforcement learning
(Haarnoja et al., 2018). Adaptive methods have seen adoption in extremely large-scale settings,
necessitating modifications to reduce memory consumption (Shazeer & Sternl |2018; |Anil et al.,
2019; |Chen et al .l [2019).

In recent years, there have been various works attempting to quantify the generalization properties
of SGD. These varied perspectives include general analyses based on stability and early stopping
(Hardt et al.l 2015), a characterization of the implicit bias in special separable cases (Gunasekar
et al.| 2018azb)), and a more fine-grained analysis for neural networks exploiting their specific struc-
ture (Allen-Zhu & Li, 2019} |Arora et al.l [2019). More recently, there has been a growing interest
towards understanding the interpolation regime for overparameterized function fitting, where SGD
is often the basic object of analysis (Belkin et al., 2019; Mei & Montanari, [2019)).

Finally, empirical questions on the generalization of adaptive gradient methods were brought to the
forefront by |Wilson et al.| (2017), who exhibit empirical and theoretical situations where adaptive
methods generalize poorly. Building on this premise, Keskar & Socher| (2017) suggest switching
from Adam and SGD during training. [Smith & Topin| (2019) develop a doctrine of “supercon-
vergence” which eschews adaptive methods. Reddi et al.| (2018)) point out some pathological set-
tings where Adam fails to converge, and amends the algorithm accordingly. |Schneider et al.|(2019)
note some sociological problems leading to misleading research on optimizer selection, providing a
benchmarking suite for fairer hyperparameter searches, with mixed preliminary conclusions.

2 BACKGROUND

We begin by reviewing the stochastic optimization setting, and giving rigorous definitions of the
adaptive gradient methods commonly used in practice.

2.1 OPTIMIZATION SETTING

We will focus on stochastic optimization tasks of the form

minimize F'(w) & E.p[f(w;2)],

where the expectation is over a random variable z whose distribution D is initially unknown; in ma-
chine learning, z often represents a pair (x, y) of an example z and its corresponding label y, drawn

Under review as a conference paper at ICLR 2020

from an unknown population. A stochastic optimization algorithm is given a sample 21, ..., 20 ~ D
from the underlying distribution, and produces a point w € R? whose population loss F(w) is as
close as possible to that of the minimizer w* = argmin,, F'(w). Often, iterative (first-order) opti-
mization methods maintain a sequence of iterates wy, . . ., wr and, at each step ¢, use the stochastic
gradient

gt = Vf(wu 2t)

to form the next iterate w;4;. The simplest stochastic optimization method is Stochastic Gradient
Descent (SGD), whose update rule at step ¢ takes the form

W41 < Wi — Nt G,

where 7, > 0 is a step size (or learning rate) parameter, whose scale and time-varying behavior are
typically determined via hyperparameter search.

2.2 ADAPTIVE GRADIENT METHODS

Adaptive gradient methods comprise a general family of iterative optimization algorithms which at-
tempt to automatically adapt to anisotropic gradient and parameter sizes. Often, an adaptive method
will incorporate a different (adaptively computed) step size for each entry of the gradient vector.
More specifically, the most common adaptive methods divide each parameter’s gradient update by
a second-moment-based estimate of the scale of its historical gradients. A concise way to unify
this family of adaptive methods is given by following update equation (starting from an arbitrary
initializer wq):

Wi — wy — o Hy gy + BeHy T Hy— g (wp — wy—1). (D

The above update expresses a broad family of methods including SGD, momentum (i.e., Polyak’s
heavy-ball method), AdaGrad, RMSprop, and Adam. The particular instantiations of the parameters
ag, B are summarized below:

SGD | HB | AdaGrad RMSprop Adam

G| I | I [GiatDy|BeGer+(1=p2)Ds | 127Gy + SZ52D;
oy o o « « oz}:'gi
1
_pt—1
Be| 0 | B 0 0 T

Table 1: Parameter settings for common optimization algorithms in the unified framework of Equa-

. def . def .
tlon Here, D; = diag(g’?) and G; = H;>?; here, ©2 denotes the entrywise square of a vector or

matrix. We omit the e parameters in the adaptive methods, see the discussion in Section [3.1}

3 PRACTICAL ASPECTS OF ADAPTIVE OPTIMIZATION

In this section, we compile some lesser-known practices in the usage of adaptive methods, which we
have found to help consistently across large-scale experiments. We emphasize that this collection is
restricted to simple ideas, which do not add extraneous hyperparameters or algorithmic alternatives.

3.1 THE ¢ HYPERPARAMETER

The general AdaGrad update, as originally proposed by |Duchi et al.| (2011), includes a parameter €
to allow for convenient inversions. Formally, the update looks like

1/2

t
w1 = wy —n Hy tgi; Hp = [Z diag(g;?)| +e-1
k=1

The inclusion of € in the the original proposal of the above updates seems to have been made for
convenience of presenting the theoretical results. However, in practice, this € parameter often turns

! Adam handles the € parameter slightly differently; see|Kingma & Bal(2014).

Under review as a conference paper at ICLR 2020

_ o

count in embedding layer
o o I = e =
5 o ®» o N &

I
N

-30 =20 -1 0 10

=30

0 0
log10(Gilil) log10(G:li)

Figure 1: Distribution of nonzero accumulator values Gy[i] = S°-_, g, [i]? in the embedding layer
of the Transformer from Section 1] after ¢ = 116200 training iterations. Left: Histogram of
accumulator values, with counts on a linear scale. Right: Same plot as left, except with logarithmic
vertical scale, showing prevalence of extremely small values.

out to be a parameter that should be tuned depending on the problem instance. The default value
of this parameter in the standard implementations of the algorithm tend to be quite high; e.g., in
Tensorflow (Abadi et al) 2016) it is 0.1 which can be quite high. As large values would result
in AdaGrad reducing to SGD with an implicit 1/+/€ learning rate, and losing out on all adaptive
properties (RMSprop and Adam implementations also have an equivalent epsilon parameter). The
effect can be seen in Figure [] which shows that along many coordinates the accumulated second
moments of the gradient are very small, even in the middle of training.

At least one work (Agarwal et all 2019) remarks that the ability to choose a large ¢ in a second-
moment-based adaptive method might be a feature rather than a shortcoming; the smooth interpola-
tion with SGD may improve the stability of more exotic optimizers. This does not appear to be the
case for diagonal-matrix adaptive methods, in the NLP setting investigated in this paper.

Instead, we suggest removing this hyperparameter altogether and justify it in Section 4.2 and per-
forming the AdaGrad update with the pseudoinverse instead of the full inverse. Then, the update is
given by the following:

wer1 = we — 1 H gy, 2
where AT denotes the Moore-Penrose pseudoinverse of A and with the preconditioning matrices
updated as before. The above means that if there is a coordinate for which the gradient has been 0
thus far we make no movement in that coordinate. This fix which can similarly be applied to the
full matrix version of AdaGrad, does not affect the regret guarantees of AdaGrad. We provide an
analysis in the Appendix [B| verifying as a sanity check that the standard AdaGrad regret bounds
continue to hold when ¢ is completely removed.

3.2 MOMENTUM

A key distinction between AdaGrad, RMSprop and Adam is as follows: AdaGrad does not include
momentum, and there is a per-parameter learning rate which is inverse of the accumulated gradient
squares for that parameter. RMSprop as described in [Hinton et al.| (2012) uses exponential mov-
ing averaging rather than straightforward accumulation that AdaGrad relies on, and Adam modifies
RMSprop to add momentum for the gradients along with a bias-correction factor. Note that imple-
mentation of RMSprop can vary based on the software library; e.g., TensorFlow (Abadi et al., 2016)
includes modification to include momentum, while Keras API (Chollet et al.[|(2015)) does not. We
note that it is straightforward to extend AdaGrad to incorporate heavy-ball momentum, where we
start with go = 0 (and from a certain initialization w) and iteratively update:

G < Bg—1+ (1 - B)H; "gs;
’U)t+1 <— Wi —’I’]_(]t

3.3 LEARNING RATE WARMUP

The original definition of the Adam optimizer (Kingma & Bal,[2014) includes a bias correction term,
in which the moment estimates are multiplied by the time-varying scalars (1 — 3%) and (1 — 3%). As

Under review as a conference paper at ICLR 2020

mentioned in the original paper, the bias correction can equivalently be written as an update to the
learning rate. In the notation of Table
o= = il
t =0 /.
1 -5

As can be seen from Figure 2] for the typical values of 51 = 0.9 and 5 = 0.999, the effective mul-
tiplier on the learning rate essentially resembles an external warmup applied on top of the learning
rate. The general heuristic of including a warmup phase at the beginning of training has gained sig-
nificant popularity in state-of-the-art empirical works; see, for example, |Goyal et al.|(2017));|Shazeer
& Stern|(2018)); [Keskar et al.| (2019); Radford et al.| (2019)); Devlin et al.| (2018).

I o o =
» o © o

effective LR multiplier

°
N}

0 500 1000 1500 2000 2500 3000
time step t
Figure 2: The effective learning rate multiplier of Adam as function of steps for the commonly found
default hyperparameters 51 = 0.9, 2 = 0.999 in deep learning libraries.

Applying such a warm up externally on Adam results in now 3 hyper-parameters (31, 82 and now the
amount of warmup) conflating with each other, making hyper-parameter tuning difficult. Instead we
suggest to complete disable this bias correction altogether and use an explicit warmup schedule in
place of it. We use such a schedule in all of our experiments for SGD as well as adaptive optimizers
as we find that it helps consistently across language modelling experiments.

One motivation for warmup during the initial stages of training is that for adaptive updates, the
squared norm of the preconditioned gradient during the initial stage is quite large compared to the
scale of the parameters. For the initial steps the preconditioned gradient squared norm is proportional
to the number of coordinates with non-zero gradients where as the squared norm of the parameters
are proportional to the number of nodes. Therefore adaptive methods are naturally forced to start
with a smaller learning rate. The warmup in such a case helps the learning rate to rise up while the
norm of the gradients fall sharply as training proceeds.

3.4 LEARNING RATE DECAY SCHEDULE

Learning rate decay schedules are one of the hardest to tune albeit a crucial hyperparameter of an
optimizer. Stochastic gradient like algorithms, domain specific learning rate schedules have been
derived over time with a lot of care and effort, examples include Resnet-50 on ImageNet-2012
where state of the art configuration of SGD+Momentum follows a stair-case learning rate schedule
(while other type of schedules maybe possible). Adaptive algorithms apriori come with a potential
promise of not requiring massive tuning of these schedules as they come with an in-built schedule
with the caveat that AdaGrad variants like Adam or RMSprop does not enjoy a data-dependent decay
like AdaGrad due to the presence of a non-zero decay factor and requires an external learning rate
decay schedule. Even for experiments in [Kingma & Bal (2014) which introduces Adam optimizer
has experiments to include a 1/ VT decay schedule for convergence. In our experiments, we found
this implicit decay of AdaGrad to be sufficient for achieving superior performance on training a
machine translation model, while an external decay rate was necessary for training the Resnet-50 on
ImageNet-2012 to high accuracy.

4 EXPERIMENTS

We study the empirical performance of various optimization methods for training large state-of-the-
art deep models, focusing on two domains: natural language processing (machine translation) and
image recognition.

Under review as a conference paper at ICLR 2020

—— HB

—— AdaGrad
—— AdaGrad+HB
—— RMSprop
—— Adam

12 12

10 10

log loss (training)
log loss (validation)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
training iterations le5 training iterations 1le5

Figure 3: Training loss (i.e. log-perplexity) curves for several optimization methods on the
transformer-big model on the WMT14 en—fr dataset.

12

10

log loss (training)
log loss (validation)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
training iterations le5 training iterations 1le5

Figure 4: Convergence of AdaGrad with momentum in the translation setting of Section[d.1} varying
only the initial accumulator value e. Note that using the default value ¢ = 10~ in the TensorFlow
AdaGrad implementation might cause dramatic misconceptions about poor convergence.

4.1 MACHINE TRANSLATION WITH TRANSFORMER

We study the convergence of various optimization methods when training a Transformer model
(Vaswani et al., [2017) for machine translation. We used the larger Transformer-Big architecture
(Chen et al.| 2018); this architecture has 6 layers in the encoder and decoder, with 1024 model
dimensions, 8192 hidden dimensions, and 16 attention heads. It was trained on the WMT’ 14 English
to French dataset (henceforth “en—fr”) that contains 36.3M sentence pairs. All experiments were
carried out on 32 cores of a TPU-v3 Pod (Jouppi et al., 2017) and makes use of the Lingvo (Shen
et al.| 2019) sequence-to-sequence TensorFlow library.

We compared several optimization methods for training; the results are reported in Fig.[3] We see
that a properly tuned AdaGrad (with ¢ = 0 and added momentum) outperforms Adam, while SGD
with momentum, plain AdaGrad and RMSprop perform much worse on this task. These results
illustrate that adaptivity and momentum are both extremely effective in training these models.

4.2 SENSITIVITY TO &

In Section [3.1] we proposed an “c = 0 variant of AdaGrad. Here we empirically motivate this
modification, by investigating the effect of the parameter € on the performance of AdaGrad. We
train the Transformer model from above on the en—{fr dataset using AdaGrad while varying the
value of e. The results are given in Fig.[d] We see drastic improvement in convergence as we lower
the value of € down to 10~7 (lower values do not improve convergence further and are thus omitted
from the figure).

To see where these dramatic improvements come from, we also visualize in ?? the histogram of the
square gradient values for the embedding layer of the model at step ¢ = 116200, which indicates
that a large fraction of the cumulative gradient entries have extremely small magnitudes. The choice
of ¢ is thus important, and justify our prescription of removing the dependency all-together instead
of tuning it as a separate hyper-parameter.

Under review as a conference paper at ICLR 2020

4.3 IMAGE CLASSIFICATION WITH RESNET-50

Next, we trained a ResNet-50 architecture (He et al.,|2015) on the Imagenet-2012 (Deng et al.,[2009)
dataset. The task is to classify images as belonging to one of the 1000 classes. Our training setup
consists of 512 cores of a TPU v3 Pod and makes use of a relatively large batch size of 16386. As a
baseline, we considered SGD with momentum with a highly-tuned staircase learning rate schedule,
that achieves 75.3% test accuracy after 90 epochs. We compared several optimization methods on
this task as seen in Fig.[5} the straightforward application of AdaGrad (with a fixed € and with heavy
ball momentum) achieves only a paltry 63.94% test accuracy. Noticing that AdaGrad implicit decay
schedule does not decay sufficiently fast, an external decay rate was added starting at epoch 50 of
the form (1 — W)Q. This change was sufficient for AdaGrad to reach a test accuracy of
74.76%—a drastic >~ 10% jump. As demonstrated, learning rate schedule is a highly important
hyperparameter and requires tuning for each task. E.g., the baseline SGD is highly tuned and follows
an elaborate stair case learning rate to reach 75% test accuracy.

80 80

oo N
o o© o
o N
S o

w
S

accuracy % (training)
N
S
accuracy % (test)
IS
S

N
o
N
o

— HB
—— AdaGrad

—— AdaGrad+decay
—— Adam

-
o
-
o

0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

Figure 5: Training curves for top-1 training and test accuracy of a ResNet-50 on ImageNet, trained
with several optimization methods. Without the cyan curve, the plots suggest poor generalization of
adaptive methods, despite their head start in optimization. However, the gap is closed upon a careful
tuning of AdaGrad with momentum.

4.4 REVISITING THE EXPERIMENTS OF \WILSON ET AL. (2017)

We attempted to reproduce the experiments from |Wilson et al.| (2017), using the same codebases
and identical hyperparameter settings. Although we were able to replicate some of their findings on
these smaller-scale experiments, others appear to be sensitive to hyperparameter tuning, and perhaps
subtle changes in the deep learning software and hardware stack that have occurred during the two
years since the publication of that paper. In this section, we summarize these findings.

Image classification. On the classic benchmark task of CIFAR-10 classification with a VGG net-
work (Simonyan & Zisserman, 2014), we were able to replicate the (Wilson et al., [2017) results
perfectly, using the same codebas We repeated the hyperparameter search reported in the paper,
found the same optimal base learning rates for each optimizer, and found the same stratification in
performance between non-adaptive methods, Adam & RMSprop, and AdaGrad.

Character-level language modeling. Curiously, our replication of the language modeling experi-
ment using the same popular repositor was successful in reproducing the optimal hyperparameter
settings, but resulted in an opposite conclusion. Here, SGD found the objective with the smallest
training loss, but Adam exhibited the best generalization performance. We believe that software ver-
sion discrepancies (our setup: CUDA 10.1, cuDNN 7.5.1) may account for these small differences.

Generative parsing. We turn to the Penn Treebank (Marcus et al.l [1994) constituency parsing
codeE] accompanying (Choe & Charniakl, 2016). Using the same architectural and training protocol
modifications as specified in (Wilson et al., 2017)), we were able to get the model to converge with

Zhttps://github.com/szagoruyko/cifar.torch
*https://github.com/jcjohnson/torch-rnn
*nttps://github.com/cdg720/emnlp2016

https://github.com/szagoruyko/cifar.torch
https://github.com/jcjohnson/torch-rnn
https://github.com/cdg720/emnlp2016

Under review as a conference paper at ICLR 2020

each optimizer. However, for two of the settings (SGD and RMSprop), the best reported learning
rates exhibited non-convergence (the fainter curves in Figure[6). Similarly as the above experiment,
the ranking of optimizers’ training and generalization performance differs from that seen in the
original report.

Finally, Wilson et al| (2017) include a fourth set of experiments, generative parsing of Penn Tree-
bank, using the codeP| accompanying (Cross & Huang, 2016). Unfortunately, this DyNet
implementation, which was last updated in 2016, encountered a fatal memory leak when
training with our DyNet 2.1 setup.

All relevant plots are given in Figure[6] with color codes selected to match Figures 1 and 2 in
(2017). Together, these experiments are further evidence for a widespread reproducibility crisis
in deep learning: despite the authors’ exceptional transparency in disclosing their optimizer selection
and evaluation protocol, these benchmarks have turned out to be brittle for unknown reasons. Along
the same lines as the random-seed-tuning experiments of Henderson et al.| (2018)), this suggests that
there are further technical complications to the problems of credible optimizer evaluation addressed
by |Schneider et al.|(2019), even on well-known supervised learning benchmarks.

20.0

24 — SGD
17.5 — HB
22 I —— AdaGrad

15.0 | —— RMSprop
—— Adam

(VGG/CIFAR-10)
error % (training)
=
15
°
error % (validation)
=
o

o
£

N
I

=4
EY

0 50 100 150 200 250 0
epoch

14 1.400

— SGD
1.375 — HB

—— AdaGrad
1.350 —— RMSprop
—— Adam

-
w

1.325

=
N}

1.300

I
1

1.275

(LSTM, War and Peace)
log loss (training)
log loss (validation)

1.250

g
o

1.225

0.9 1.200
75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
epoch epoch

o
N}
a
o
o

— sSGD
— HB

—— AdaGrad
12 12 —— RMSprop
— Adam

retuned LR

(LSTM, PTB generative parsing)
perplexity (training)
perplexity (validation)

0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

Figure 6: Attempted replication of the results of [Wilson et al (2017). Top: Image classification
with a CNN. Results match perfectly, with non-adaptive methods generalizing the best. Middle:
Character-level language modeling with a 2-layer LSTM. The original reported hyperparameters
are the best and all optimizers converge to reasonable solutions, but contradictory conclusions about
generalization arise. Bottom: 3-layer LSTM for generative parsing. Training does not converge with
all reported learning rates; conclusions about generalization are unclear.

*https://github.com/jhcross/span-parser

https://github.com/jhcross/span-parser

Under review as a conference paper at ICLR 2020

5 THEORETICAL DISCUSSION

In this section we provide two simple examples of stochastic convex problems where it can be seen
that when it comes to generalization both AdaGrad and SGD can be significantly better than the
other depending on the instance. Our purpose to provide both the examples is to stress our point
that the issue of understanding the generalization performance of SGD vs. adaptive methods is
more nuanced than what simple examples might suggest and hence such examples should be treated
as qualitative indicators more for the purpose of providing intuition. Indeed which algorithm will
perform better on a given problem, depends on various properties of the precise instance.

5.1 EXAMPLE WHERE SGD > ADAGRAD

We provide a brief intuitive review of the construction provided by Wilson et al.|(2017); for a precise
description, see Section 3.3 of that paper. Consider a setting of overparameterized linear regression,
where the true output (i.e. dependent variable) y € {£1} is the first coordinate of the feature vector
(independent variable) x. The next two coordinates of x are “dummy” coordinates set to 1; then, the
coordinates are arranged in blocks which only appear once per sample, taking the value of y.

The key idea is that in this setting, the solution space that AdaGrad explores is always in the subspace
of the sign vector of X "y. As a result, AdaGrad treats the first three coordinates essentially indis-
tinguishably putting equal mass on each. It can then be seen that for any new example the AdaGrad
solution does not extract the true label information from the first three coordinates and hence gets
the prediction wrong, leading to high generalization error; the other distinguishing features belong
to the new unique block which are set to O for the AdaGrad solution, as it has not seen them.

5.1.1 EXAMPLE WHERE ADAGRAD > SGD

This example is motivated from the original AdaGrad paper (Duchi et al.,, [2011), adapted to the
overparameterized setting. Consider a distribution Z supported over {0, 1}¢ with equal 1/d mass
over vectors with exactly one 1 and 0 mass everywhere else. Let the label distribution be always y =
1. Consider sampling a dataset .S of size c¢-d where ¢ < 1 (corresponding to the overparameterized
setting) and consider the hinge loss

fe(@) =1 — (2] =)]4

where (z, y:) denotes the ¢-th (example, label) pair. Note that there is an optimal predictor given by
the all-ones vector.

Running AdaGrad in such a setting, it can be seen that the first time a vector that has not appeared
yet is sampled, AdaGrad quickly adapts by setting the coordinate corresponding to the vector to 1
and thereby making 0 error on the example. Therefore after one epoch of AdaGrad (cd steps), the
training error reduces to 0 and the average test error becomes roughly (1 — ¢). On the other hand,
for SGD (with an optimal 1/v/¢ decay scheme) after say cd/2 steps, the learning rate reduces to at
most O(1/+/d) and therefore in the next cd/2 steps SGD reduces the error at most by a factor of
O(1 — 1/d), leading to a total test error of at least ~ (1 — ¢/2) after a total of cd steps. This is
significantly smaller than the error achieved by AdaGrad at this stage. Further note that to get down
to the same test error as that achieved by AdaGrad, it can be seen that SGD requires at least Q(v/d)
times more steps than AdaGrad.

6 CONCLUSION

We have presented an empirical retrospective on adaptive gradient methods, along with several prac-
tical algorithmic insights, concluding that the adaptive gradient methods do not in general carry a
generalization penalty. In no way do we purport to settle the debate about optimizer selection; at
the very least, this would require a massive hyperparameter search, which would need to be up-
dated as trends evolve and new architectures and benchmarks emerge. Instead, our experiments aim
to challenge some possible misconceptions, while pointing out the simple algorithmic suggestions
they imply. In doing so, we hope to contribute to a greater clarity on the messy frontier of optimizer
selection and tuning.

Under review as a conference paper at ICLR 2020

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In /2th USENIX Symposium on Operating Systems Design and Imple-
mentation, pp. 265-283, 2016.

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
Efficient full-matrix adaptive regularization. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 102—-110, Long Beach, California, USA, 09-15
Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/agarwall9b.htmll

Zeyuan Allen-Zhu and Yuanzhi Li. Can sgd learn recurrent neural networks with provable general-
ization? arXiv preprint arXiv:1902.01028, 2019.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-efficient adaptive optimiza-
tion for large-scale learning. arXiv preprint arXiv:1901.11150, 2019.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. arXiv preprint
arXiv:1901.08584, 2019.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias—variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849-15854, 2019.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster,
Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, Ashish Vaswani, Jakob Uszkoreit,
Lukasz Kaiser, Zhifeng Chen, Yonghui Wu, and Macduff Hughes. The best of both worlds:
Combining recent advances in neural machine translation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, ACL 2018, pp. 76-86, 2018.

Xinyi Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, and Yi Zhang. Extreme tensoring for
low-memory preconditioning. arXiv preprint arXiv:1902.04620, 2019.

Do Kook Choe and Eugene Charniak. Parsing as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pp. 2331-2336, 2016.

Francois Chollet et al. Keras. https://github.com/fchollet/keras) 2015.

James Cross and Liang Huang. Span-based constituency parsing with a structure-label system and
provably optimal dynamic oracles. 2016.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. arXiv preprint arXiv:1802.08246, 2018a.

10

http://proceedings.mlr.press/v97/agarwal19b.html
https://github.com/fchollet/keras

Under review as a conference paper at ICLR 2020

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. In Advances in Neural Information Processing Systems, pp.
9461-9471, 2018b.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends®) in Optimization,
2(3-4):157-325, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, pp. 14,2012.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis
of a tensor processing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual
International Symposium on, pp. 1-12. IEEE, 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. Ctrl:
A conditional transformer language model for controllable generation, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215-10224, 2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert Maclntyre, Ann Bies, Mark Fer-
guson, Karen Katz, and Britta Schasberger. The penn treebank: annotating predicate argument
structure. In Proceedings of the workshop on Human Language Technology, pp. 114-119. Asso-
ciation for Computational Linguistics, 1994.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. arXiv preprint arXiv:1002.4908, 2010.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and double descent curve. arXiv preprint arXiv:1908.05355, 2019.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anasta-
sopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav
Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra,
Swabha Swayamdipta, and Pengcheng Yin. Dynet: The dynamic neural network toolkit. arXiv
preprint arXiv:1701.03980, 2017.

11

Under review as a conference paper at ICLR 2020

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In
International Conference on Learning Representations, 2018.

Frank Schneider, Lukas Balles, and Philipp Hennig. Deepobs: A deep learning optimizer benchmark
suite. arXiv preprint arXiv:1903.05499, 2019.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
arXiv preprint arXiv:1804.04235, 2018.

Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, et al. Lingvo: a modular and scalable
framework for sequence-to-sequence modeling, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain Operations
Applications, volume 11006, pp. 1100612. International Society for Optics and Photonics, 2019.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26—
31, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998—-6008, 2017.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems, pp. 4151-4161, 2017.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

12

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 DETAILS OF EXPERIMENTS
A.1.1 TRANSFORMER-BIG ON WMT 14 ENGLISH TO FRENCH

Models were trained with 384 batch size with a linear warm-up over 40k steps. We did a grid
search over the parameters. Ranges of these were: Learning rate 7 € [107¢,10°], Momentum
B1 € {0.9,0.99}, and eecond-moment coefficient for Adam/RMSprop Sz € 0.99,0.999.

1. AdaGrad: Following versions of AdaGrad had e fixed to zero. (Note we indeed add an €

of 1073° such that ﬁ is not infinity.)

(a) Vanilla: n = 0.01
(b) Heavy Ball Momentum: 3; = 0.9, 7 = 0.05

2. Adam: ; = 0.9, B2 = 0.999, with maximal learning rate of 0.000075, and followed by
decay as suggested in|[Vaswani et al.|(2017)).

3. RMSprop: g2 = 0.999, n = 0.000075
4. Momentum: 5; = 0.9, n = 0.08

A.2 RESNET-50 ON IMAGENET-2012

Models were trained with 16384 batch size, with L2 regularization and label smoothing coefficients
set as 1e-4 and 0.1 respectively.

1. SGD+Momentum(HB): follows a staircase learning rate schedule where learning rate is
ramped up linearly from O to 6.4 over the first 5 epochs, followed by 10x drop in learning
rate at 30 epochs, 60 epochs and 80 epochs. Momentum is set to 0.9.

2. AdaGrad+Decay: We linearly increase the learning rate from 0 to 0.1 over the first 50

epochs, followed by an external decay rate, that follows (1 — W)Q. AdaGrad here

refers to the epsilon fixed version with heavy-ball momentum coefficient set to 0.9.

3. Adam: Decay rate follows the same schedule as AdaGrad decay, however, uses a maximal
learning rate of 0.001.

4. AdaGrad: without decay linearly increases the learning rate from 0 to 0.1 over the first 20
epochs. AdaGrad here refers to the epsilon fixed version with heavy-ball momentum.

B ANALYSIS OF ADAGRAD WITHOUT ¢

In Section 3.1 we provide a method for setting the € to 0. The general update is performed as follows
Wil = Wy — 1) Hfgt; Gis1 =G+ qug;
where the preconditioning matrix H; is updated in two possible ways:

diagonal: H, & diag(G,)"/?; full: H, € G}/?,

The following theorem whose proof is very similar to the original analysis in [Duchi et al.| (2011)
shows that the above modification leads to no change in the regret guarantee of AdaGrad.

Theorem 1. The regret of the AdaGrad algorithm with updates implemented as (2)) is bounded as

(full) Regret < O <gn<a>T< [Jwe — w2 tr(GlT/2)>

IN

d T
(diagonal) Regret < O max llws — w* || oo Z Z 97
= i=1 \ t=1

13

Under review as a conference paper at ICLR 2020

We now provide a quick proof sketch for the above highlighting the main parts of the proof that
change from the standard version. As in the original proof we consider the case of linear loss
functions at every step given by g;. The first step is to note that the following relationship holds
directly by the definition of the updates.

9¢ (we — %) = gy Izt = I, = llwers — 2% [1%,) + i(ngthHfgt)2~

The analysis now follows in the standard way by summing the above over time and analyzing the first
and second summation separately. The first term is the same as the standard analysis and therefore
leads to no change.

Further more for the second term the idea of the original proof is to show that
> g/ HIH.Hfg,)> < 2tr(Hr).
t

The above statement follows in the same way as the original proof with care for pseudoinverses.
For instance in the diagonal version we can apply Lemma 4 from Duchi et al.| (2011) along each
coordinate separately applying the lemma from the first time the coordinate sees a non-zero gradient
and ignoring everything before as it is 0.

14

	Introduction
	Our Contributions
	Related Work

	Background
	Optimization Setting
	Adaptive Gradient Methods

	Practical Aspects of Adaptive Optimization
	The Hyperparameter
	Momentum
	Learning Rate Warmup
	Learning Rate Decay Schedule

	Experiments
	Machine Translation with Transformer
	Sensitivity to
	Image Classification with ResNet-50
	Revisiting the Experiments of wilson2017marginal

	Theoretical Discussion
	Example where SGD > Adagrad
	Example where AdaGrad > SGD

	Conclusion
	Appendix
	Details of Experiments
	Transformer-Big on WMT14 English to French

	Resnet-50 on ImageNet-2012

	Analysis of AdaGrad without

