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ABSTRACT

Learning good representations of users and items is crucially important to rec-
ommendation with implicit feedback. Matrix factorization is the basic idea to
derive the representations of users and items by decomposing the given interac-
tion matrix. However, existing matrix factorization based approaches share the
limitation in that the interaction between user embedding and item embedding is
only weakly enforced by fitting the given individual rating value, which may lose
potentially useful information. In this paper, we propose a novel Augmented Gen-
eralized Matrix Factorization (AGMF) approach that is able to incorporate the
historical interaction information of users and items for learning effective repre-
sentations of users and items. Despite the simplicity of our proposed approach,
extensive experiments on four public implicit feedback datasets demonstrate that
our approach outperforms state-of-the-art counterparts. Furthermore, the ablation
study demonstrates that by using multi-hot encoding to enrich user embedding and
item embedding for Generalized Matrix Factorization, better performance, faster
convergence, and lower training loss can be achieved.

1 INTRODUCTION

In the era of big data, we are seriously confronted with the problem of information overload. Rec-
ommender systems play an important role in dealing with such issue, thereby having been widely
deployed by social media, E-commerce platforms, and so on. Among the techniques used in rec-
ommender systems, collaborative filtering (Sarwar et al.|[2001; [Hu et al.l 2008} Su & Khoshgoftaar,
2009; He et al., 2017; Wang et al., [2019) is the dominant one that leverages user-item interaction
data to predict user preference. Among various collaborative filtering methods, Matrix Factorization
(MF) is the most popular approach that has inspired a large number of variations (Koren| 2008; Ren-
dle et al.| 2009; He et al.}|2017; | Xue et al., 2017). MF aims to project users and items into a shared
latent space, and each user or item could be represented by a vector composed by latent features. In
this way, the user-item interaction score could be recovered by the inner product of the two latent
vectors. Most of the existing extensions of MF normally focus on the modeling perspective (Wang
et al.; 2015; 2018) and the learning perspective (Xue et al., [2017; He et al., [2017). For example,
BPR-MF (Rendle et al.| 2009) learns user embedding and item embedding from implicit feedback
by optimizing a Bayesian pairwise ranking objective function. NeuMF (He et al.,2017) learns com-
pact embeddings by fusing the outputs from different models. DeepMF (Xue et al., [2017) employs
deep neural networks to learn nonlinear interactions of users and items.

Although these approaches have achieved great success, they still cannot resolve the inherent lim-
itation of MF. Specifically, apart from the interaction by inner product, there are no explicit rela-
tionships between user embedding and item embedding. In other words, the connection between
user embedding and item embedding is only weakly enforced by fitting the given individual rating
value. However, in real-world scenarios, user embedding and item embedding may be interpreted
as some high-level descriptions or properties of user and item, which are supposed to have some
explicit connections. For example, a user likes some item, probably because the user and the item
share some similar high-level descriptions or properties. Which means, the latent features of a user
could be potentially enriched by taking into account the latent features of the user’s interacted items,
since these interacted items could expose the latent features of the user to some degree. Similarly,
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the latent features of an item may also be enriched by the latent features of the item’s interacted
users. However, most of the existing approaches regrettably ignore such useful information. An
exception is the SVD++ model (Koren, |2008), which provides each user embedding with additional
latent features of items that the user has interacted with. Despite the effectiveness of the SVD++
model, it suffers from two major problems. First, it only enriches user embedding, and ignores the
fact that item embedding could also be enriched by the latent features of users that the item has
interacted with. Second, the latent features of the interacted items are averagely integrated without
discrimination, while each user normally has different preferences on different items. Note that there
are also other approaches that regularize or enrich user embedding and item embedding by exploit-
ing supplementary information, such as social relations (Ma et al., 2011} |Guo et al.| 2017)) and text
reviews (Chen et al., 2018). However, in this paper, we do not assume there is any supplementary
information, and only focus on the data with implicit feedback.

Motivated by the above observations, this paper proposes a novel Augmented Generalized Matrix
Factorization (AGMF) approach for learning from implicit feedback. Different from existing ap-
proaches, AGMF aims to enrich both user embedding and item embedding by applying multi-hot
encoding with the attention mechanism on historical items and users. In this way, user embed-
ding and item embedding are explicitly related to each other, which could further improve the per-
formance of the Generalized Matrix Factorization (GMF) model. Extensive experimental results
clearly demonstrate our contributions.

2 PRELIMINARIES

In this section, we first present the problem statement and then briefly introduce the basic MF model,
the GMF model, and the SVD++ model.

2.1 PROBLEM STATEMENT

LetUd = {1,2,--- ,U} be the set of U users,and Z = {1,2,--- , I} be the set of I items. We define
the given user-item interaction matrix Y = [yu;]uxs from implicit feedback data as: y,; = 1 if
the interaction (u, ) is observed, otherwise ¥,; = 0. It is worth noting that y,,; = 1 indicates that
there is an observed interaction between user « and item ¢, while it does not necessarily mean that
u likes ¢. In addition, y,; = 0 does not necessarily mean that v does not like ¢, and it is possible
that v is not aware of ¢. Such setting could inevitably bring additional challenges for learning from
implicit feedback, since it may provide misleading information about user’s preference. The goal
of recommendation with implicit feedback is to predict the values of the unobserved entries in Y,
which can be further used to rank the items.

2.2 MATRIX FACTORIZATION

MF is a basic latent factor model, which aims to characterize each user and item by a real-valued
vector of latent features (Koren et al., 2009). Let p,, and q; be the latent vectors for user v and item
i, respectively. MF tries to give an estimation g,,; of y,; by the inner product of p,, and q;:

K
Jui =Pp Ui = > Dukllik (D
k=1

where K is the dimension of the latent vectors. As can be seen, the latent features could be consid-
ered as linearly combined in MF. Hence MF can be regarded as a linear model with respect to latent
features. This linear property of MF restricts its performance to some degree. As a result, there are
an increasing number of approaches (Xue et al.,|2017; |He et al.l 2017; Zhang et al., 2018) proposed
to alleviate this problem, by learning a nonlinear interaction function using deep neural networks.

2.3 GENERALIZED MATRIX FACTORIZATION

Generalized Matrix Factorization (GMF) (He et al.l [2017) is a simple nonlinear generalization of
MF, which makes a prediction ¢,,; of y,; as follows:

Jui = o(h' (py ® q;)) 2)
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where ® denotes the element-wise product of vectors, h is a weight vector, and o (+) is an activation
function. To show that MF is a special case of GMF, we can simply set h = 1 where 1 is the vector
with all elements equal to 1. In this way, apart from the activation function, the MF model is exactly
recovered by GMF, since p, q; = 17 (p, ® q;).

2.4 SVD++

SVD++ extends MF by leveraging both explicit ratings and implicit feedback to make prediction:

Jui =a) (Pu+INW|2Y" ) 3)

JENy
where N(u) denotes the set that stores all the items for which « has provided implicit feedback, and
c; is a latent vector of item j for implicit feedback, while p,, and q; are free user-specific and item-
specific latent vectors specially learned for explicit ratings. The only difference between SVD++
and MF lies in that p,, is enriched by |N(u)|~2 > jen, i

3 THE PROPOSED APPROACH

Figure [T]illustrates the framework of our AGMF model. It is worthy noting that for the input layer,
unlike most of the existing approaches (Koren et al., 2009} He et al.| |2018) that only employ one-
hot encoding on the target user’s ID (denoted by w) and the target item’s ID (denoted by ¢), we
additionally apply multi-hot encoding on user u’s interacted items, and item ¢’s interacted users.
In this way, potentially useful information is incorporated, which could enrich the embedding of
u and <. Note that this part is the core design of our proposed AGMF model. By enriching the
one-hot encoding with multi-hot encoding, the historical interactions between users and items are
exploited, therefore our AGMF model with multi-hot encoding achieves superior performance to the
GMF model with only one-hot encoding. We argue that this design is simple but more advantageous
in threefold. First, it is an augmented version of the GMF model that only takes into account the
one-hot embedding of the target user and the target item. Second, it encodes more information than
the GMF model, by considering numerous historical interactions of users and items. Such natural
information is valuable and should not be ignored for recommendation with only implicit feedback.
Third, different from most matrix factorization based recommendation models that only relates user
embedding and item embedding by fitting the given individual value, our AGMF model joint learns
user embedding and item embedding in a more explicit way.

In order to avoid the conflict that user w may overly concentrate on item ¢ if the target item is
i, we will exclude ¢ from N(u) (denoted by N(u)\{i}) when predicting ;. Similarly, we will
also exclude u from N() (denoted by N(i)\{u}) when predicting §,;. In what follows, we detail
elaborate the design of our AGMF model layer by layer.

3.1 INPUT AND EMBEDDING LAYER

Given the target user u, the target item 7, user u’s interacted items N(u), and item ¢’s interacted
users N(7), we not only apply one-hot encoding on « and ¢, but also apply multi-hot encoding on
N(u) and N(3). In this way, u and i are projected to latent feature vectors p,, € R¥ and q; € R¥.
Similarly, for each historical item j € N(u)\{}z(} and each historical user k& € N(i)\{u}, we can
obtain {q; € R¥|j € N(u)\{i}} and {px € R¥|k € N(i)\{u}}.

3.2 PAIRWISE INTERACTION LAYER

Following the interaction way used in GMF, we also apply the widely-used element-wise product
(He et al., 2017} |Cheng et al., [2018; [Xue et al., 2018)) to model the interactions of u and N(u) as
well as ¢ and N(7), Generally, interaction ways such as p,, + q;, Pu — q;, or any other function that
integrates two vectors into a single vector, can also be used. Here, we choose element-wise product
because it generalizes inner product to vector space, which could retrain the signal of inner product
to a great extent.
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Figure 1: The framework of our AGMF model.
3.3 POOLING LAYER

Since there are multiple historical items of user v and multiple historical users of item 7, how to
extract useful information from these generated latent vectors is crucially important. In reality, the
historical items of the target user u normally make different contributions to » on decision of the
target item 7. The same situation holds for the target item ¢ while interacting with the target user u.
Therefore, we perform a weighted sum on the latent vectors obtained from the pairwise interaction
layer, i.e.,

Pu/ = Z au<uaj)qj7 Qi/ = Z ai(ia k)pk (4)
FENL\ {4} kEN;\{u}

where a,, (u, j) denotes the attention weight that the target user u on its interacted item 7, and a; (7, k)
is the attention weight that the target item ¢ on its interacted user k. Note that a,,(u,?) = a;(%,u)
does not necessarily hold, as you are my best friend, while I may not be your best friend. p,,/ and q;/
are the supplementary latent vectors generated by the pooling layer, which will be used to enrich p,,
and q;. In this paper, we define a,, (u, j) (V5 € N,\{¢}) and a;(i, k) (Vk € N;\{u}) as the softmax
normalization of the interaction scores between users and items:

exp(fu(Pu © ;) (i, ) = —=Uild: O p) 5)
Yiexp(fulpu ©4q;)) 2 exp(fi(ai © pr))

where f,(-) (fi(+)) is the user (item) attention model that takes the user-item interaction vector as an
input, and outputs the corresponding interaction score. In this paper, we define f,(-) and f;(-) as:

fuPu®q;) = o(hy (Pu ©q;)), fi(di ®pr) = o(h (@ ©pr)) (6)
where h,, and h; are the weight vectors of the user attention model and the item attention model,
respectively. Note that unlike existing approaches that normally take multi-layer neural networks as
the attention model, we only use a single-layer perceptron. In this way, our proposed attention model
is exactly a standard GMF model. Our experimental results show that such simple GMF model can
achieve satisfactory performance, with keeping simple and efficient. While deeper structures could
potentially achieve better performance, we leave the exploration of deeper structures for attention
modeling in future work.

ay(u,j) =
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3.4 PREDICTION LAYER

With the supplementary latent vectors p,/ and q;/ for p,, and q;, inspired by SVD++, we represent
the latent vector of user u by p,, + p./, and represent the latent vector of item ¢ by q; + q;/. Then
we reuse the GMF model as the prediction model, and the predicted interaction score 4,,; is given
by:

Jui = o(b" (P + Pu/) @ (qi +ai))) (7)

where h is the weight vector of the prediction model. We empirically use the sigmoid function
o(x) = 1/(1 + exp(—x)) as the activation function throughout this paper.

3.5 Loss FUNCTION

Since this paper focuses on learning from implicit feedback data, the output ¢,,; of our AGMF model
is constrained in the range of [0, 1], which could provide a probability explanation. In such setting,
the commonly used Binary Cross Entropy (BCE) loss could be employed:

L=~ > loggui— Y, log(l—u) ®)

(u,i)eO+ (u,j)€O—

where O denotes the observed interactions and O~ denotes the set of negative instances that could
be sampled from unobserved interactions. In this paper, for each training epoch, we randomly
sample four negative instances per positive instance.

4 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate that our AGMF model outper-
forms state-of-the-art counterparts. In addition, we provide ablation study to clearly demonstrate
the importance of multi-hot encoding for generalized matrix factorization.

4.1 EXPERIMENTAL SETTINGS
4.1.1 DATASETS

We conduct experiments on four publicly available datasets: MovieLens 1M (ML—lMﬂ Yellﬂ
Amazon Movies and Tv (Movies&Tvﬂ and Amazon CDs and Vinyl (CDs&Vinyl). For ML-1M,
we directly use the original dataset downloaded from the MovieLens website. Since the high sparsity
of the original dataset makes it much difficult to evaluate recommendation approaches, we follow
the common practice (Rendle et al., 2009; |[He et al., 2016) to process the other three datasets. For
the Yelp dataset, we filter out the users and items with less than 10 interactions (He et al., 2016)). For
Movies&Tv and CDs& Vinyl, we filter out the users that have less than 10 interactions. As this paper
focuses on the data with implicit feedback, we mask all the data with explicit feedback to have only
implicit feedback by marking each entry O or 1, which indicates whether the user has interacted the
item. The main characteristics of these datasets are provided in Table

Table 1: Characteristics of the used datasets.

Dataset ML-1M Yelp Movies&Tv | CDs&Vinyl
Number of users 6040 25,677 40,928 26,876
Number of Items 3706 25,815 51,509 66,820

Number of interactions 1,000,209 698,506 1,163,413 770,188
Rating density 0.04468 0.00105 0.00055 0.00043

"https://grouplens.org/datasets/movielens/
Zhttps://www.yelp.com/dataset/challenge
*https://www.amazon.com/
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4.1.2 COMPARING ALGORITHMS

We compare AGMF with the following state-of-the-art approaches:

o SVD++ (Koren, |2008) It merges the latent factor model and the neighborhood model by
enriching the user latent feature with the interacted items’ latent features.

o BPR-MF (Rendle et al.| |2009) It trains the basic MF model by optimizing the Bayesian
personalized ranking loss.

o FISM (Kabbur et al |2013) It is an item-based approach, which factorizes the similarity
matrix into two low-rank matrices.

e MLP (He et al.l 2017) It learns the interactions between users and items by multi-layer
perceptron.

o GMTF (He et al., 2017) It generalizes the basic MF model to a non-linear setting.

e NeuMF-p (He et al., [2017) NeuMF is a combination of MLP and GMF, and its pretrain-
ing version is called NeuMF-p. In this paper, we compare with NeuMF-p, as NeuMF-p
provides better performance than NeuMF without pretraining (He et al., 2017).

e ConvNCF (He et al.l[2018)) It employs a convolutional neural network to learn high-order
interactions based on the interaction map generated by the outer product of user embedding
and item embedding.

4.1.3 TRAINING DETAILS

We randomly holdout 1 training interaction for each user as the development set to tune hyperpa-
rameters suggested by respective literatures. Unless otherwise specified, for all the algorithms, the
learning rate is chosen from [5e =5, 1le~%, 5e 4, 1e 73, 5e 3], the embedding size K is chosen from
[16, 32, 64, 128], the regularization parameter (that controls the model complexity) is chosen from
[le~5,5e ¢ 1e7®,5¢~°], and the batch size is set to 256. For MLP and NeuMF-p that have multiple
fully connected layers, we follow the tower structure of neural networks (He et al., 2017), and tune
the number of hidden layers from 1 to 3. For ConvNCFE], we follow the configuration and archi-
tectures proposed in (He et al. [2018). All the models are trained until convergence or the default
maximum number of epochs (by respective literature) is reached.

For our proposed AGMF model, no neural network is adopted, hence we do not need to tune the
network structure. We initialize the weight vectors by the Xavier initialization (Jia et al.,[2014), and
initialize the embedding vectors using a uniform distribution from O to 1.

For training AGMF, we employ the Adaptive Moment Estimation (Adam) (Kingma & Bal [2014),
which adapts the learning rate for each parameter by performing small updates for frequent param-
eters and large updates for infrequent parameters. We implement AGMF using PyTorclﬂ and the
source code as well as the used datasets are released. We fix the embedding size at 128, since we
found that a larger embedding size always performs better. Note that the number of interacted users
or items may be very large, to mitigate this issue, we truncate the list of interacted users and items
such that the latent representation of each user/item is enriched by the latent vectors of at most 50
latest interacted items/users.

4.2 EXPERIMENTAL RESULTS

In this paper, we adopt the widely used leave-one-out evaluation method (Rendle et al., 2009; [He
et al.| [2016; Bayer et al.l 2017) to compare AGMF with other approaches. Specifically, for each
dataset, we holdout the latest interaction of each user as the test positive examples, and randomly
select 99 items that the user has not interacted with as the test negative examples. In this way, all the
algorithms make ranking predictions for each user based on these 100 user-item interactions.

To evaluate the ranking performance, we adopt two widely used evaluation criteria, including Hit
Ratio (HR) and Normalized Discount Cumulative Gain (NDCG). HR@k is a recall-based metric

Ynttps://github.com/duxy-me/ConvNCF
*https://pytorch.org/
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Table 2: HR@5 and NDCG@5 comparisons of different approaches. The best results are high-

lighted.
ML-IM Yelp Movie&Tv CDs& Vinyl
HR@5 NDCG@S5 | HR@5 NDCG@5 | HR@5 NDCG@S5 | HR@5 NDCG@5

BPR-MF | 0.496 0.344 0.700 0.526 0.633 0.479 0.671 0.523
SVD++ 0.541 0.376 0.703 0.528 0.631 0.480 0.666 0.520
FISM 0.528 0.372 0.691 0.511 0.583 0.452 0.592 0.457
MLP 0.526 0.362 0.671 0.498 0.570 0.425 0.588 0.445
GMF 0.540 0.372 0.676 0.507 0.569 0.427 0.620 0.481
NeuMF | 0.548 0.381 0.695 0.521 0.596 0.453 0.629 0.491
ConvNCF | 0.549 0.391 0.708 0.532 0.634 0.484 0.673 0.525
AGMF 0.561 0.393 0.716 0.547 0.644 0.497 0.685 0.542

Table 3: HR@10 and NDCG@ 10 comparisons of different approaches. The best results are high-

lighted.
ML-1M Yelp Movie&Tv CDs& Vinyl
HR@10 NDCG@I0 | HR@10 NDCG@10 | HR@10 NDCG@10 | HR@10 NDCG@10

BPR-MF | 0.675 0.401 0.833 0.569 0.765 0.527 0.784 0.560
SVD++ 0.716 0.437 0.834 0.570 0.762 0.524 0.780 0.556
FISM 0.699 0.433 0.824 0.567 0.708 0.471 0.729 0.512
MLP 0.703 0.421 0.805 0.537 0.703 0.471 0.712 0.485
GMF 0.711 0.429 0.809 0.552 0.712 0.479 0.729 0.515
NeuMF 0.727 0.443 0.824 0.560 0.721 0.493 0.750 0.529
ConvNCF | 0.713 0.445 0.836 0.572 0.762 0.525 0.785 0.562
AGMF 0.731 0.449 0.838 0.585 0.766 0.535 0.793 0.576

that measures whether the testing item is on the top-k list, and NDCG@F£ assigns higher scores to
the items with higher positions within the top-k list (He et al.,[2018).

4.2.1 PERFORMANCE COMPARISON

Table 2] and Table [3| show the top-k performance of all the algorithms when & = 5 and k£ = 10,
respectively. From the two tables, we can observe that:

o AGMF achieves the best performance (the highest HR and NDCG scores) on the four
datasets.

e Although AGMF is a simple extension of GMF, it still outperforms the complex state-of-
the-art approaches NeuMF-p and ConvNCF.

e Compared with GMF, AGMF achieves significantly better performance. Such success owes
to multi-hot encoding with the attention mechanism, which provides enriched information
for user embedding and item embedding.

4.2.2 ABLATION STUDY

As aforementioned, the GMF model makes prediction by 9,; = o(h " (p,, ® q;)), while our AGMF
model makes prediction by §,; = o(h' (P +p},) © (qi +ai/))). Clearly, without the supplemen-
tary latent vectors p,,/ and q;/, AGMF reduces to GMF.

Table2]and Table3|have clearly showed that AGMF significantly outperforms GMFE. While the used
GMF model for performance evaluation is provided by (He et al.,[2017), which is implemented by
Keras, and uses a different initialization strategy. Hence it may be slightly different from AGMF
without p,/ and q;/. For fair comparison and pure ablation study, we conduct experiments using
the codes of AGMF, to compare the performance of AGMF and AGMF without the supplementary
latent vectors p,,/ and q;/. While with a slight abuse of naming, in this ablation study, we still name
AGMF without p,,/ and q;/ as GMF.
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Figure 2: Comparison results of AGMF and GMF on all the used datasets.
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Figure 3: Comparison results of AGMF and GMF in each training epoch.

Figure [2] reports the comparison results of AGMF and GMF on all the datasets. It can be seen
that AGMF always achieves better performance than GMF, in terms of both evaluation metrics.
Furthermore, we also report the comparison results of AGMF and GMF in each training epoch in
Figure[3] We can observe that:

o AGMEF consistently outperforms GMF in each training epoch.
o AGMF converges faster than GMF.
o AGMF achieves lower training loss than GMF.

By integrating historical interactions into user embedding and item embedding, the above observa-
tions are revealed by this paper for the first time. Therefore, the importance of multi-hot encoding for
generalized matrix factorization is clearly demonstrated. Moreover, these observations may bring
new inspirations about how to properly integrate the one-hot encoding and multi-hot encoding for
effectively improving the recommendation performance.

5 CONCLUSION

Learning good representations of users and items is crucially important to recommendation with
implicit feedback. In this paper, we propose a novel Augmented Generalized Matrix Factorization
(AGMF) model for learning from implicit feedback data. Extensive experimental results demon-
strate that our proposed approach outperforms state-of-the-art counterparts. Besides, our ablation
study clearly demonstrates the importance of multi-hot encoding for Generalized Matrix Factoriza-
tion. As user-item interaction relationships are vitally important for learning effective user embed-
ding and item embedding, hence in future work, we will investigate if there exist better user-item
interaction relationships that can be exploited to improve the recommendation performance.
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