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ABSTRACT

Generalized zero-shot learning (GZSL) is the task of predicting a test image from
seen or unseen classes using pre-defined class-attributes and images from the seen
classes. Typical ZSL models assign the class corresponding to the most relevant
attribute as the predicted label of the test image based on the learned relation be-
tween the attribute and the image. However, this relation-based approach presents
a difficulty: many of the test images are predicted as biased to the seen domain,
i.e., the domain bias problem. Recently, many methods have addressed this diffi-
culty using a synthesis-based approach that, however, requires generation of large
amounts of high-quality unseen images after training and the additional training of
classifier given them. Therefore, for this study, we aim at alleviating this difficulty
in the manner of the relation-based approach. First, we consider the requirements
for good performance in a ZSL setting and introduce a new model based on a
variational autoencoder that learns to embed attributes and images into the shared
representation space which satisfies those requirements. Next, we assume that the
domain bias problem in GZSL derives from a situation in which embedding of the
unseen domain overlaps that of the seen one. We introduce a discriminator that
distinguishes domains in a shared space and learns jointly with the above embed-
ding model to prevent this situation. After training, we can obtain prior knowledge
from the discriminator of which domain is more likely to be embedded anywhere
in the shared space. We propose combination of this knowledge and the relation-
based classification on the embedded shared space as a mixture model to compen-
sate class prediction. Experimentally obtained results confirm that the proposed
method significantly improves the domain bias problem in relation-based settings
and achieves almost equal accuracy to that of high-cost synthesis-based methods.

1 INTRODUCTION

The recent high performance of deep neural networks on image classification and object recogni-
tion depends greatly on whether one can obtain sufficiently labeled images of classes to predict.
Nevertheless, it is difficult to do this in the real world because the number of existing classes is
enormous. As long as human beings create or develop new objects, their number might continue
to increase daily, thereby creating difficulty in obtaining labeled data of all classes to predict. In
recent years, this difficulty led to great interest in zero-shot learning (ZSL) (Farhadi et al., 2009;
Frome et al., 2013; Lampert et al., 2014; Xian et al., 2018a), which is training by a labeled set from
certain classes called seen classes and then predicting completely unseen classes that are not in-
cluded in the training set.

Usually, ZSL is accomplished by preparing pre-defined semantic representations of all classes, such
as attributes, and learning the relation between images and the class-attributes. Once it is learned
from the training set, we can predict the labels of test examples from unseen classes by selecting
the most relevant attributes on this relationship. However, it has been pointed out that this approach
does not work for generalized zero-shot learning (GZSL), which is a more general setting where test
samples can be from both seen and unseen classes (Chao et al., 2016). This is because all examples
of the training set are obtained from the seen classes, so the data to be predicted as one of the unseen
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Figure 1: An overview of MCMVAE-D. Images and attributes are embedded in the shared represen-
tation space by MCMVAE inference models learned given the training set. We propose a model to
distinguish different domains (seen or unseen) in space and to learn jointly with MCMVAE. After
learning, we can perform class prediction with a reduced bias toward the seen classes by combining
relation-based classifier and domain discriminator as a mixture model, as shown in the equation on
the right side.

classes also has a strong relationship with the seen class attributes, resulting most of them assigned
to one of the seen classes. In this paper, we refer to a domain as belonging to either seen or unseen,
and call the problem that class prediction is biased to the seen domain as the domain bias problem.

To address this difficulty, recent works have taken an approach of learning a generative model that
generates images from corresponding attributes, and of then training a classifier to predict classes
from the generated synthesis images (Mishra et al., 2017; Verma & Rai, 2017; Xian et al., 2018b;
Felix et al., 2018). The advantage of this synthesis-based approach is that samples of both domains
are obtainable by generation, which contributes to alleviation of the domain bias problem. However,
these synthesis-based methods require the generative model to generate numerous diverse and high-
quality images for each class, including unseen ones, sufficient to classify with high-performance,
which can be difficult and costly. On the other hand, conventional relation-based methods can make
class predictions using only the learned image–attribute relation, not requiring enormous image
generation after training and additional learning phase. Therefore, we address the following question
in this paper: Can we mitigate the domain bias problem of GZSL in the relation-based manner and
achieve high performance?

We first discuss the importance of the following requirements for good relation-based ZSL per-
formance when embedding images and attributes in a shared representation space that satisfies the
following requirements: images and attributes belonging to the same class must be in the same
place (modality invariance); and different classes of samples must be separated (class separabil-
ity). To achieve such embedding, we propose Modality-invariant and Class-separable Multimodal
VAE (MCMVAE), which is an extension of variational autoencoders (VAEs) (Kingma & Welling,
2013; Rezende et al., 2014). The objective of MCMVAE is designed based on the two requirements
presented above.

Next, we hypothesize that the domain bias problem results from a situation in which the unseen
domain overlaps that of the seen one in the shared space. To address this point, we explicitly intro-
duce a discriminator for separation of these two domains. This discriminator is trained jointly with
MCMVAE. After training, it gives the probability of a test image being in a given domain. In other
words, it gives prior knowledge of the domain in the shared space. Based on this insight, we consider
the class prediction probability as a soft combination of MCMVAE classification and consider the
domain discriminator as a mixture model (see Figure 1). Such combination-based classification has
been proposed as a “gating” approach (Atzmon & Chechik, 2019). However, unlike this work, our
method is able to train the entire model while retaining an end-to-end manner. We call this proposed
approach as MCMVAE with a Domain discriminator (MCMVAE-D).
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The contribution of this research is the following. (1) We consider the requirements of the shared
representation space to perform in the ZSL setting and propose MCMVAE as a model to learn
the embedding of images and attributes into that space. (2) We also propose MCMVAE-D, which
combines MCMVAE with a domain discriminator. The experiment results demonstrate that it greatly
reduces the domain bias problem, thereby contributing to exceed the performances of the existing
relation-based models greatly and to be equivalent to the state-of-the-art synthesis-based method.

2 PROBLEM FORMULATION: GENERALIZED ZERO-SHOT LEARNING

We assume that the dataset Dtr = {xi, yi}Ntr
i=1 is given as the training set, where xi ∈ X is the input

data, e.g. an image, and where yi ∈ Ys = {1..., S} is the corresponding label data.

The objective of ZSL is to learn the classifier using Dtr and to predict labels ŷj ∈ Y from the
example xj ∈ X in the test set Dts = {xj}Nts

j=1. For the standard ZSL, it is assumed that the
classes of the test set are completely unseen in the training set, which means that Y = Yu =
{S+1, ..., S+U}. Our goal is to train in the setting of GZSL, which includes both seen and unseen
classes in the test set (Y = Ys ∩ Yu).

Furthermore, we assume that we have the class-attribute matrix A ∈ RM×(S+U) as the semantic
information of classes, where each column represents the M -dimensional attribute vector ac ∈ A =
RM of each class c = 1, ..., S + U . Using this attribute vector, the training set Dtr can be replaced
as {xi,ayi

}Ntr
i=1.

Using the relation-based approach, the objective is changed to train the compatibility function of
the input and attribute F (x,ay), which represents how the input and attribute are related: stronger
relations have greater values. Once this function is learned from the training set, the classification
probability can be expressed as

p(y = c|x) = exp (F (x,ac))∑
ŷ∈Y exp (F (x,aŷ))

. (1)

One can predict the class labels by choosing the one that maximizes this probability, i.e., ŷ =
argmaxy∈Y p(y|x).
Additionally, we call seen and unseen ones as different domains and express it as a binary variable
d ∈ {0, 1}, where d = 0 represents the seen domain and d = 1 represents the unseen one.

3 PROPOSED METHOD

3.1 RELATION-BASED CLASSIFICATION OF THE SHARED REPRESENTATION

In this study, the image x and the attribute ay are regarded as different modalities. Also, the mapping
qϕx

(z|x) and qϕa
(z|ay) embed them into the same space, i.e., the shared representation space

z. In this approach, the compatibility function can be expressed with the Kullback–Leibler (KL)
divergence as

Fϕx,ϕa
(x,ay) = −DKL(qϕx

(z|x)||qϕa
(z|ay)). (2)

Therefore, learning the compatibility function corresponds to learning embeddings into the shared
representation. Then, what kind of space embedding engenders good performance of ZSL and
GZSL?

First, images and attributes belonging to the same class must be embedded in a nearby place in terms
of KL divergence. It is clear that this embedding is a requirement for ZSL because, if not satisfied,
the assumption on the relation-based methods is violated, rendering it impossible to predict corre-
sponding classes from an input. Note that this requirement must also be generalized to unknown
data, i.e., examples of unseen classes. That is, the shared representation must be modality invariant
(see Figure 2(a)).

Second, regions of different classes must be separated in space. In other words, the shared repre-
sentation must have class separability (Figure 2(a)). It becomes difficult to ascertain which area an
input embedded near them belong if an area of one class overlaps with that of another class.
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Figure 2: (a) Two requirements exist for achieving good performance in ZSL: modality invariant
and class separability. (b) Failure of class separation between domains. The unseen domain overlaps
with the seen domain. Therefore, all examples of the unseen classes might be predicted as one of
the seen ones.

Class separability between domains is particularly important for GZSL performance. Because only
seen data are given during GZSL training, there is no clue to properly embed the unseen classes.
Consequently, embedding of the unseen domain might overlap with those of the seen domain, and
any input might be only to assigned to one of the more relevant seen classes (Figure 2(b)). We
hypothesize that the failure of class separability between domains is the underlying cause of the
domain bias problem.

3.2 MODALITY-INVARIANT AND CLASS-SEPARABLE MULTIMODAL VAE

Given training data (x,ay), the simplest way to satisfy modality invariant is to maximize
Eq. 2 over these data directly, but it is difficult to generalize to test data. For this study,
we first introduce a shared representation learning method based on variational autoencoders
(VAE) (Kingma & Welling, 2013; Rezende et al., 2014).

In VAE, the data x is assumed to be generated from a generative model pθx(x) =
∫
pθx(x|z)p(z)dz

(θx is a learnable parameter), and learning is performed by maximizing the lower bound of the log
marginal likelihood over the given data as

LV AE
θx,ϕx

(x) = Eqϕx (z|x)[log pθx(x|z)]−DKL(qϕx
(z|x)||p(z)), (3)

where qϕx
(z|x) represents an approximate distribution of the true posterior pθx(z|x) and ϕx is a

parameter. This approximate distribution, also called the inference model, can be regarded as an
embedding from x into z.

Although VAE learns to maximize Eq. 3 not under an exact generative distribution but under a
finite training set, its representation is known to generalize well to unseen inputs. This capability is
suitable for shared representation learning in ZSL, which needs to be generalized to the examples of
the unseen classes.

To extend Eq. 3 to multimodal input of images and attributes, we first replace the prior in the regu-
larization term from p(z) to qϕa(z|ay):

LMVAE
θx,ϕx,ϕa

(x,ay) = Eqϕx (z|x)[log pθx(x|z)]−DKL(qϕx(z|x)||qϕa(z|ay)). (4)

This makes regularization of the shared representation more relaxed because the replaced prior is
learnable. In addition, maximizing this lower bound engenders learning to bring the two embeddings
closer together explicitly.

Next, we introduce a model pθa(ay|z) that discriminates attributes from the representation. By
learning this model together with Eq. 4, one can add a constraint to the representation from which
attributes can be successfully predicted:

LCMVAE
θx,θa,ϕx,ϕa

(x,ay) = LMVAE
θx,ϕx,ϕa

(x,ay) + Eqϕx (z|x)[log pθa(ay|z)]. (5)
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Attributes are semantically distributed representations of classes, which engenders the class-
separable representation. In addition, this equation can be interpreted as introducing an attribute
generative model pθ(ay|z). From such a perspective, this equation considers not only the recon-
struction of an image, but also the “cross” reconstruction of the corresponding attribute from the
image. This model is actually the same as the multimodal model known as PSE (Jiao et al., 2018),
as described in Sec 4.2.

Furthermore, as discussed in Sec. 3.1, the shared representation must be modality-invariant. There-
fore, we add an expected term at qϕa

(z|ay) in Eq. 5, which is a constraint by which the embedded
representation is the same as long as it represents the same thing, irrespective of which modality
inference model is used.

Therefore, our objective is finally

LMCMVAE
θx,θa,ϕx,ϕa

(x,ay) = LCMVAE
θx,θa,ϕx,ϕa

(x,ay) + Eqϕa (z|ay)[log pθx(x|z) + log pθa(ay|z)]
= Eqϕx (z|x)[log pθx(x|z) + log pθa(ay|z)]

+Eqϕa (z|ay)[log pθx(x|z) + log pθa(ay|z)]
−DKL(qϕx

(z|x)||qϕa
(z|ay)). (6)

All distributions are parameterized by deep neural networks. Moreover, we regard that the inference
models as Gaussian and generative models as deterministic, pθx(x|z) = fθx(z). The log-likelihood
of the generative models is obtained by the L1 loss, log pθx(x|z) = |x− fθx(z)|.
This model considers all the requirements that the shared representation should satisfy. For this
study, we call this Modality-invariant and Class-separable Multimodal VAE (MCMVAE).

3.3 DOMAIN DISCRIMINATOR

MCMVAE includes domain invariance and class separability. However, class separability between
domains is not fully considered because no knowledge related to the unseen domain is given during
training, meaning that the domain bias problem cannot be avoided. Therefore, we propose addition
of another approach to address this problem.

We introduce a model pβ(d|z) that discriminates a domain from the shared representation. If this
discriminator can be trained together with MCMVAE, then the representation is separable between
domains, leading to alleviation of the domain bias problem.

For training pβ(d|z), we create a dataset with all class-attributes as inputs and corresponding domain
variables as labels Dtra = {(ayc

, dc)}S+U
c=1 . Since the input of this model is z, we should sample

it from attributes using the inference model qϕa
(z|ay). However, we do not use the representation

embedded directly from qϕa(z|ay) as input of the discriminator. Instead we use a reconstructed rep-
resentation via the image generative model pθ(x|z) and the inference model qϕx(z|x). Therefore,
the objective of the domain discriminator given (ay, d) is

LD
β (ay, d) = Ez′∼qϕx (z|x),x∼pθx (x|z),z∼qϕa (z|ay)[log pβ(d|z

′)]. (7)

We do not simply make this objective Ez′∼qϕa (z|ay)[log pβ(d|z′)] because, otherwise, only qϕa

will be affected strongly by the learning of the discriminator during training and will not be stable.
In addition, when testing, it is necessary to classify the domain given the image. Consequently,
by including qϕx

in the sampling process, the parameter of qϕx
is updated simultaneously. It is

noteworthy that, for this learning to work properly, two different modalities of the same class must
be embedded in the same place, i.e. remaining modality invariant.

By training the objective of the domain discriminator together with that of MCMVAE, the embedded
shared representation is prompted to be separated by domain. The resulting objective, given Dtr and
Dtra , becomes ∑

(x,ay)∈Dtr

LMCMVAE
θx,θa,ϕx,ϕa

+ α
∑

(ay,d)∈Dtra

LD
β (ay, d), (8)

where α is a hyper-parameter representing the degree to which domain separation is enforced in
shared representations.
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After training, this discriminator can predict the possibility of assigning a domain from any input z.
In addition, if modality invariant embedding is possible, then one can predict the domain for unseen
images and can thereby obtain “prior knowledge of the domain” from this classifier. We propose
combination of this with an attribute-based classifier (Eq. 1) to compensate the class prediction as a
mixture model:

p(y|x) = p(y|x, d = 0)p(d = 0|x) + p(y|x, d = 1)p(d = 1|x), (9)

where p(y|x, d = 0) =
exp (F (x,ay))∑

ŷ∈Ys
exp (F (x,aŷ))

, p(y|x, d = 1) =
exp (F (x,ay))∑

ŷ∈Yu
exp (F (x,aŷ))

, and p(d =

1|x) = exp(Ez∼qϕx (z|x)[log pβ(d = 1|z)]).
We expect that the domain bias problem can be alleviated by selecting a class that maximizes this
probability as the prediction result. We call this approach as MCMVAE with the Domain discrimi-
nator (MCMVAE-D).

4 RELATED WORK

4.1 ZERO-SHOT LEARNING / GENERALIZED ZERO-SHOT LEARNING

The main approach for tackling the ZSL setting is to learn a compatibility function that represents
the relation between images and class-attributes from the seen data1. Some early studies used classi-
fiers such as SVM to learn mapping from images to class-attributes (Lampert et al., 2009; 2014), but
many other methods use linear embedding into attributes (or semantic representations) and typ-
ically set a ranking loss as the objective function to train such embedding (Frome et al., 2013;
Akata et al., 2015; Romera-Paredes & Torr, 2015; Kodirov et al., 2017). Romera-Paredes & Torr
(2015) adds the regularization term of the mapping to this objective function, and Kodirov et al.
(2017) minimizes the embedding error in both directions with the objective. Nonlinear model is
also used (Socher et al., 2013) to take non-linearity between images and attributes into considera-
tion.

However, with this mapping direction, a hubness problem occurs in which all images are assigned
to one type of attributes. To avoid this, some methods measure the similarity in the image space by
obtaining the reverse mapping of attributes to images (Zhang et al., 2017; Verma & Rai, 2017).

Another approach is to map images and attributes to another shared representation space and mea-
sure the similarity in that space Zhang & Saligrama (2015; 2016), which is adopted in our paper.
The advantage of this is that it can obtain a representation that does not depend on the dimension or
representation of the input. Moreover, arbitrary representation can be learned by adding constraints
during training. Recently, several methods use VAEs to learn this, which we will discuss in Sec. 4.2.

These relation-based methods have the advantage of being able to perform classification just by
learning the compatibility function, but it has been pointed out that they do not work well in GZSL
due to the domain bias problem. One way to alleviate this problem is to calibrate the compatibility
function (Chao et al., 2016; Liu et al., 2018). In recent years, synthesis-based methods have become
mainstream because of their significant improvement in GZSL performance (Mishra et al., 2017;
Verma et al., 2018; Xian et al., 2018b; Felix et al., 2018), even at their high cost to train. In this
study, we aim to achieve high performance with the relation-based method of MCVAE-D.

4.2 MULTIMODAL DEEP GENERATIVE MODELS FOR SHARED REPRESENTATION LEARNING

JMVAE (Suzuki et al., 2016) and TrELBO (Vedantam et al., 2017) are aimed at obtaining a
modality-invariant representation by learning the inference model of each modality close to that
of taking two modality inputs. However, because an additional inference model is required, it is
expensive in terms of the number of parameters. In addition, regularization that forces the repre-
sentation to be close to the standard Gaussian prior makes it difficult to obtain a class-separable
representation (Jiao et al., 2018).

1Although Xian et al. (2018a) categorizes these methods into four groups, we call all of them relation-based
approaches, because all methods learn the relation between images and classes (or attributes) and use it directly
to evaluate test data.
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Jiao et al. (2018) proposes PSE, which is not for ZSL but which is equivalent to Eq. 5 by considering
label information as attributes a 2. Their mutual difference is therefore whether they contain the
reconstruction term given attributes. As described in Sec. 3.2, this term is introduced so that the
mapping to the representation is invariant by modality.

CADA-VAE (Schonfeld et al., 2019), a synthesis-based model on the shared representation, has an
objective that consists of three parts: VAE losses for each modality, cross-alignment losses that
reconstruct one modality from the other, and distribution-alignment loss that brings the inference
models of each modality closer.

LCADA−V AE
θx,θa,ϕx,ϕa

(x,ay) = LV AE
θx,ϕx

(x) + LV AE
θa,ϕa

(ay)

+γ(Eqϕa (z|a)[log pθx(x|z)] + Eqϕx (z|x)[log pθa(a|z)])
−δW2(qϕx(z|x), qϕa(z|ay)), (10)

where W2(p, q) is the 2-Wasserstein distance between p and q and where δ and γ are weighting
factors. Moreover, LV AEa

is the objective of VAE that takes attributes as inputs and uses inference
and generative models for attributes.

The main difference between MCMVAE is that the inference model is forced to close to the prior.
Similarly to JMVAE and TrELBO, this point might may be too restrictive to obtain a class-separable
shared representation. Although Schonfeld et al. (2019) uses this model for synthesis-based classi-
fication, in this study, we will verify whether the shared representations obtained by this model are
useful for relation-based classification.

5 EXPERIMENTS

5.1 DATASET AND SETTING

For experimentation, we use the following four datasets, which are commonly used for ZSL:
Animals with Attributes (AWA1) (Lampert et al., 2014), CUB-200-2011 Bird (CUB) (Wah et al.,
2011), SUN Attribute (SUN) (Patterson & Hays, 2012), and Attribute Pascal and Yahoo
(aPY) (Farhadi et al., 2009). Each dataset includes images of each class, where each class is rep-
resented by semantic attributes. For fair comparison, we use a 2048-dim top-layer embedding of
the 101-layered ResNet (He et al., 2016) provided by Xian et al. (2018a) as the image vector. Fur-
thermore, for the class-attribute representation, we use the attributes valued continuously between 0
and 1 provided with each dataset. We followed the split proposed in Xian et al. (2018a) for splitting
each dataset into train, validation, and test. The hyper-parameter selection of our model was based
on this train–validation split. In training of GZSL, we used both as training data.

As the metric of evaluation at the test time, we use the average per-class top-1 accuracy on both
the seen and unseen classes (referred as accs and accu). In addition, to evaluate the performance on
GZSL, we calculate the harmonic mean of accs and accu, which is accH = (2 ·accs ·accu)/(accs+
accu).

The architecture of each deep probabilistic model is listed in Appendix A. We set the dimension of
the latent variable (shared representation space) to 512 and α = 0.01. We used the Adam optimiza-
tion algorithm (Kingma & Ba, 2014) with a learning rate of 10−3. Furthermore, we applied batch
normalization to each layer. In all experiments, we trained for 100 epochs. All models in this paper
were implemented using PyTorch (Paszke et al., 2017).

5.2 ANALYSIS OF OUR PROPOSED METHOD

This section presents analyses of the proposed method from various perspectives. We use AWA as
a dataset for this analysis because the number of data per class attribute is greater than that for other
ZSL datasets.

First, we compare the shared representation learning model based on VAEs with the proposed mod-
els in GZSL setting. Here, we use PSE and CADA-VAE as existing models. PSE is equal to
MCMVAE excluding the cross loss (see Eq.5). Also, CADA-VAE almost corresponds to MCMVAE

2In Jiao et al. (2018), this model is called PSE*, and the model corresponding to Eq. 4 is called PSE.
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Table 1: Comparison with shared representation learning models in a GZSL setting. We include the
results of combining each model with a domain discriminator (denoted as x-D).

Models accu accs accH
PSE 34.8 86.4 49.6
CADA-VAE (relation-based) 21.4 73.9 33.1
MCMVAE 25.3 88.4 39.3
PSE-D 36.6 58.4 45.0
CADA-VAE-D (relation-based) 50.6 43.6 46.8
MCMVAE 60.4 67.9 63.9

PSE MCMVAE MCMVAE-D

Figure 3: 2-D representation of PSE, MCMVAE, and MCMVAE-D. These were obtained by learn-
ing by setting the z dimension of the model to 2. Circle plots show embedding of the test images
by pϕ(z|x). Triangles represent embedding of the class-attributes: △ denotes a seen class and ▽
is an unseen one. The contour lines in MCMVAE-D represent the domain prediction probability
p(d = 1|z) obtained by the domain discriminator.

plus the regularization term of the inference model (although it uses the Wasserstein distance, not
KL divergence).

To align the conditions, we used the same network structure for the inference and generative models
of each modality. The classification probability was obtained by Eq. 1. For CADA-VAE, we used
the Wasserstein distance for calculating the compatibility function (Eq. 2). Although the original
CADA-VAE was used as a synthesis-based method, it is used here as a relation-based one.

Table 1 presents results in GZSL. First, compared with PSE and MCMVAE, the accuracy in the
seen class is higher in the MCMVAE, but that in the unseen class is higher in the PSE. One might
infer that this result means that MCMVAE obtains a shared representation that is not generalized.
However, when learning these models and domain classifiers simultaneously and when classifying
them with the mixture prediction model (shown as PSE-D and MCMVAE-D), MCMVAE-D has
markedly higher performance. As described in Sec. 3.3, this domain classifier approach does not
work properly unless the modality invariance is generalized. This point suggests that MCMVAE can
obtain a modality-invariant representation generalized by virtue of the introduction of cross loss, but
has lower performance because of the domain bias problem. Moreover, it is mitigated by the domain
discriminator.

To confirm this consideration qualitatively, we visualize the shared representation of PSE, MCM-
VAE, and MCMVAE-D in two dimensions. Figure 3 portrays the visualization results. In PSE, the
test images of the seen classes are well embedded around the corresponding attribute. However,
for the unseen class, the data of some classes such as “collie”, are embedded in a location that dif-
fers from the corresponding attribute, which indicates that the modality invariance is generalized
insufficiently. By contrast, in MCMVAE, we can confirm that the unseen images are embedded
almost appropriately, i.e., we can obtain a generalized modality-invariant representation. However,
it is apparent that some class attributes overlap, which can cause the domain bias problem. Then,
moving to the MCMVAE-D representation, we confirm that embedding of seen and unseen was sep-
arated slightly because of learn embedding with a domain discriminator jointly. Furthermore, the
domain classifier has prior knowledge to predict which domain is the location before the test images
are given. Then we confirm that the test images are actually embedded almost in accordance with
it. This point demonstrates that the domain classifier has the ability to alleviate the domain bias
problem.
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Figure 4: Transition of GZSL performance (the harmonic mean) when each parameter is changed:
(a) the dimension of the shared representation and (b) the coefficient of domain discriminator α.

Table 2: Comparison with GZSL state-of-the-art models. Bold typeface denotes the largest among
the relation-based models.

CUB AWA SUN aPY
accu accs accH accu accs accH accu accs accH accu accs accH

Relation-based
GFZSL (Verma & Rai, 2017) 0.0 45.7 0.0 1.8 80.3 3.5 0.0 39.6 0.0 0.0 83.3 0.0
CONSE (Szegedy et al., 2015) 1.6 72.2 3.1 0.4 88.6 0.8 6.8 39.9 11.6 0.0 91.2 0.0
CMT (Socher et al., 2013) 7.2 49.8 12.6 0.9 87.6 1.8 8.1 21.8 11.8 1.4 85.2 2.8
SYNC (Changpinyo et al., 2016) 11.5 70.9 19.8 8.9 87.3 16.2 7.9 43.3 13.4 7.4 66.3 13.3
ESZSL (Romera-Paredes & Torr, 2015) 12.6 63.8 21.0 6.6 75.6 12.1 11.0 27.9 15.8 2.4 70.1 4.6
SJE (Akata et al., 2015) 23.5 59.2 33.6 11.3 74.6 19.6 14.7 30.5 19.8 3.7 55.7 6.9
DEVISE (Frome et al., 2013) 23.8 53.0 32.8 13.4 68.7 22.4 16.9 27.4 20.9 4.9 76.9 9.2
ZSKL (Zhang & Koniusz, 2018) 21.6 52.8 30.6 17.9 82.2 29.4 20.1 31.4 24.5 10.5 76.2 18.5
MCMVAE 30.9 64.9 41.9 25.3 88.4 39.3 21.1 39.8 27.6 5.2 87.9 9.8
MCMVAE-D 51.0 38.3 43.7 60.4 67.9 63.9 47.1 28.8 35.8 20.8 52.7 29.8
Synthesis-based
CVAE-ZSL (Mishra et al., 2017) - - 34.5 - - 47.2 - - 26.7 - - -
SE-GZSL (Verma et al., 2018) 41.5 53.3 46.7 56.3 67.8 61.5 40.9 30.5 34.9 - - -
F-CLSWGAN (Xian et al., 2018b) 43.7 57.7 49.7 59.7 61.4 59.6 42.6 36.6 39.4 - - -
Cycle-(U)WGAN (Felix et al., 2018) 47.9 59.3 53.0 59.6 63.4 59.8 47.2 33.8 39.4 - - -
CADA-VAE (Schonfeld et al., 2019) 51.6 53.5 52.4 57.3 72.8 64.1 47.2 35.7 40.6 - - -

Let us go back to Table 1 and see the CADA-VAE results. Schonfeld et al. (2019) reports that
this model performs well with a synthesis-based approach in latent space. However, this result
demonstrates that it is worse than PSE and MCMVAE in the relation-based case. This is probably
true because the representation is over-constrained by the regularization term of the inference model
included in CADA-VAE.

Next, we analyze the parameter sensitivity of our proposed models: The dimension of the shared
representation (in both MCMVAE and MCMVAE-D) and the coefficient of domain discriminator α
(in MCMVAE-D). Figure 4 presents the results. First, from Figure 4(a), we see that MCMVAE per-
formance decreases slightly as the dimension of latent variables increases. This seems to be because
in a large dimension, embedding of the unseen domain becomes more difficult. On the other hand,
we found that MCMVAE-D is robust to the dimension of latent variables. This result shows that the
domain classification probability contributes to the compensation of the performance significantly.
Next, from Figure 4(b), we found that increasing the value of the coefficient α decreases the GZSL
performance because over-enforced separation might cause imperfect embedding from the input.

5.3 COMPARISON WITH GZSL STATE-OF-THE-ART MODELS

Table 2 presents the respective performance results obtained for the proposed method and GZSL
state-of-the-art methods. First, MCMVAE can be seen to have the same performance as existing
relation-based models. These models have low accuracy for the unseen domain, indicating that the
domain bias problem occurs. Next, in synthetic-based models, the accuracy of the unseen domain is
almost identical to that of the seen, indicating that the domain bias problem does not occur. However,
as described above, this approach must generate many images for even unseen classes after training
their generative model and must prepare and learn an additional classifier.
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Finally, the results obtained with MCMVAE-D, which learns domain discriminator jointly, clar-
ify that the domain bias problem has been relaxed greatly. The best accuracy is achieved among
the relation-based models. Additionally, it is apparent that it performs as well as state-of-the-art
synthesis-based models. See Appendix B for details on the learning progress of MCMVAE-D.

These results revealed that the domain bias problem in GZSL can be alleviated and that high accu-
racy can be achieved using the domain discriminator on the shared representation, even in relation-
based classification.

6 CONCLUSION

This study addressed the domain bias problem in GZSL. First, we considered domain invariance and
class separability as requirements necessary for high performance in ZSL, and introduced MCMVAE
that learns embedding in a shared representation that satisfy these requirements. Next, we assumed
that the domain bias problem occurs when the unseen domain overlaps with the seen domain and,
to address this, proposed MCMVAE-D to learn the discriminator that distinguishes two domains
from its representation. This discriminator not only encourages domain embedding to be separated
in the representation space during training, but it also gives prior knowledge of which domain a
point in the representation belongs to after training. Therefore, we combined this discriminator and
relation-based classification on MCMVAE shared representation as a mixture model to ascertain the
classification probability. Through experimentation, we confirmed that this approach mitigates the
domain bias problem considerably. Future studies will assess application of our model to larger
amounts of data while taking advantage of the relation-based method.
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A NETWORK ARCHITECTURES

The Gaussian distribution is parameterized as

pθ(x|z) = N (x;µ,σ2),µ = fµ(fMLP(z)),σ = Softplus(fσ(fMLP(z))),

where Softplus is a softplus function.

For the notation of model structures, we denote a linear fully-connected layer with k units, batch
normalization, and ReLU as DkBR. Also, we denote DkBRwithout batch normalization and ReLU as
Dk. In addition, the process of applying J after I is denoted as I-J, and the process of concatenating
the last layers of the two networks I, J into one layer is denoted as (I,J).

The network structures of distributions of MCMVAE are as follows (DdimA is the dimension of
attributes and DdimZ is that of latent variable):

• p(x|z) (Deterministic)

– fMLP: z-D1024BR-D1024BR-D2048

• p(a|z) (Deterministic)

– fMLP: z-D1024BR-D1024BR-DdimA

• q(z|x) (Gaussian)

– fµ and fσ2 : DdimZ
– fMLP: x-D1024BR-D1024BR

• q(z|a) (Gaussian)

– fµ and fσ2 : DdimZ
– fMLP: a-D1024BR-D1024BR

Moreover, the structure of the domain discriminator pλ(d|z) = B(d;µ = Sigmoid(fµ(fMLP(z)))
(where B means Bernoulli distribution and Sigmoid is a sigmoid function) is as follows.

• p(x|z) (Bernoulli)

– fµ: 1
– fMLP: z-D1024BR
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Figure 5: Learning curves of MCMVAE-D for each data.

B PLOTTING LEARNING CURVES OF MCMVAE-D

One advantage of relation-based methods including MCMVAE-D is that GZSL performance can be
verified during model learning. On the other hand, the synthesis-based method cannot be confirmed
it unless learning of the generative model is completed and the synthesis data are generated. Figure 5
shows learning curves of MCMVAE-D for each data. From this result, it can be seen that the learning
progress of this model is stable.
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