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ABSTRACT

Despite their popularity and successes, deep neural networks are poorly under-
stood theoretically and treated as *black box’ systems. Using a functional view of
these networks gives us a useful new lens with which to understand them. This
allows us us to theoretically or experimentally probe properties of these networks,
including the effect of standard initializations, the value of depth, the underlying
loss surface, and the origins of generalization. One key result is that generalization
results from smoothness of the functional approximation, combined with a flat ini-
tial approximation. This smoothness increases with number of units, explaining
why massively overparamaterized networks continue to generalize well.

1 INTRODUCTION

Deep neural networks, trained via gradient descent, have revolutionized the field of machine learn-
ing. Despite their widespread adoption, theoretical understanding of fundamental properties of deep
learning — the true value of depth, the root cause of implicit regularization, and the seemingly ‘un-
reasonable’ generalization achieved by overparameterized networks — remains mysterious.

Empirically, it is known that depth is critical to the success of deep learning. Theoretically, it has
been proven that maximum expressivity grows exponentially with depth, with a smaller number of
trainable parameters (Raghu et al., 2017} |Poole et al.| [2016)). This theoretical capacity may not be
used, as recently shown explicitly by (Hanin & Rolnick,[2019). Instead, the number of regions within
a trained network is proportional to the total number of hidden units, regardless of depth. Clearly
deep networks perform better, but what is the value of depth if not in increasing expressivity?

Another major factor leading to the success and widespread adoption of deep learning has been
its surprisingly high generalization performance (Zhang et al., 2016). In contrast to other machine
learning techniques, continuing to add parameters to a deep network (beyond zero training loss)
tends to improve generalization performance. This is true despite the fact that networks are often
massively overparameterized, wherein according to traditional ML theory they should (over)fit all
the training data (Neyshabur et al.l [2015). How does training deep networks with excess capacity
lead to generalization? And how can it be that this generalization error decreases with overparame-
terization?

We believe that taking a functional view allows us a new, useful lens with which to explore and
understand these issues. In particular, we focus on the case of deep fully connected univariate
ReLU networks, whose parameters will always result in a Continuous Piecewise Linear (CPWL)
approximation to the target function.

Our approach is related to previous work from (Savarese et al.,[2019; |Arora et al., 2019; [Frankle &
Carbin, |2018) in that we wish to characterize parameterization and generalization. We differ from
these other works by doing using small widths, rather than massively overparamaterized or infinite,
and by using a functional parameterization to measure properties such as roughness.

Main Contributions The main contribution of this work are as follows: Functional Perspective of
Initialization: Increasingly Flat with Depth. In the functional perspective, neural network parame-
ters determine the locations of breakpoints and their delta-slopes in the CPWL reparameterization.
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We prove that, for common initializations, these distributions are mean 0 with low standard devi-
ation. The delta-slope distribution becomes increasingly concentrated as the depth of the network
increases, leading to flatter approximations. In contrast, the breakpoint distribution grows wider,
allowing deeper network to better approximate over a broader range of inputs.

Value of Depth: Optimization, not Expressivity. Theoretically, depth adds an exponential amount of
expressivity. Empirically, this is not true in trained deep networks. We find that expressivity scales
with the number of total units, and weakly if at all with depth. However, we find that depth makes
it easier for GD to optimize the resulting network, allowing for a greater flexibility in the movement
of breakpoints, as well as the number of breakpoints induced during training.

Generalization is due to Flat Initialization in the Overparameterized Regime. We find that general-
ization in overparametrized FC ReLu nets is due to three factors: (i) the very flat initialization, (ii)
the curvature-based parametrization of the approximating function (breakpoints and delta-slopes)
and (iii) the role of gradient descent (GD) in preserving (i) and regularizing via (ii). In particular,
the global, rather than local, impact of breakpoints and delta-slopes helps regularize the approxi-
mating function in the large gaps between training data, resulting in their smoothness. Due to these
nonlocal effects, more overparameterization leads to smoother approximations (all else equal), and
thus typically better generalization(Neyshabur et al., 2018;2015).

2 THEORETICAL RESULTS

2.1 RELU NETS IN FUNCTION SPACE: FROM WEIGHTS TO BREAKPOINTS & SLOPES

Consider a fully connected ReL.U neural net fg (z) with a single hidden layer of width H, scalar

input z € R and scalar output y € R. f(-;0) is continuous piecewise linear function (CPWL) since
the ReLU nonlinearity is CPWL. We want to understand the function implemented by this neural
net, and so we ask: How do the CPWL parameters relate to the NN parameters? We answer this by
transforming from the NN parametrization (weights and biases) to two CPWL parametrizations:
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where the Iversen bracket [b] is 1 when the condition b is true, and O otherwise. Here the NN
parameters Oy n = {(w;, b;,v;)}L, denote the input weight, bias, and output weight of neuron 1,
and (-); £ max{0,-} denotes the ReLU function. The first CPWL parametrization is 0gpso =
{(Bi, piy si) Y|, where 3; = _7% is (the x-coordinate of) the breakpoint (or knot) induced by
neuron %, ft; £ w;v; is the delta-slope contribution of neuron ¢, and s; £ sgnw; € {£1} is the
orientation of (; (left for s; = —1, right for s; = +1). Intuitively, in a good fit the breakpoints
B; will congregate in areas of high curvature in the ground truth function |f”(x)| > 0, while delta-
slopes p; will actually implement the needed curvature by changing the slope by p; from one piece
p(2) to the next p(¢) + 1. As the number of pieces grows, the approximation will improve, and the
delta-slopes (scaled by the piece lengths) approach the true curvature of f: limp_; oo pipaiy/(Bp —

ﬁp—l) — f//(x = ﬁz)

We note that the BDSO parametrization of a ReLU NN is closely related to but different than a
traditional roughness-minimizing m-th order spline parametrization fsp]ine (z) = Zfil wi(z—p6;)+
Z;n:O cjz’: BDSO (i) lacks the base polynomial, and (ii) it has two possible breakpoint orientations
s; € {£1} whereas the spline only has one. We note in passing that adding in the base polynomial
(for linear case m = 1) into the BDSO ReLU parametrization yields a ReLU ResNet parametriza-

tion. We believe this is a novel viewpoint that may shed more light on the origin of the effectiveness
of ResNets, but we leave it for future work.
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The second parametrization is the canonical one for PWL functions: 0pyw 1, £ {(8,, mp, 7,,)}521,

by . . .
where By < B1 < ... < B, & =29 < ... < Bpis the sorted list of (the z-coordinates of) the

Wp (i)

P £ H + 1 breakpoints (or knots), myp, Yp are the slope and y-intercept of piece p.

Computing the analogous reparametrization to function space for deep networks is more involved, so
we present a basic overview here, and a more detailed treatment in the supplement. For L > 2 layers

(e=1) _
with widths (), the neural network’s activations are defined as: Z(Z) Z]H:l wl(f)xge Rt

by),xi ) = (2 ([)) ,g0(x) = z(E+1D) for all hidden layers ¢ € {1,2,..., L} and for all neurons
1€{1,2,...,H () }. Then 3, @ isa breakpoint induced by neuron i in layer { if it is a zero-crossing

of the net input i.e. z(e) 8 (2)) = 0. The definition of active breakpoints in deep nets is a bit more
subtle; see Supplement for details.

Considering these parameterizations (especially the BDSO parameterization) provides a new, useful
lens with which to analyze neural nets, enabling us to reason more easily and transparently about
the initialization, loss surface, and training dynamics. The benefits of this approach derive from two
main properties: (1) that we have ‘modded out’ the degeneracies in the NN parameterization and (2)
the loss depends on the NN parameters 6 only through the BDSO parameters (the approximating
function) ppso i.e. £(Onn) = €(0spso(Onn)), analogous to the concept of a minimum sufficient
statistic in exponential family models. Much recent related work has also veered in this direction,
analyzing function space (Hanin & Rolnick, 2019} Balestriero et al., 2018)) (see Related Work for
more details).

2.2 RANDOM INITIALIZATION IN FUNCTION SPACE

We now study the random initializations commonly used in deep learning in function space.
These include the independent Gaussian initialization, with b; ~ N(0,04), w; ~ N(0,04),
v; ~ N(0,0,), and independent Uniform initialization, with b; ~ Ul[—ayp, ap, w; ~ U[—auy, ay),
v ~ Ul—ay, ay].

Theorem 1. Consider a fully connected ReLU neural net with scalar input and output, and a sin-
gle hidden layer of width H. Let the weights and biases be initialized randomly according to a
zero-mean Gaussian or Uniform distribution. Then the induced distributions of the function space
parameters (breakpoints B, delta-slopes (1) are as follows:

(a) Under an independent Gaussian initialization,
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(b) Under an independent Uniform initialization,
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Using this result, we can immediately derive marginal and conditional distributions for the break-
points and curvatures (delta-slopes).

Corollary 1. Consider the same setting as Theorem|l}

(a) In the case of an independent Gaussian initialization,
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Zv-hzre G (¢|) is the Meijer G-function and K, (-) is the modified Bessel function of the second
ind.
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(b) In the case of an independent Uniform initialization,
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where Tri(-; a) is the symmetric triangular distribution with base [—a, a] and mode 0.

Implications. Corollary [I| implies that the breakpoint density drops as quickly away from the
origin. If f has significant curvature in the boundaries, then it will far more difficult to fit than
if it were near the origin. We show that this is indeed the case by training a shallow ReLU NN
on samples from f(x) = sin(z) with gradient descent(GD) (see Table ?? for details). Another
important implication is the need for data-dependent initializations. If one has knowledge of f,
namely where its curvature lies, then an initialization that allocates more breakpoints to such areas
will be faster to train and, potentially, require less breakpoints (and thus lower width) overall. We
show that simple data-dependent initialization that change/adapt the breakpoint density to be closer
to ground truth do indeed converge faster and achieve a better training loss(see Sec[3]and Table 2?).

Theorem 2. The roughness py = Zfil u? of the function induced by the random Gaussian initial-

ization has mean (Jva)zH =4H/(H +1)? = O(1/H) and variance 8(c,0,,)* = 128 /(H +1)*
where we have used o, = o, = /2/(H + 1), the default weight variance used in standard He
and Glorot initializations. The tail probability for the initial roughness is Pr(pg > 4/H + \) <
1/(1+ A2H3/128) = O(1).

As width H increases, the roughness of the initial function f decreases as 1/H. This smoothness
has implications for the implicit regularization/generalization phenomenon observed in recent work
(Neyshabur et al.l [2018))(see Sec[3|3|3] for generalization/smoothness analysis during training).

Related Work. Several recent works analyze the random initialization in deep networks. However,
there are two main differences, First, they focus on the infinite width case (Savarese et al., 2019
Jacot et al., 2018; [Lee et al., [2017) and can thus use the Central Limit Theorem (CLT), whereas we
focus on finite width case and cannot use the CLT, thus requiring nontrivial mathematical machinery
(see Supplement for detailed proofs). Second, they focus the activations as a function of input
whereas we also compute the joint densities between the BDSO parameters e.g. breakpoints and
curvatures (delta-slopes). The latter is particularly important for understanding the non-uniform
density of breakpoints away from the origin as noted above.

2.3 L0SS SURFACE IN THE FUNCTION SPACE

Consider the mean squared error (MSE) loss with respect to the NN parameters {(0yy) =

Zﬁlzl %(f(:c”; 0) — y,)2. and the BDSO parameters /(§3ps0). Now consider some 0ppso €
©ppso. Then f(, 05pso) induces a partition IT = (7y,...,7g11) of the data {x,}N_;. Note
that the restriction of fgpso to any piece of this partition, denoted f(-;60p Dso)\ﬂp, is a linear
function.

Theorem 3. 0% ¢, is a critical point of {(0ppso) if for all pieces p € [P] we have that

f(:0BDs0)!x, is an Ordinary Least Squares fit of the data in piece p, and we refer to the criti-
cal point as a (C)PWL-OLS solution. Furthermore every critical point 0% g ofg(GBDSO) corre-

sponds to an equivalence class of critical points 0% € [G0% psol of (0NN ) where G is the set of
transformations on the NN parameters that leaves the function (BDSO parameters) invariant.

Since each §ppso induces a partition Il g of the input data, we can count the number of criti-
cal points by counting the number of possible partitions of N data points with H breakpoints into

P = H + 1 pieces as simply C(N + H,H) = (N + H)!/N'H!. This is not quite right as we

 ay min{as/|Bil, aw}

)
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should only count the continuous PWL OLS solutions (since f is CPWL) which will in general be
less than the total PWL OLS solutions C(N + H, H). How much less? It is difficult to analyti-
cally characterize the CPWL OLS solutions so we resort to simulation and find a lower bound that
suggests the number of critical points grows at least polynomially in N, H (Fig. [7). We believe
this is the function space explanation for why GD cannot move the breakpoints very far, analogous
to the weight space explanation provided by (Arora et al., 2019) wherein the Gram matrix H(¢)
remains very close to its initial value H(0). A key difference between our results is theirs relies on
massive overparametrization (H = Q(N")) whereas our applies for all H, albeit with an unproven
conjecture. However, in the overparametrized regime H > N we can prove the following result:

Theorem 4. Consider the partition Ily g as defined above. A partition is lonely if each datapoint
n is alone in its own piece p. (a) The PWL OLS solution for a lonely partition is (i) CPWL, (ii) a
local minima and (iii) a global minima of ¢. (b) Furthermore, if we assume that H breakpoints are
uniformly spaced and that N data points are uniformly distributed within the region of breakpoints,
then in the overparametrized regime H > aN? for some constant o > 1, the induced partition
1IN, g is lonely with high probabilility 1 — e N/(H+1) — 1 _ g=1/e Furthermore, the total

number of lonely partitions, and thus (a lower bound on) the total number of global minima of Cis
(¥ = o)

The proof is straightforward: each piece p has two degrees of freedom, one to perfectly fit the data
(b,c) and the other to insure continuity with adjacent pieces to the (say) right (a). Note how simple
and transparent the function space explanation is for why overparametrization makes optimization
easy, as compared to the weight space explanation (Arora et al.,[2019).

Things to note : every partition is equally likely (in the case of uniformly spaced breakpoints, random
data uniformly in this range). If this is not true, the theorem still holds, but need to increase alpha to
account for *wasted’ extra partitions where data is sparse.

2.4 GRADIENT DESCENT DYNAMICS IN THE FUNCTION SPACE

Theorem 5. For a one hidden layer univariate ReLU network trained with gradient descent with
respect to the neural network parameters Onn = {(w;, b;,v;)}L,, the gradient flow dynamics of
the function space parameters Oppso = {(5i, p:) }i=1 are governed by the following laws:

% _8((91\[}\[) v (t)

T e COOMO A0 G0 ) ?
d/u (t) _ ov (9 N N) net relevant residual correlation

G = T = )+ wd0) (@) © ai(t). %) — w(Bh(t) (&) © (). 1) (5)

2.5 GENERALIZATION: IMPLICIT REGULARIZATION VIA DELTA-SLOPE PARAMETRIZATION

Given the above dynamics, we ask the question: how can we make sense of the phenomena like
implicit regularization in function space? In Sec [3| we confirm that we can reproduce these phe-
nomena in our FC ReLu networks with target functions from various classes. We also find that the
smoothness (roughness) of the initialization matters quite a bit. But smoothness alone is not enough;
here we show that the delta-slope parametrization is critical in enabling implicit regularization.

Consider a dataset like that shown in Fig. [8|with a data gap between regions of two continuous func-
tions f1,, fr and consider a breakpoint ¢ with orientation s; in the gap. Starting with a flat initializa-
tion, the dynamics of the i-th delta-slope are /1;(t) = — (€(t) ® a;(t), x)+8;(t) (€(t) ® a;(t),1) =
ro.s; () + 73,5, (£)Bi(t) Where 7o 5(t), 73 5(t) are the (negative) net correlation and residual on the
active side of i, in this case including data from the function f,, but not f_,,. Note that the both
terms of the gradient fi; have a weak dependence on i through the orientation s;, and the second
term additionally depends on ¢ through $;(¢). Thus the vector of delta-slopes with orientation s
evolves according to fi, = 72,5(t)1 + 73,5(¢)3,. Now consider the regime of overparametriza-
tion H > N. It will turn out to be identical to taking a continuum limit H — oo yielding

wi)(Bi — Bic1) — w(z,t) = f"(x,t), the curvature of the approximation (the discrete index i

has become a continuous index x) and 53;(t) — 0 (following from Thm |5, multiplying j3;(t) by
v;(t)/w;(t) and factoring out p;(t) — 0). Integrating the dynamics fis(z,t) = ros(t) + 73,5(t)x



Under review as a conference paper at ICLR 2020

over all time yields yu(z,t = 00) = p(wz,t = 0)+ R5 .+ Rj ,x, where the curvature ji(z,t = 0) ~ 0
(Sec.]3) and Rj £ [0 dt'rj s(t') < oo (convergence of residuals €, (¢) and immobility of break-
points 3;(t) = 0 implies convergence of r; 4(¢)). Integrating over space twice yields a cubic spline
f(a:,t) = ¢os + 1T + o 5(x — £5)2/2! + c3,s(T — £5)3/3!, where Co,s,C1,s are integration

constants determined by the boundary conditions f'(z = &,t = oc0) = Y, fi(z = &) and

flx = &,t =00) = fs(x = &), thus matching the O-th and 1st derivatives at the gap end-
points. The other two coefficients ¢y = R} .k € {2,3} and serve to match the 2nd and 3rd
derivatives at the gap endpoints. Clearly, matching the training data only requires the two parame-
ters co,s, C1,s; and yet, surprisingly, two unexpected parameters c; s, c3 s emerge that endow f with
smoothness in the data gap, despite the loss function not possessing any explicit regularization term.
Tracing back to find the origin of these smoothness-inducing terms, we see that they emerge as a
consequence of (i) the smoothness of the initial function and (ii) the active half space structure,
which in turn arises due to the discrete curvature-based (delta-slope) parameterization. Stepping
back, the ReLU net parameterization is a discretization of this underlying continuous 2nd-order
ordinary differential equation. In Sec[3]we conduct experiments to test this theory.

3  EXPERIMENTS

Breaking Bad: Breakpoint densities that are mismatched to function curvature makes op-
timization difficult We first test our initialization theory against real networks. We initialize
fully-connected ReLU networks of varying depths, according to the popular He initializations in
which are weights are sampled from width-scaled Uniform and Gaussian distributions(He et al.,
2015). Fig. 1| shows experimentally measured densities of breakpoints and delta-slopes. Our the-
ory matches the experiments well. The main points to note are that: (i) breakpoints are indeed
more highly concentrated around the origin, and that (ii) as depth increases, delta-slopes have lower
variance and thus lead to even flatter initial functions. Guided by the theory, we ask whether the
standard initializations will experience difficulty fitting functions that have significant variation in
the boundary, a common situation in many important applications (e.g. learning the energy func-
tion of a protein molecule). We train ReLU networks to fit a periodic function (sin(x)), which
has high curvature both at and far from the origin. We find that the standard initializations do
quite poorly in cases where there is significant curvature away from the origin, consistent with
our theory that breakpoints are essential for modeling curvature. Probing further, we observe
empirically that breakpoints cannot migrate very far from their initial location, even if there are
plenty of breakpoints overall, leading to highly suboptimal fits. In order to prove that it is indeed
the breakpoint density that is causally responsible, we attempt to rescue the poor fitting by using
a simple data-dependent initialization that samples breakpoints uniformly over the training data
range [Tmin, Tmaz|, achieved by exploiting Eq. (I). We train shallow ReLU networks on training
data sampled from a sine and a quadratic function, two extremes on the spectrum of curvature.
The data shows that uniform breakpoint density Init Sine | Quadratic
rescues bad fits in cases with significant curvature Standard 4.096 £ 2.25 | .1032 & 0404

far from the origin, with less effect on other cases, Uniform 2.280 4+ .457 | .1118 4 .0248
confirming the theory. We note that this could be

a potentially useful data-dependent initialization ~Table 1: Test loss for standard vs uniform break-
strategy, one that can scale to high dimensions, point initialization, on sine and quadratic %
but we leave this for future work.

Explaining and Quantifying the Suboptimality

of Gradient Descent. The suboptimality seen above begs a larger question: under what conditions
will GD be successful? Empirically, it has been observed that neural nets must typically be massively
overparameterized (relative to the number of parameters needed to express the underlying function),
in order to ensure good training performance. Our theory provides a possible explanation for this
phenomenon: if GD cannot move breakpoints too far from their starting point, then one natural
strategy is to sample as many breakpoints as possible everywhere, allowing us to fit an arbitrary f.
The downside of this strategy is that many breakpoints will add little value, but the benefit is that
it will increase the likelihood that areas of high curvature — wherever they are — will have access to
some breakpoints nearby. In order to test this explanation and, more generally, understand the root
causes of the GD’s difficulty, we focus on the case of a fully connected 2-layer ReLU network. A
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L Sine | 5 piece poly | Sawtooth | Arctan | Exponential | Quadratic
1 40+0 40+0 40+0 40+0 40+0 40+ 0
2 555+£29 52+ 1.414 50 +.7 4925 +33 | 51.25£6.1 | 49.25+45
4
5

68 + 3.1 5725 +£6.8 | 485+25 | 425+48 | 40.254+39 | 40.25 £33
62.25 £ 15.1 49 £3.5 445 +£5.1 38+ 5.1 3375+£1.1 | 315£1.7

Table 2: Comparison of the number of pieces induced in a network of up to depth 5, with 40 units
evenly distributed across layers, trained to fit varying target functions.

univariate input (i) enables us to use our theory, (ii) allows for visualization of the entire learning
trajectory, and (iii) enables direct comparison with existing globally (near-)optimal algorithms for
fitting PWL functions. The latter include the Dynamic Programming algorithm for 1D segmented
regression (DP, (Bai & Perron, [1998))), and a very fast greedy approximation known as Greedy
Merge (GM, (Acharya et al., 2016)). How do these algorithms compare to GD, across different
target function classes, in terms of training loss, and the number of parameters/hidden units? Note
that here we are referring to the BDSO (functional) parameters, as the GM and DP algorithms we are
primarily concerned with the total number of available linear pieces in the CPWL approximation.
We use this metric for the neural network as well, rather than the more typical number of trainable
parameters.

Taking the functional approximation view allows us to directly compare neural network performance
to these CPWL approximation algorithms. For a quadratic function (e.g. with high curvature, re-
quiring many pieces), we find that the globally optimal DP algorithm can quickly reduce training
error to near 0 with order 100 pieces. The GM algorithm, a relaxation of the DP algorithm, re-
quires slightly higher pieces (e.g. 100 instead of 80), but requires significantly less computational
power. On the other hand all variants of GD (vanilla, Adam, SGD w/ BatchNorm) all require far
more pieces to reduce error below a target threshold. Even worse, they do not appear to use this
large number of pieces efficiently, often showing little or even negative loss changes for order thou-
sands of pieces. Interestingly, we observe is a strict ordering of optimization quality with Adam
outperforming BatchNorm SGD outperforming Vanilla GD. These results (Fig. show how inef-
ficient GD is with respect to (functional) parameters, requiring order of magnitude more for similar
performance to exact or approximate CPWL fitting algorithms.

Learned Expressivity is not Exponential in Depth. As shown previously, GD on ReLU NNs
requires a large degree of overparameterization in order to optimize well. In the previous experiment,
we counted the number of linear pieces in the CPWL approximation as the number of parameters,
rather than the number of weights. Empirically, we know that the greatest successes have come
from deep learning. This raises the question: how does the depth of a network affect its expressivity
(as measured in the number of pieces)? Theoretically, it is well known that maximum expressivity
increases exponentially with depth, which, in a deep ReLU neural network, means an exponential
increase in the number of linear pieces in the CPWL approximation. Thus, theoretically the main
power of depth is that it allows for more powerful function approximation relative to a fixed budget
of parameters compared to a shallow network. However, recent work by Hanin and Rolnick (Hanin
& Rolnick, 2019) has called this into question, finding that in realistic networks expressivity does
not scale exponentially with depth. We perform a similar experiment here, asking how the number
of pieces in the CPWL function approximation of a deep ReLU network varies with depth.

o
2 3 4 008 006 004 002 000 002 004 006
Delta Siope

Figure 1: Left: Training loss vs number of pieces (ox number of parameters) for various algorithms
fitting a CPWL function to a quadratic. Middle: Breakpoint distribution for a He initialization across
a 3 layer network. Right: Delta-slope distribution for a He initialization across a 3 layer network.
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The results in Table 2] clearly show that that our expressivity (the number of pieces) scales with
order units, rather than with the theoretically expressivity that is exponential in depth. In fact, we
find that depth only has a weak effect overall, although more study is needed to determine exactly
what effect depth has on the number and variability of pieces. These results lend more support
to the recent findings of Hanin and Rolnick(Hanin & Rolnickl 2019), and of taking a functional
view of measuring parameterization. Intriguingly, variability in the number of pieces appears to
increase with depth. From the functional approximation, we know that a deeper layer induces one or
more breakpoints only if the ReLU function applied to the unit’s CPWL approximation creates new
breakpoints at zero crossings. In layer one, this happens exactly once per unit as the input to each
ReLU is just a line over the input space. In deeper layers, the function approximation is learned,
allowing for a varying number of new breakpoints. Given our previous results on the flatness of the
standard initializations, this will generally only happen once per unit, implying that the number of
pieces will strongly correlate with number of units at initialization.

Depth helps with Optimization by enabling the Creation, Annihilation and Mobility of Break-
points. If depth does not strongly increase expressivity, then it is natural to ask whether its value
lies with the optimization. In order to test this, we examine how the CPWL function approximation
develops in each layer during learning, and how it depends on the target function. A good fit requires
that breakpoints accumulate at areas of higher curvature in the training data, as these regions require
more pieces. We argue that the deeper layers of a network help with this optimization procedure,
allowing the breakpoints more mobility as well as the power to create and annihilate breakpoints.

As previously expressed, one key difference between the deeper layers of a network and the first
layer is the ability for a single unit to induce multiple breakpoints, as the deeper layers learn CPWL
functions more complex than just a line. As these functions change during learning, the number of
breakpoints induced by deeper units in a network can vary, allowing for another degree of freedom
for the network to optimize. Through the functional parameterization of the hidden layers, these
“births and deaths” of breakpoints can be tracked as changes in the number of breakpoints induced
per layer. Another possible explanation for the value added of depth is breakpoint mobility, or
that breakpoints in deeper layers can move more than those in shallow layers. We run experiments
comparing how the velocity of breakpoints varies between layers of a deeper network. We also
compare the number of times breakpoints in any layer undergo birth or death.

1 2 3 4 5

Layer Layer

80

40

BP Births + Deaths

20 ‘

BP velocity
o e o ow a

Figure 2: Total changes in number of breakpoints induced and average velocity of breakpoints
relative to the first layer in each layer of a five layer ReLU network

Fig. [J] shows the results. The number of breakpoints in deeper layers changes more often than in
the shallow layers, while the number of breakpoints in the first layer cannot change. The breakpoint
velocity in deeper layers is also higher than the first layer, although not monotonically increasing.
Both of these results provide support for the idea that later layers help significantly with optimization
and breakpoint placement, even if they do not help as strongly with expressivity.

Note that breakpoints induced in by a layer of the network are present in the basis functions of all
deeper layers. Their functional approximations thus become more complex with depth. However the
roughness of the basis functions at initialization in the deeper layers is lower than that of the shallow
layers (since the basis functions are very flat). But, as the network learns, for complex functions
most of the roughness is in the later layers as seen in Fig. [3p).

Generalization: Implicit Regularization emerges from Flat Init and Curvature-based
Parametrization. The experiments above show that the functional view can give us a new per-
spective on how depth and parameterization affect the training of neural networks. One of the most
useful and perplexing properties of deep neural networks has been that, in contrast to other high
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Figure 3: Roughness (summed by layer) during training for a 5 layer ReLU network with 8 units per
hidden layer, learning the quadratic function 22 /2 (left) and the periodic function sin(x) (right)

Total Roughness (per layer)

— Layer
Layer
—— Layer

aR 0N

— Layel

10000

Total Roughness (per layer)

10000

Function Shallow Spiky Shallow Deep Spiky Deep

Sine 42.95 £+ 6.406 157.5 £ 60.27 3148 £7.078 | 122.0 £128.2
Arctan 01252 £ .07650 | 2.499 + 1.257 | 0.9795 £ 0.9355 | 32.57 + 26.10
Sawtooth 156.9 £ 12.45 150.1 £ 61.48 148.1 £8.755 | 198.0 £170.9
Cubic 3.608 £ 1.683 136.7 + 124.1 56.77 £ 98.91 191.6 £ 114.1
Quadratic  3.559 £ 4.553 150.6 £ 49.00 1.741 £1.296 | 46.02 +19.42
Exp .6509 £ .5928 | 181.1 7536+ | 1.339+£1.292 | 54.50 +37.77

Table 3: Comparison of testing loss (generalization ability) of various network shallow and deep
networks with a standard vs ’spiky’ initialization

capacity function approximators, overparameterizing a neural network does not tend to lead to ex-
cessive overfitting(Savarese et al.l 2019). Where does this generalization power come from? Much
recent work(Neyshabur et al., 2018} 2015) have argued that it comes from an implicit regularization
inherent in the optimization algorithm itself (i.e. SGD). In contrast, for the case of shallow and
deep univariate fully connected ReLU nets, we provide causal evidence that it is due to the specific,
very flat CPWL initialization induced by common initialization methods. In order to test this in
both shallow and deep ReLU networks, we compare training with the standard flat initialization to a
‘spiky’ initialization.

For a shallow ReLU network, we can test a ’spiky’ initialization by exactly solving for network
parameters to generate a given arbitrary CPWL function. This network initialization is then com-
pared against a standard initialization, and trained against a smooth function with a small number of
training data points. Note that in a 1D input space we need a small number of training data points
to create a situation similar to that of the sparsity caused by high dimensional input, and to allow
for testing generalization between data points. The generalization/test set is then just a dense set of
points sampled from the input space. We find that both networks fit the training data near perfectly,
reaching a global minima of the training loss, but that the ’spiky’ initialization has much worse
generalization error (Table[3)). Visually, we find that the initial *spiky” features of the starting point
CPWL representation are preserved in the approximation of the smooth target function(Figs. @] [6).
One final metric tested was roughness, which remained near constant throughout training in both
cases, but from a significantly higher initial value in the ’spiky’ initialization case (not shown). For a
deep ReLU network, it is more difficult to exactly solve for a ’spiky’ initialization. Instead, we train
anetwork to approximate an arbitrary CPWL function, and call those network parameters the ’spiky’
initialization. Once again, the ’spiky’ initialization has near identical training performance, hitting
all data points, but has noticeably worse generalization performance. One noticeably difference is
that it is harder to see the exact ’spiky’ properties conserved from initialization to convergence, as
breakpoint mobility means that these properties are more mutable.

It appears that generalization performance it not automatically guaranteed by GD, but instead due to
the flat initializations which are then preserved by GD. *Spiky’ initialization also have their (higher)
curvature preserved by GD. This idea makes sense, as generalization depends on our target function
smoothly varying, and a smooth approximation is promoted by a smooth initialization.
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Initial CPWL Approximation Final CPWL Approximation

Figure 4: *Spiky’ (orange) and standard initialization (blue), compared before (left) and after (right)
training. Note both cases had similar, very low training set error.

Smoothness in Data Gaps increases with Hidden Units and Decreases with Initial Weight Vari-
ance. Our last experiment examines how smoothness (roughness) depends on the number of units,
particularly in the case where there are large gaps in the training data. We use a continuous and dis-
continuous target function (shown in Supp. Fig. [§).We trained shallow ReLU networks with varying
width H and initial weight variance o, on these training data until convergence, and measured the
total roughness of resulting CPWL approximation in the data gaps.

12
] —e—Smooth —e—Smooth

10
Sharp [ Sharp

Roughness
O kv o B oa N @ ©
—

Roughness

0 50 100 150 200 [s} 2 3 6 8 10 12
Hidden Units Variance of Initial Weights

Figure 5: Roughness vs. Width (left) and the variance of the initialization (right) for both data gap
cases shown in Fig. 8| Each data point is the result of averaging over 4 trials trained to convergence.

Fig. [ shows that roughness in the data gaps decreases with width and increases with initial weight
variance, confirming our theory. A spiky (and thus rougher) initialization leads to increased rough-
ness at convergence as well, lending support to the idea that roughness in data gaps can be ‘remem-
bered’ from initialization. On the other hand, higher number of pieces spreads out the curvature work
over more units, leading to smaller overall roughness. Taken together, our experiments indicate that
smooth, flat initialization is partly (if not wholly) responsible for the phenomenon of implicit reg-
ularization in univariate fully connected ReLU nets, and that increasing overparameterization leads
to even better generalization.

Conclusions. We show in this paper that examining deep networks through the lens of function
space can enabled new theoretical and practical insights. We have several interesting findings: the
value of depth in deep nets seems to be less about expressivity and more about learnability, enabling
GD to finding better quality solutions. The functional view also highlights the importance initial-
ization: a smooth initial approximation seems to encourage a smoother final solution, improving
generalization. Fortunately, existing initializations used in practice start with smooth initial approx-
imations, with smoothness increasing with depth. Analyzing the loss surface for a ReLU net in
function space gives us a surprisingly simple and transparent view of the phenomenon of overpa-
rameterization: it makes clear that increasing width relative to training data size leads w.h.p. to
lonely partitions of the data which are global minima. Function space shows us that the mysterious
phenomenon of implicit regularization may arise due to a hidden 2nd order differential equation that
underlies the ReLLU parameterization. In addition, this functional lens suggests new tools, architec-
tures and algorithms. Can we develop tools to help understand how these CPWL functions change
across layers or during training? Finally, our analysis shows that bad local minima are often due to
breakpoints getting trapped in bad local minima: Can we design new learning algorithms that make
global moves in the BDSO parameterization in order to avoid these local minima?

10
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APPENDIX

3.1

EXPERIMENTAL DETAILS

Initial CPWL Approximation

—— Std. Init
Spiky Init

Final CPWL Approximation

—— Std. Init
Spiky Init

Figure 6: ’Spiky’ (orange) and standard initialization (blue), compared before training (left) and

post-training (right) using a deep network
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Figure 7: Growth in the (minimum) amount of local minima, as a function of the number of break-
points and data points. Right plot is identical, but with log scaling

3.1.1 UNIFORM INITIALIZATION

Trained on a shallow, 21 unit FC ReLU network. Trained on function over the interval [-2,2].
Learning rate = Se-35, trained via GD over 10000 epochs. Compared against pytorch default of He
initialization. Training data sampled uniformly every .01 of the target interval. Each experiment was
run 5 times, with results reported as mean =+ standard deviation. Breakpoints y values were taken
from the original standard initialization for the uniform initialization plus a small random noise term
N(0,.01), making initial condition within the target interval nearly identical.

3.1.2 ROUGHNESS BY LAYER PLOTS

Trained on a deep, 5 layer network, with 4 hidden layers of width 8. Trained on function over the
interval [-2,2]. Learning rate = le-4, trained via GD over 10000 epochs, with roughness measured
every 50 epochs. Roughness per layer was summed over all units within that layer.

3.1.3 SPIKY INITIALIZATION PLOTS

Shallow version trained on a 21 unit FC ReLU Network. Deep version trained on a deep, 5-layer
network with 4 hidden layers of width 8. In both cases, the ’spiky’ initialization was a 20 - breakpoint
CPWL function, with y,, ~ Uniform([—2, 2]). In the deep case, the spiky model was initialized with
the same weights as the non-spiky model, and then pre-trained for 10,000 epochs to fit the CPWL.
After that, gradient descent training proceeded on both models for 20,000 epochs, with all training
having learning rate le-4. Training data was 20 random points in the range [-2,2], while the testing

12
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data (used to measure generalization) was spaced uniformly at every Az = .01 of the target interval
of the target function.

In the shallow case, there was no pre-training, as the ’spiky’ model was directly set to be equal to
the CPWL. In the shallow model, training occurred for 20,000 epochs. All experiment were run
over 5 trials, and values in table are reported as mean =+ standard deviation. Base shallow learning
rate was le-4 using gradient descent method, with learning rate divided by 5 for the spiky case due
to the initialization method generating larger weights. Despite differing learning rates, both models
had similar training loss curves and similar final training loss values, e.g. for sine, final training
loss was .94 for spiky and 1.02 for standard. Functions used were sin(x), arctan(z), a sawtooth
function from [-2,2] with minimum value of -1 at the endpoints, and 4 peaks of maximum value 1,

. 3 2 . 2 .
cubic % + ‘% — % quadratic % and exp(.5x) Note GD was chosen due to the strong theoretical
focus of this paper - similar results were obtained using ADAM optimizer, in which case no differing
learning rates were necessary.

3.2 BREAKPOINTS INDUCED BY DEEP NETWORKS

We used networks with a total of H = 40 hidden units, spread over L € {1,2, 3,4, 5} hidden layers.
Training data consiste of uniform samples of function over the interval € [—3, 3]. Learning rate
=510, trained via GD over 25,000 epochs. The target functions tested were sin(wz), a 5-piece
polynomial with maximum value of 2 in the domain [—3, 3], a sawtooth with period 3 and amplitude
1, arctan(z), exp(z), and §22. Each value in the table was the average of 5 trials.

3.3 BREAKPOINT MOBILITY IN DEEP NETWORKS

We use a deep, 6-layer network, with 5 hidden layers of width 8. Training data consists of the
‘smooth’ and ‘sharp’ functions over the interval x € [—3, 3]. Learning rate = Se-5, trained via GD
until convergence, where convergence was defined as when the loss between two epochs changed
by less than 10~8. Breakpoints were calculated every 50 epochs. The velocity of breakpoints was
then calculated, and the values seen in the figure are normalized to the velocity of the first layer.

LN
N TN

N N\

-20 -15 -10 -05 00 05 10 15 20 20 -15 -10 -05 00 05 10 15 20
Input Input

ouput

Figure 8: Training data sampled from two ground truth functions, one smoothly (left) and the other
sharply (right) discontinuous, each with a data gap at [—0.5, 0.5].

4 MORE DETAILS ON BREAKPOINTS FOR DEEP RELU NETS
Each neuron of the second hidden layer receives as input the result of a CPWL function zZ@) (x) as
defined above. The output of this function is then fed through a ReLU, which has two implications:

52) is a breakpoint of 1’1(2); second, any breakpoints BJ(-l) of 252)
that zi(Q) (8 j(-l)) < 0 will not be breakpoints of xgz). Importantly, the number of breakpoints in gg ()
is now a function of the parameters 6, rather than equal to fixed H as in the L = 1 case; in other
words, breakpoints can be dynamically created and annihilated throughout training. This fact will
have dramatic implications when we explore how gradient descent optimizes breakpoints in order
to model curvature in the training data (see Sec[3). But first, due to complexities of depth, we must
carefully formalize the notion of a breakpoint for a deep network.

first, every zero crossing of z such

13
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Definition 1. 55 is a breakpoint induced by neuron ¢ in layer ¢ zf z; ( B (Z)) = 0. Since the function
22@ (+) is nonlinear, neuron i may induce multiple breakpoints, which we denote ﬁi(elz. A breakpoint
Bl(e,z is active if there exists some path w through neuron i such that for all other neurons j # i € T,

zéé(j)) > 0, i.e. a;(x) = 1. If two neurons i and j in layers { and !’ induce the same breakpoint(s),

ﬂg? = ﬂ]("kl then both are referred to as degenerate breakpoints.

Let G (x) = [ [, @;. Then, Bi(e) is active iff there exists some path 7 such that @, is discontinuous
atx = Bi(é). Thus, go(x) is non-differentiable at = if x = ﬁz@) for some (¢,4). If no degenerate

breakpoints exist, then the converse also holds. (If there do exist degenerate breakpoints By) and

ﬁ @ then it is possible that ,u(é) u;el), i.e. the changes in slope cancel out and gy(x) remains

hnear and differentiable.)

5 PROOFS OF THEORETICAL RESULTS

5.1 REPARAMETRIZATION FROM RELU NETWORK TO PIECEWISE LINEAR FUNCTION

Proof of Eqn (1-3):

ng sz d(wiz + by)

H
= Zvi(u)ix + b)) [wiz + b; > 0]
i=1
H
[ >3] w >0 A b
— (1 — B h o D1
;vwl(x BL){[[x<ﬁi]] w; <0 where 3; "

H
Z i(x— Bs) {[[x > Bl wi>0 where j1; £ v;w;

[[LU<B7,H w; <0

H
=> ZM@ = Bu)+ ZM = Bu) | [Bep) <@ < Bp+n] where B =

p=0 i=p+1
w(z)>0 w(3) <0

H P H
=3 Z (1T = nyBa) + D (e = pwba) | Bu) <o < Bl

1=p+1
w (i)> 0 w(j)<0

H H H
=) Zmz T — Z#( @+ 2T — > B | [Be) <o < Bpin]

—00, ﬁ(H+1) £ 00

p=0 i=p+1 i=p+1
w(1)>0 ’LU( )>O w(i)<0 w(i)<0
H P H H
=2 ro|e- Z naBe + | D_nw [ = mwbo | e <z < Bp+v]
p=0 i=1 i=p+1 i=p+1
w(i)>0 w( )>0 w(i)<0 w(i)<0

H P H
=> D oney+ Y e | @ - Zu By + Zmz @ | | B <z <Bpi]

p=0 i=1 i=p+1 i=p+1
w() >0 w(s) <0 ws )>0 W) <0

H o
= (e = 7)) B <@ < Bl "
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5.2 RANDOM INITIALIZATION IN FUNCTION SPACE

Proof of Theorem Eka-b). Suppose (b;, w;,v;) are initialized independently from a dis-
tribution with density fp w,v(b;,w;,v;). Then, we can derive the density of (8;,u;) by
considering the invertable continuous transformation given by (5;, s, u) = g(bj, w;,v;) =
(b; Jw;, vilw;|, w;), where g=(Bs, i, u) = (Biu,u, pi/|ul). The density of (B;, ui, u) is given
by fB.mv(Biu,u,pi/|u|)|J|, where J is the Jacobian determinant of g~—!. Then, we have
J = —sgnw; and |J| = 1. The density of (f;, ;) is then derived by integrating out the dummy
variable u: fg ,(Bi, pts) = ffooo IB.wv(Biu,u, £+) du. If (b;, w;, v;) are independent, this expands
to [ f(Biu) fw (u) fyr (&) du. See below for next parts of proof for the Gaussian and Uniform
cases separately.

5.3 GAUSSIAN INITIALIZATION IN FUNCTION

Proof of Theorem [I(a). Using the preliminary results above, we now specialize to the case of
Gaussian initialization:

By, U) = g(B,W,V) = (B/W,VW, W)
9 (B,m,U) = (BU,U, u/U)

9B 9B OB
A I
J=|9% Gr SEI=10 0 1 [=0404+0-0-0-1=-1
ov oV ov| o L
98 om  oU U Uz
f,ﬁ,u,U(/Ea Hy U) = fB,W,V(Bu7 u, ,u/u)
Fan B = [ Frawy (B ufu)d
— [ a0 fur () v /)
1 _(51@2 1 w2 1 _ (w/w)?
— e 29 e 202 e 202 du
\/2mo} \/2mo2, /2mo?2
exp —LL\/W]
TpTvTw
(sympy) = PR vy ) w>0
unknown otherwise

but fz , has symmetric marginals, so it should be symmetric in y, so

lul/og+02,(8)?
exp { e ]

2no, 02 +02(8)?

Marginalizing out x from this density in Sympy returns the appropriate f(/3) from above (Sympy
cannot compute the other marginal).

luly/of 403,82 lul/of+03,82
o €XP {_ K0T 1 o XD\ TG
/ > de = > dz
oo 2moun/0f 4+ 022 210y J oo o7 + o212

8 (Y [M}
(¢(/B) - O, ) - 2ro, O / o2+ 2 du
v 1)\% — 00 b

¢ (8)

from [Table], p. 396, we have
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d8  [Rea > 0,Reb > 0]

) exp(fa\/ﬂ2 + b2)
Ko(ab) :/
0 /52 + b2
1 [ exp(—ch/ﬁ2 + b2)
. dis . _1
(integrand is even in ) 5 /_OO \/m

applying this with a = % and b = oy,

Oy

ds [Rea > 0,Reb > 0]

_lul\/o?
oo €XP {"f,'bg §+62]
1 W 48— 1 K lul
2oy 0w J_ oo A /gg + 32 TOwOw OvOw
as desired.
/‘72"“7%; 5)2
o +02(B)? exp [—lul g,,l;,,aw( ) } Jp—
B) = = Laplace | p4;0, ————r—o
fu(pB) —— place | 110, === s
0'2 g
exp {_ a ab’;tg%(w] 1
ﬁ =
P = g VT AP ko ()
0'2 (e
exp {_u 7y a<ﬁ>2]
OOy O Ow 0
20} +02(8)? K, (U‘L%)

5.4 UNIFORM INITIALIZATION IN FUNCTION SPACE

Proof of Theorem [(b). Using the preliminary results above, we now specialize to the case of
Uniform initialization:

w; ~ U=y, ay)
bi ~ U[—ab, ab}

v ~ Ul—ay, a,
a

FouBom) = [ f5(Bu) fw (u) fy (/) du

—Qw

“w 1
= — = < < — = <u<
/_aw 2ab[[ ab_Bu_ab]]2aw[[ Gy < u < ayl

1
2a,

[—ay, < p/u < ay]du

v ] 1 1
— [ s lan/1Bl < w < an/1Bl] 5y l-ew < u < eulyfu < —lal/a, v > nl/a,] du

—ay

= / [ min{as/|8], 0w} < u < —[pl/ay V |ul/a, < u < minfas/|8], a}]llul < asa

—ay SAbAyway
< Gw
= L = 8B ™ i1, o} < 0 il V ol < < minfan/ 81,0
< v G .
= L= o[l < 0 < mingan 1510, du
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= L= ot AL i 181,00} — /) [awae < e < aga]
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Sanity check:
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Sanity check:
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2%%% | b= 150 mingan 151 i - /

Ay Ay

2aba Ay

2abawav v

2a,

2abawav

o infa /81,0 1) = 5o (o min{ag, /|51 )
m (% (min{ay /|8, aw})? — 3” (min{aw,ab/|5|})2)

1
Topa (minfas/|3l.a,})

2abawav

| {8 auh?a
—o0 Fp Ay

fu(plB) =

—/ " (minfan/|], aw})? 48

4apay J_ oo
1 (&9}
2abaw /O (min{ab/67 aw})2 dﬁ

1 ap/aw oo
/ a2 d3+a§/ 1/6%dp
2apau 0 ap/aw

apQq, + apa
2abaw(bw bw)

1 . 52 2
| i minfa/ 13l ) 45

— 00

/ " 8 (minfa/|8], au))? 4B

4apaq,

QGwa/ 52 mm{ab/@aw})

1 ap/aw o)
/ B%a? dB + a? / 1ds
2abaw 0 G«b/aw

[ee]
lelg a1 (min{a, /], aw} — ul/av) [~awa, < p < apay]
: 2
4ablaw (mln{a’b/|ﬁ|a aw})
L <o A= 0w (rmin |6 |, 0} = [pl /)
(min{ab/|ﬂ|a aw})Q

_ [lnl < ay min{as/|B], aw}] (1 B |1 >

fx(Blp) =

a, min{ay/|B], aw} a, min{ay/|B|, aw }

[lnl < avau/|5]]

4ap oy Ay

This completes the proof. [J
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1 min{awas.ava./|Bl}
mln{ab/|ﬂ| aw}mln{awaq,,abav/‘ﬂ” — ;/ ,LLd‘Ll,
0

I < v /|6l1ufa a0 )
wingos/|Bl.0u} [ < /1900 = o [ < a5

min{ay /|8, @y } min{a,a,, apa, /|B|} — 1 (min{ayay, apay, /|B8|}) >

[[_awav S M S awav]] 10

(minfan/|B], aw} — |al/an) [ty < 4 < aay] (

20,0y
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Remarks. Note that the marginal distribution on p; is the distribution of a product of two inde-
pendent random variables, and the marginal distribution on j; is the distribution of the ratio of two
random variables. For the Gaussian case, the marginal distribution on y; is a symmetric distribution
with variance 0202 and excess Kurtosis of 6. For the Uniform case, the marginal distribution of 3;
is a symmetric dlstrlbutlon with no finite higher moments The marginal distribution of uz is a sym-

3 3
metric distribution with bounded support and variance ‘ga“ and excess Kurtosis of = - 3.

The conditional distribution of y; given 3; is a symmetric distribution with bounded support and
(av min{ay/|Bil,aw })2
6

variance

and excess Kurtosis of —%.

5.5 ROUGHNESS OF RANDOM INITIALIZATION

Proof of Theorem [2} Using the moments of the delta-slope distribution computed in Theorem [I]
and above, we can compute:

H H
0} = Z]E[:U‘%O} = Zvar[ﬂiO] + ]E[:U'iO}Q = H(O"UUU))Q = 4H/(H + 1)2

i=1
E[uz] = ( o)
Var[MzO} E[Nzo] = (0’1)0“,)
Var[,uzzo} ]E[,Uw] [Nzo} = 9(0v0w)4 - (Uvgw)4 = S(Uvgw)4 =128/(H + 1)4
1
Prlpo —4/H > N\| < ——573=  [Cantelli’s Theorem]. [
1+ °58

5.6 L0OSS SURFACE IN FUNCTION SPACE

Proof of Theorem 3t

Proof. 1f, for all i, f(-;05ps0) (ém,,IT;) = 0,
where €, is the residual for II;. Similarly, we must have that the net residual (€r,,1) = 0.

Next, consider, for any neuron j, the vector a;. If j is right-facing, &4; = (0,...,0,1,...,1), where
the transition from Os to 1s corresponds to the data index n where x,, > §;; if j is left-facing, a
1-to-0 transition occurs at n. Thus, &; is constant for n € II;, as the boundaries of II; correspond to
breakpoints 3; and S3;,1. Noting that these inner products are just sums of products, we have that,
for any neuron j, (€ ® &;,x) can be decomposed into a sum ) J;; (€m,, I1;) = 0, where the sum is
over the pieces on the active side of j. Similarly, (€ ® &;,1) = > (em,, 1) = 0.

Applying Theorem I we see that dﬁ $ = dé‘t’ = 0 for all j, and so Oppso is a critical point of

{(0Bpso). O

5.7 DYNAMICS IN FUNCTION SPACE (BREAKPOINTS AND DELTA-SLOPES)

Proof of Theorem |S; Computing the time derivatives of the BDSO parameters and using the loss
gradients of the loss with respect to the NN parameters gives us:

olONN) s ‘
B v;i{€® a;,x)
% = <é, o(wix + b11)> = <é ® a;, W;X + b71> = w,(é ® ai,x> + bl<é ® a;, 1>
v;
olOnN) .
o, vi{€®a;, 1)
dgi(t) _ d [ bi(t)
dt dt \ wi(t)
o w() B — b)Y
w;(t)?

19
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wi (1) (— 258y — b (1) (— 250
Wi (t)Z

o4(0 329
i () Zx) — b (1) 250

w; (t)?
wi(t)vi(t)(e(t) © a;(t), 1) — bi(t)vi(t){€(t) © ai(t), x)
’U)Z(t)z

vilt) (€(1) © au(t), wi(t)1 - by(£)x)

— ul) <é(t)®ai(t),1 _ ) x>

B e(t) ®ay(t), 1+ Bi(t)x>
. ~—

relevant residuals

= —~[(e(t) ®ai(t), 1) +5:(t) (€(t) © a;(t), x)]

d i ( t) d net relevant residual correlation
a a
_ dwy dv;
BT
__OMnn) . OlON)
Bwi ’ ! a’l}z

_Ui2<é®ai, >—’U) <€®az > wlb,<é®a“1>
—(vf +wi) (€ ®ai,x) —wibi(é © a;, 1)

(From Du etal. 1)

du; _ df(W(t)’ a(t)v Xi)
dt dt

a f(W(t),a,x;) dw,(t t),a,x;) da,
(chain rule) = Z 8“(»)(15) 3 dt< )> + Z‘; ( (T)(t) ) dt( :
-, 0f(W(t),a,%;)  00(9) L Of(W(H),a,%;) 00(9)
- ;< wilt) w2 Ba) da)

I
Mt

Af(W(t),a,x;) w— 0f(W(t),a,x;) a,X;) — 0.
a2 ) 0520 ¢ 5 IS S0, )2

~ Of(W(t),a,x;) 0f(W(t)a,x;), <~ 0f(W(t),a,x;)df(W(t)a,
(b =) <Z< ) ow) T ba dar ()

\3
Il
-

r=1

<
I
<

(1> Il
- 109

(y; — uj)(Hi; () + Gis (1))

<
Il
_

<<9f(W(t),a,Xi) 3f(W(f)7aan)>
ow,.(t) ’ ow,.(t)

Sﬂ
—~
~~
~—
(1>
(=

ﬁ
Il
-

I 1 .
= ;<ﬁar(t)xi[[<wr(t)vxi> > Oﬂ» ﬁaT(t)xj[[<Wr(t)7Xj> > 0]]>
= %<xz x;) > ar(t)’[(we (), %;) > 0, (w,(t),x;) > 0]

r=1
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Gyt 2 3 L0 ) O (W 1), .3

— Oa,(t) Oay(t)

1 1
this differs from th =3 o ((wet), %)) = (W (1), x;
(this differs from the paper) 2 NO’(<W (t),x >)\/ﬁo(<w (t),x;))

(With biases b(¢):)

du; _ df(0(t), x:)

dt dt
, =, 0f (1), x;) dwr ELOf(0(1),x;) dan(t) <& ;) dby.(t)
(chain rule) = ;( ow, (1) )+ Tz:l Dar (1) & z_: t m
0 (0(), %) 94(6) = Of(0(t), xi) OL(0) |~ i) 0L(0)
B ;< ow,(t) ’8wr(t)> + Z; da(t) aa (t) Z br t da,(t)
N\ ~,0f(6(t),xi) D e,x - ) 0F (), %;) | N~ Of (O
_;(%_“j“)) (ZJ owe(t)  ow,(t) 2 Day (t) +; ab

(y; — u;(t)) (Hij(t) + Gij(t) + Fij(t))

|

j=1
H;;(t) £ %<Xivxj> > ar(®)’[(wp(t), %) + by > 0, (wr(t),%;) + by > 0]
Gii(1) 2 25 o((we(8), x; + b)) ((wr (1), x5 + b))

K r=1

"1 1
- Z —a, (O)[(wy(t),%;) + by (t) > Oﬂﬁar(t)[[<wr(t)vxj> +0,(t) > 0]

Y ar(t)? LW (1), xi) + bo(8) > 0, (wi(t), x5) + by (t) > 0]

Alternatively,

(This is consistent with/equivalent to the practice of augmenting each x; with an extra 1)

au(a? J- > gy —ui () (H)(x, 1) + Gj(x, 1))
i=1
H(x,t) £ i(1+ (%,%;)) Y ar()’[(wr(t), X) + by > 0, (wy(t), X;) + by > 0]
r=1
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Gj(X t £

==

S 0w (8), x + b,))o (w, (1), %5 +b,))

Converting to our notation,

dyl ZGJ )+ Gij(t))

n
= Z similarity of x; and x; according to the network, weighted by the residual at x;
j=1

= Z residual at x;, weighted by similarity to x;

j=1
= (e, Hj(t) + Gi(1))

dy(®) _ p ;
S = (1) + G(1)e
H 0 2 2004 (x06)) D 0000400
B %(1 + (xi,35)) (v () © V(1) © ay(t), a; (1))
_ i(l + (%0 X)) (V(8) © V(D) ai(t) © ay(t)
— %<x“x]><v(t) O v(t),ai(t) © a;(t))
1
= &%) (ai0). 25 (D)y yovin
1
- ;(xl,xﬁ( v(t) ©a;(t), v(t) © a;(t))
Gij(t)éiz Wi (), %i + b)) p((Wir (), %5 + br))
s Lo o

This completes the proof. [J

5.8 PRE- AND POST-ACTIVATIONS IN FUNCTION SPACE
We now develop expressions for the pre-activation (net input) and activation of a given neuron:

M = w4 bl(-l)

(2 K2

x,(‘l) _ ¢ Zl(l))
(£—1)
20 = WO 4 b
J=1

Z))

6(2!
(L)
Z (L) (1) | p(L+1)

I I IR
JEAWM (z)
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H(2)
Y (R TN I IET] I
j=1 ke A (z)
(2)
3 2 1 1 2
_ Z“’( S w@ue— A0 + 6
ke AWM ()
X Z wjk wk y,ﬁ”) —i—b;-Q) >0l + b§3)
ke AW (z)
@a @ B
A J
S )
ik Wy
3 1 2 3
- (3 ) -
FEA®D () keAM ()
3 2 1 2 3
S T wPu@u (1) | + 8

FjEAR) (z) \ke AW (x)

- ¥ )(Hw>(l’ A2) 4 4@

pEA(SS)(I wep
u®

Zi(4) _ sz(;l)qs Z (H w) (z — %§2)) + b;s) + b§4)
j=1 wep

pe A= (z)

> | X (L) ooy en? |

JEA® (@) \ peal=? (a) wep
= 2 (H w) (z =) + 0"
peA=Y (z) \WEP

Notation: Subscripts of p needed; in the denominator, p[: v] includes the vth element, ambiguously-
consistent with the Python notation because it’s not 0-indexed

Based on our derivations above, we can now write the general case as:

© o -1 _ iy
l) Ao -1 p
Yo = Vpl.—
pl—1] Hwep
¢ (v)
bp[v]

= Huweprgw

S N (1 Y I

b () N0

4 {—1 ¢
D D T R S R
peA= ()
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(y-intercept)

L - = )
=A@ T T 0w T

could be absorbed into 7...

_ ¢

VA0 () bz(- )
=Tl 4(<0) -
AT @) P A0 ()

z-intercept of line segment containing x (candidate breakpoint)
Notation: does a path p € AESZ)(,T) contain bl(-e) as its last bias? Above we say no, below, yes

14
> by 1 .

peA= (@)=t weply:

Va0 @) = 7 S Iw

PEAS (@) EP

1 3L Then, 70, €

Consider the layer-(¢ — 1) breakpoints containing z, i.e. * € [6((1@ (k+1)
0-1) H(e-1 . . (e
[ﬁgk) ), ﬁ((k+1))], 7;555)(1) is an active breakpoint ﬁ,(c ) for some k.
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