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ABSTRACT

Continual learning is the problem of sequentially learning new tasks or knowledge
while protecting previously acquired knowledge. However, catastrophic forgetting
poses a grand challenge for neural networks performing such learning process.
Thus, neural networks that are deployed in the real world often struggle in scenar-
ios where the data distribution is non-stationary (concept drift), imbalanced, or not
always fully available, i.e., rare edge cases. We propose a Differentiable Hebbian
Consolidation model which is composed of a Differentiable Hebbian Plasticity
(DHP) Softmax layer that adds a rapid learning plastic component (compressed
episodic memory) to the fixed (slow changing) parameters of the softmax output
layer; enabling learned representations to be retained for a longer timescale. We
demonstrate the flexibility of our method by integrating well-known task-specific
synaptic consolidation methods to penalize changes in the slow weights that are
important for each target task. We evaluate our approach on the Permuted MNIST,
Split MNIST and Vision Datasets Mixture benchmarks, and introduce an imbal-
anced variant of Permuted MNIST — a dataset that combines the challenges of
class imbalance and concept drift. Our proposed model requires no additional
hyperparameters and outperforms comparable baselines by reducing forgetting.

1 INTRODUCTION

A key aspect of human intelligence is the ability to continually adapt and learn in dynamic environ-
ments, a characteristic which is challenging to embed into artificial intelligence. Recent advances
in machine learning (ML) have shown tremendous improvements in various problems, by learning
to solve one complex task very well, through extensive training on large datasets with millions of
training examples or more. However, most of the ML models that are used during deployment in
the real-world are exposed to non-stationarity where the distributions of acquired data changes over
time. Therefore, after learning is complete, and these models are further trained with new data, re-
sponding to distributional changes, performance degrades with respect to the original data. This phe-
nomenon known as catastrophic forgetting or catastrophic interference (McCloskey & Cohen, 1989;
French, 1999) presents a crucial problem for deep neural networks (DNNs) that are tasked with con-
tinual learning (Ring, 1994), also called lifelong learning (Thrun & Mitchell, 1995; Thrun, 1998). In
continual learning, the goal is to adapt and learn consecutive tasks without forgetting how to perform
well on previously learned tasks, enabling models that are scalable and efficient over long timescales.

In most supervised learning methods, DNN architectures require independent and identically dis-
tributed (iid) samples from a stationary training distribution. However, for ML systems in real-
world applications that require continual learning, the iid assumption is easily violated when: (1)
There is concept drift in the training data distribution. (2) There are imbalanced class distribu-
tions and concept drift occuring simultaneously. (3) Data representing all scenarios in which the
learner is expected to perform are not initially available. In such situations, learning systems face
the “stability-plasticity dilemma” which is a well-known problem for artificial and biological neural
networks (Carpenter & Grossberg, 1987; Abraham & Robins, 2005). This presents a continual learn-
ing challenge for an ML system where the model needs to provide a balance between its plasticity
(to integrate new knowledge) and stability (to preserve existing knowledge).

In biological neural networks, synaptic plasticity has been argued to play an important role in learn-
ing and memory (Howland & Wang, 2008; Takeuchi et al., 2013; Bailey et al., 2015) and two major
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theories have been proposed to explain a human’s ability to perform continual learning. The first the-
ory is inspired by synaptic consolidation in the mammalian neocortex (Benna & Fusi, 2016) where
a subset of synapses are rendered less plastic and therefore preserved for a longer timescale. The
general idea for this approach is to consolidate and preserve synaptic parameters that are considered
important for the previously learned tasks. This is normally achieved through task-specific updates
of synaptic weights in a neural network. The second is the complementary learning system (CLS)
theory (McClelland et al., 1995; Kumaran et al., 2016), which suggests that humans extract high-
level structural information and store it in different brain areas while retaining episodic memories.

Recent work on differentiable plasticity has shown that neural networks with “fast weights” that
leverage Hebbian learning rules (Hebb, 1949) can be trained end-to-end through backpropagation
and stochastic gradient descent (SGD) to optimize the standard “slow weights”, as well as also the
amount of plasticity in each synaptic connection (Miconi, 2016; Miconi et al., 2018). These works
use slow weights to refer to the weights normally used to train vanilla neural networks, which are
updated slowly and are often associated with long-term memory. The fast weights represent the
weights that are superimposed on the slow weights and change quickly from one time step to the
next based on input representations. These fast weights behave as a form of short-term memory that
enable “reactivation” of long-term memory traces in the slow weights. Miconi et al. (2018) showed
that simple plastic networks with learned plasticity outperform networks with uniform plasticity on
various problems. Moreover, there have been several approaches proposed recently for overcoming
the catastrophic forgetting problem in fixed-capacity models by dynamically adjusting the plasticity
of each synapse based on its importance for retaining past memories (Parisi et al., 2019).

Here, we extend the work on differentiable plasticity to the task-incremental continual learning set-
ting (van de Ven & Tolias, 2019) and develop a Differentiable Hebbian Consolidation1 model that
is capable of adapting quickly to changing environments as well as consolidating previous knowl-
edge by selectively adjusting the plasticity of synapses. We modify the traditional softmax layer and
propose to augment the slow weights in the final fully-connected (FC) layer (softmax output layer)
with a set of plastic weights implemented using Differentiable Hebbian Plasticity (DHP). Further-
more, we demonstrate the flexibility of our model by combining it with recent task-specific synaptic
consolidation based approaches to overcoming catastrophic forgetting such as elastic weight consol-
idation (Kirkpatrick et al., 2017; Schwarz et al., 2018), synaptic intelligence (Zenke et al., 2017b)
and memory aware synapses (Aljundi et al., 2018). Our model unifies core concepts from Hebbian
plasticity, synaptic consolidation and CLS theory to enable rapid adaptation to new unseen data,
while consolidating synapses and leveraging compressed episodic memories in the softmax layer to
remember previous knowledge and mitigate catastrophic forgetting. We test our proposed method
on established benchmark problems including the Permuted MNIST (Goodfellow et al., 2013), Split
MNIST (Zenke et al., 2017b) and Vision Datasets Mixture (Ritter et al., 2018) benchmarks. We
also introduce the Imbalanced Permuted MNIST problem and show that plastic networks with task-
specific synaptic consolidation methods outperform networks with uniform plasticity.

2 RELEVANT WORK

Neural Networks with Non-Uniform Plasticity: One of the major theories that have been proposed
to explain a human’s ability to learn continually is Hebbian learning (Hebb, 1949), which suggests
that learning and memory are attributed to weight plasticity, that is, the modification of the strength
of existing synapses according to variants of Hebb’s rule (Paulsen & Sejnowski, 2000; Song et al.,
2000; Oja, 2008). It is a form of activity-dependent synaptic plasticity where correlated activation of
pre- and post-synaptic neurons leads to the strengthening of the connection between the two neurons.
According to the Hebbian learning theory, after learning, the related synaptic strength are enhanced
while the degree of plasticity decreases to protect the learned knowledge (Zenke et al., 2017a).

Recent approaches in the meta-learning literature have shown that we can incorporate fast weights
into a neural network to perform one-shot and few-shot learning (Munkhdalai & Trischler, 2018; Rae
et al., 2018). Munkhdalai & Trischler (2018) proposed a model that augments FC layers preceding
the softmax with a matrix of fast weights to bind labels to representations. Here, the fast weights
were implemented with non-trainable Hebbian learning-based associative memory. Rae et al. (2018)

1Code is available at:
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proposed a Hebbian Softmax layer that can improve learning of rare classes by interpolating between
Hebbian learning and SGD updates on the output layer using an engineered scheduling scheme.

Miconi et al. (2018) proposed differentiable plasticity, which uses SGD to optimize the plasticity of
each synaptic connection, in addition to the standard fixed (slow) weights. Here, each synapse is
composed of a slow weight and a plastic (fast) weight that automatically increases or decreases based
on the activity over time. Although this approach served to be a powerful new method for training
neural networks, it was mainly demonstrated on recurrent neural networks (RNNs) for solving pat-
tern memorization tasks and maze exploration with reinforcement learning. Also, these approaches
were only demonstrated on meta-learning problems and not the continual learning challenge of over-
coming catastrophic forgetting. Our work also augments the slow weights in the FC layer with a
set of plastic (fast) weights, but implements these using DHP. We only update the parameters of the
softmax output layer in order to achieve fast learning and preserve knowledge over time.

Overcoming Catastrophic Forgetting: This work leverages two strategies to overcome the catas-
trophic forgetting problem: 1) Task-specific Synaptic Consolidation — Protecting previously learned
knowledge by dynamically adjusting the synaptic strengths to consolidate and retain memories. 2)
CLS Theory — A dual memory system where, the neocortex (neural network) gradually learns to ex-
tract structured representations from the data while, the hippocampus (augmented episodic memory)
performs rapid learning and individuated storage to memorize new instances or experiences.

There have been several notable works inspired by task-specific synaptic consolidation for over-
coming catastrophic forgetting (Kirkpatrick et al., 2017; Zenke et al., 2017b; Aljundi et al., 2018)
and they are often categorized as regularization strategies in the continual learning literature (Parisi
et al., 2019). All of these regularization approaches estimate the importance of each parameter or
synapse, Ωk, where least plastic synapses can retain memories for long timescales and more plastic
synapses are considered less important. The parameter importance and network parameters θk are
updated in either an online manner or after learning task Tn. Therefore, when learning new task
Tn+1, a regularizer is added to the original loss function Ln(θ), so that we dynamically adjust the
plasticity w.r.t Ωk and prevent any changes to important parameters of previously learned tasks:

L̃n(θ) = Ln(θ) + λ
∑
k

Ωk(θnk − θn−1k )2︸ ︷︷ ︸
regularizer

(1)

where θn−1k are the learned network parameters after training on the previous n− 1 tasks and λ is a
hyperparameter for the regularizer to control the amount of forgetting (old versus new memories).

The main difference in these regularization strategies is on the method used to compute the impor-
tance of each parameter, Ωk. In Elastic Weight Consolidation (EWC), Kirkpatrick et al. (2017) used
the values given by the diagonal of an approximated Fisher information matrix for Ωk, and this was
computed offline after training on a task was completed. An online variant of EWC was proposed
by Schwarz et al. (2018) to improve EWC’s scalability by ensuring the computational cost of the
regularization term does not grow with the number of tasks. Zenke et al. (2017b) proposed an on-
line method called Synaptic Intelligence (SI) for computing the parameter importance where, Ωk is
the cumulative change in individual synapses over the entire training trajectory on a particular task.
Memory Aware Synapses (MAS) from Aljundi et al. (2018) is an online method that measures Ωk

by the sensitivity of the learned function to a perturbation in the parameters, instead of measuring
the change in parameters to the loss as seen in SI and EWC.

Our work draws inspiration from CLS theory which is a powerful computational framework for rep-
resenting memories with a dual memory system via the neocortex and hippocampus. There have
been numerous approaches based on CLS principles involving pseudo-rehersal (Robins, 1995; Ans
et al., 2004; Atkinson et al., 2018), episodic replay (Lopez-Paz & Ranzato, 2017; Li & Hoiem, 2018)
and generative replay (Shin et al., 2017; Wu et al., 2018). However, in our work, we are primarily
interested in neuroplasticity techniques inspired from CLS theory for alleviating catastrophic forget-
ting. Earlier work from Hinton & Plaut (1987); Gardner-Medwin (1989) showed how each synaptic
connection can be composed of a fixed weight where slow learning stores long-term knowledge and
a fast-changing weight for temporary associative memory. This approach involving slow and fast
weights is analogous to properties of CLS theory to overcome catastrophic forgetting during contin-
ual learning. Recent research in this vein has included replacing soft attention mechanism with fast
weights in RNNs (Ba et al., 2016), the Hebbian Softmax layer (Rae et al., 2018), augmenting slow
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weights in the FC layer with a fast weights matrix (Munkhdalai & Trischler, 2018), differentiable
plasticity (Miconi, 2016; Miconi et al., 2018) and neuromodulated differentiable plasticity (Miconi
et al., 2019). However, all of these methods were focused on rapid learning on simple tasks or meta-
learning over a distribution of tasks or datasets. Furthermore, they did not examine learning a large
number of new tasks while, alleviating catastrophic forgetting in continual learning.

3 DIFFERENTIABLE HEBBIAN CONSOLIDATION

In our model, each synaptic connection in the softmax layer has two weights: 1) The slow weights,
θ ∈ Rm×d, where m is the number of units in the final hidden layer. 2) A Hebbian plastic com-
ponent of the same cardinality as the slow weights, composed of the plasticity coefficient, α, and
the Hebbian trace, Hebb. The α is a scaling parameter for adjusting the magnitude of the Hebb.
The Hebbian traces accumulate the mean hidden activations of the final hidden layer h for each
target label in the mini-batch {y1:B} of size B which are denoted by h̃ ∈ R1×m (refer to Algo-
rithm 1). Given the activation of each neuron in h at the pre-synaptic connection i, the softmax
pre-activations (raw logits) z at the post-synaptic connection j can be more formally computed us-
ing Eq. 2. The softmax function is then applied on z to obtain the desired predicted probabilities
ŷ thus, ŷ = softmax(z). The η parameter in Eq. 3 is a scalar value that dynamically learns how
quickly to acquire new experiences into the plastic component, and thus behaves as the “learning
rate” for the plastic connections. The η parameter also acts as a decay term for the Hebb to prevent
instability caused by a positive feedback loop in the Hebbian traces.

zj =

m∑
i=1

( θi,j︸︷︷︸
slow

+αi,jHebbi,j︸ ︷︷ ︸
plastic (fast)

)hi (2)

Hebbi,j ← (1− η)Hebbi,j + ηh̃i,j (3)

The network parameters αi,j , η and θi,j are optimized by gradient descent as the model is trained
sequentially on different tasks in the continual learning setup.

Algorithm 1 Batch update Hebbian traces.

1: Input: h1:B (hidden activations of penultimate layer),
y1:B (target labels),
Hebb (Hebbian trace)

2: Output: z1:B (softmax pre-activations)
3: for each target label c ∈ {y1:B} do
4: s←

∑B
b=1[yb = c] /*Count total occurences of c ∈ y.*/

5: if s > 0 then
6: h̃← 1

s

∑B
b=1 h[yb = c] /*Update Hebb for class c.*/

7: Hebb:,c ← (1− η)Hebb:,c + ηh̃
8: end if
9: end for

10: z ← (θ + αHebb)h /*Compute softmax pre-activations.*/

Hebbian Update Rule: The Hebbian
traces are initialized to zero only at the
start of learning the first task T1 and
during training, the Hebb is automati-
cally updated in the forward pass using
Algorithm 1. Specifically, the Hebbian
update for a coressponding class c in
y1:B is computed on line 6. This Heb-
bian update 1

s

∑B
b=1 h[yb = c] is anal-

ogous to another formulaic description
of the Hebbian learning update rule
wi,j = 1

N

∑N
k=1 a

k
i a

k
j (Hebb, 1949),

where wi,j is the change in weight at
connection i, j and aki , akj denote the
activation levels of neurons i and j, re-
spectively, for the kth input. Therefore, in our model, w = h̃ the Hebbian weight update, ai = h the
hidden activations of the last hidden layer, aj = y the corresponding target class in y1:B and N = s
the number of inputs for the corresponding class in y1:B (see Algorithm 1). Across the model’s
lifetime, we only update the Hebbian traces during training as it learns tasks in a continual manner.
Therefore, during test time, we maintain and use the most recent Hebb traces to make predictions.

Our model explores an optimization scheme where hidden activations are accumulated directly into
the softmax output layer weights when a class has been seen by the network. This results in bet-
ter initial representations and can also retain these learned deep representations for a much longer
timescale. This is because memorized activations for one class are not competing for space with ac-
tivations from other classes. Fast learning, enabled by a highly plastic weight component, improves
test accuracy for a given task. Between tasks this plastic component decays to prevent interference,
but selective consolidation into a stable component protects old memories, effectively enabling the
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model to learn to remember by modelling plasticity over a range of timescales to form a learned
neural memory (see Section 4.1 ablation study). In comparison to an external memory, the advan-
tage of DHP Softmax is that it is simple to implement, requiring no additional space or computation.
This allows it to scale easily with increasing number of tasks.

5

6

5
4
7
6
3
1
4
3
3
4
5
1

6
8

ℎ (�)�(�)=6

�

�

∑
1

�

ℎ˜(�=6)

Figure 1: An example of a Hebbian update for the
class, c = 6 ∈ y1:B . Here, we are given the hid-
den activations of the final hidden layer, h. Multi-
ple hidden activations corresponding to class c = 6
(represented by the pink boxes) are averaged into
one vector denoted by h̃ ∈ R1×m. This Heb-
bian update visualization reflects Lines 4-6 in Al-
gorithm 1 and is repeated for each unique class in
the target vector y1:B .

The plastic component learns rapidly and per-
forms sparse parameter updates to quickly
store memory traces for each recent experi-
ence without interference from other similar
recent experiences. Furthermore, the hidden
activations corresponding to the same class,
c, are accumulated into one vector h̃, thus
forming a compressed episodic memory in the
Hebbian traces to reflect individual episodic
memory traces (similar to the hippocampus in
biological neural networks (Chadwick et al.,
2010; Schapiro et al., 2017)). As a result, this
method improves learning of rare classes and
speeds up binding of class labels to deep repre-
sentations of the data without introducing any
additional hyperparameters. In Appendix B,
we provide a sample implementation of the
DHP Softmax using PyTorch.

Hebbian Synaptic Consolidation: Following the existing regularization strategies such as
EWC (Kirkpatrick et al., 2017), Online EWC (Schwarz et al., 2018), SI (Zenke et al., 2017b) and
MAS (Aljundi et al., 2018), we regularize the loss L(θ) as in Eq. 1 and update the synaptic im-
portance parameters of the network in an online manner. We rewrite Eq. 1 to obtain the updated
quadratic loss for Hebbian Synaptic Consolidation in Eq. 4 and show that the network parameters
θi,j are the weights of the connections between pre- and post-synaptic activity, as seen in Eq. 2.

L̃n(θ, α, η) = Ln(θ, α, η) + λ
∑
i,j

Ωi,j(θ
n
i,j − θn−1i,j )2 (4)

We adapt the existing task-specific consolidation approaches to our model and do not compute the
synaptic importance parameters on the plastic component of the network, hence we only regular-
ize the slow weights of the network. Furthermore, when training the first task Tn=1, the synaptic
importance parameter, Ωi,j in Eq. 4, was set to 0 for all of the task-specific consolidation methods
that we tested on except for SI. This is because SI is the only method we evaluated that estimates
Ωi,j while training, whereas Online EWC and MAS compute Ωi,j after learning a task. The plastic
component of the softmax layer in our model can alleviate catastrophic forgetting of consolidated
classes by allowing gradient descent to optimize how plastic the connections should be (i.e. less
plastic to preserve old information or more plastic to quickly learn new information).

4 EXPERIMENTS

In our experiments, we compare our approach to vanilla neural networks with Online EWC, SI and
MAS. Since our approach increases the capacity of the DNN due to the addition of plastic weights,
we add an extra set of slow weights to the softmax output layer of the standard neural network
to match the capacity. We do this to show that it is not the increased model capacity from the
plastic weights that is helping mitigate the forgetting when performing sequential task learning, thus
ensuring a fair evaluation. We tested our model on the Permuted MNIST, Split MNIST and Vision
Datasets Mixture benchmarks, and also introduce the Imbalanced Permuted MNIST problem.

For all of the benchmarks, we evaluated the model based on the average classification accuracy on
all previously learned tasks as a function of n, the number of tasks trained so far. To determine
memory retention and flexibility of the model, we are particularly interested in the test performance
on the first task and the most recent one. We also measure forgetting using the backward transfer
metric, BWT = 1

T−1
∑T−1

i=1 RT,i − Ri,i (Lopez-Paz & Ranzato, 2017), which indicates how much
learning new tasks has influenced the performance on previous tasks. RT,i is the test classification
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Figure 2: (a) The average test accuracy on a sequence of 10 Permuted MNIST tasks Tn=1:10 and (b)
a sequence of 5 binary classification tasks from the original MNIST dataset Tn=1:5. The average test
accuracy over all learned tasks is provided in the legend. The addition of DHP in all cases improves
the model’s ability to reduce forgetting. The error bars correspond to the SEM across 10 trials.

accuracy on task i after sequentially finishing learning the T th task. While BWT< 0 directly reports
catastrophic forgetting, BWT > 0 indicates that learning new tasks has helped with the preceding
tasks. To establish a baseline for comparison of well-known task-specific consolidation methods,
we trained neural networks with Online EWC, SI and MAS, respectively, on all tasks in a sequential
manner. The hyperparameters of the consolidation methods (i.e. EWC, SI and MAS) remain the
same with and without DHP Softmax, and the plastic components are not regularized. Descriptions
of the hyperparameters and other details for all benchmarks can be found in Appendix A.

4.1 PERMUTED MNIST

In this benchmark, all of the MNIST pixels are permuted differently for each task with a fixed ran-
dom permutation. Although the output domain is constant, the input distribution changes between
tasks and is mostly independent of each other, thus, there exists a concept drift. In the Permuted
MNIST and Imbalanced Permuted MNIST benchmarks we use a multi-layered perceptron (MLP)
network with two hidden layers consisting of 400 ReLU nonlinearities, and a cross-entropy loss.
The η of the plastic component was set to be a value of 0.001 and we emphasize that we spent little
to no effort on tuning the initial value of this parameter (see Appendix A.5 for a sensitivity analysis).

We first compare the performance between our network with DHP Softmax and a fine-tuned vanilla
MLP network we refer to as Finetune in Figure 2a and no task-specific consolidation methods
involved. The network with DHP Softmax alone showed improvement in its ability to alleviate
catastrophic forgetting across all tasks compared to the baseline network. Then we compared the
performance with and without DHP Softmax using the same task-specific consolidation methods.
Figure 2a shows the average test accuracy as new tasks are learned for the best hyperparameter com-
bination for each task-specific consolidation method. We find our DHP Softmax with consolidation
maintains a higher test accuracy throughout sequential training of tasks than without DHP Softmax.

Ablation Study: We further examine the structural parameters of the network and Hebb traces to
provide further interpretability into the behaviour of our proposed model. The left plot in Figure 3
shows the behaviour of η during training as 10 tasks in the Permuted MNIST benchmark are learned
continually. Initially, in task T1, η increases very quickly from 0.001 to 0.024 suggesting that the
synaptic connections become more plastic to quickly acquire new information. Eventually, η de-
cays after the 3rd task to reduce the degree of plasticity to prevent interference between the learned
representations. We also observe that within each task from T4 to T10, η initially increases then
decays. The Frobenius Norm of the Hebb trace (middle plot in Figure 3) suggests that Hebb grows
without runaway positive feedback every time a new task is learned, maintaining a memory of which
synapses contributed to recent activity. The Frobenius Norm of α (right plot in Figure 3) indicates
that the plasticity coefficients grow within each task, indicating that the network is leveraging the
structure in the plastic component. It is important to note that gradient descent and backpropagation
are used as meta-learning to tune the structural parameters in the plastic component.
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Figure 3: (left) Hebbian learning rate and decay value η, (middle) Frobenius Norm of the Hebbian
memory traces ‖Hebb‖F, (right) Frobenius Norm of the plasticity coefficients ‖α‖F while training
each task T1:10.

4.2 IMBALANCED PERMUTED MNIST

We introduce the Imbalanced Permuted MNIST problem which is identical to the Permuted MNIST
benchmark but, now each task is an imbalanced distribution where training samples in each class
were artificially removed based on some random probability (see Appendix A.2). This benchmark
was motivated by the fact that class imbalance and concept drift can hinder predictive performance,
and the problem becomes particularly challenging when they occur simultaneously. Appendix A.6,
Figure 5 shows the average test accuracy for the best hyperparameters of each method. We see
that DHP Softmax achieves 80.85% after learning 10 tasks with imbalanced class distributions in a
sequential manner, thus providing significant 4.41% improvement over the standard neural network
baseline of 76.44%. The significance of the compressed episodic memory mechanism in the Hebbian
traces is more apparent in this benchmark because the plastic component allows rare classes that are
encountered infrequently to be remembered for a longer period of time. We find that DHP Softmax
with MAS achieves a 0.04 decrease in BWT, resulting in an average test accuracy of 88.80% and a
1.48% improvement over MAS alone; also outperforming all other methods and across all tasks.

4.3 SPLIT MNIST

We split the original MNIST dataset (LeCun et al., 2001) into a sequence of 5 binary classification
tasks: T1 = {0/1}, T2 = {2/3}, T3 = {4/5}, T4 = {6/7} and T5 = {8/9}. The output spaces are
disjoint between tasks, unlike the previous two benchmarks. Similar to the network used by Zenke
et al. (2017b), we use an MLP network with two hidden layers of 256 ReLU nonlinearities each, and
a cross-entropy loss. The initial η value was set to 0.001 as seen in previous benchmark experiments.
We found that different values of η yielded very similar final test performance after learning T5
tasks (see Appendix A.5). We observed that DHP Softmax alone achieves 98.23% thus, provides a
7.80% improvement on test performance compared to a finetuned MLP network (Figure 2b). Also,
combining DHP Softmax with task-specific consolidation consistently decreases BWT, leading to a
higher average test accuracy across all tasks, especially the most recent one, T5.

4.4 VISION DATASETS MIXTURE

Following previous works (Ritter et al., 2018; Zeno et al., 2018), we perform continual learning on a
sequence of 5 vision datasets: MNIST, notMNIST1, FashionMNIST (Xiao et al., 2017), SVHN (Net-
zer et al., 2011) and CIFAR-10 (Krizhevsky, 2009) (see Appendix A.4 for dataset details). The
MNIST, notMNIST and FashionMNIST datasets are zero-padded to be of size 32×32 and are repli-
cated 3 times to create grayscale images with 3 channels, thus matching the resolution of the SVHN
and CIFAR-10 images. Here, we use a CNN architecture that is similar to the one used in (Ritter
et al., 2018; Zeno et al., 2018) (more details in Appendix A.4). The initial η parameter value was set
to 0.0001. We train the network with mini-batches of size 32 and optimized using plain SGD with a
fixed learning rate of 0.01 for 50 epochs per task.

1Originally published at http://yaroslavvb.blogspot.com/2011/09/
notmnist-dataset.html and downloaded from https://github.com/davidflanagan/
notMNIST-to-MNIST.
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We found that DHP Softmax plus MAS decreases BWT by 0.04 resulting in a 2.14% improvement
in average test accuracy over MAS on its own (see Table 1 and Appendix A.6, Figure 6). Also,
SI with DHP Softmax outperforms other competitive methods with an average test performance of
81.75% and BWT of -0.04 after learning all five tasks. In Table 1, we present a summary of the final
average test performance after learning all tasks in the respective continual learning problems. Here,
we summarize the average test accuracy and BWT across ten trials for each of the benchmarks.

Table 1: The average test accuracy (%, higher is better) and backward transfer (BWT, lower is better)
after learning all tasks on each benchmark, respectively. The results are averaged over 10 trials.

Method Permuted MNIST Imbalanced
Permuted MNIST

SplitMNIST 5-Vision

Finetune 76.73 / -0.19 76.44 / -0.20 90.43 / -0.13 60.02 / -0.33
DHP Softmax 78.49 / -0.16 80.85 / -0.14 98.23 / -0.02 62.94 / -0.26

SI 84.72 / -0.13 85.92 / -0.06 97.77 / -0.04 81.26 / -0.06
DHP Softmax + SI 85.20 / -0.09 85.39 / -0.06 99.15 / 0.00 81.75 / -0.04

Online EWC 86.24 / -0.11 87.18 / -0.09 97.65 / -0.03 78.61 / -0.07
DHP Softmax +

Online EWC
87.30 / -0.09 87.43 / -0.08 98.96 / -0.01 79.10 / -0.04

MAS 88.52 / -0.08 87.32 / -0.09 98.24 / -0.02 78.51 / -0.05
DHP Softmax + MAS 89.53 / -0.06 88.80 / -0.05 98.43 / -0.01 80.66 / -0.01

5 DISCUSSION AND CONCLUSION

We have shown that the problem of catastrophic forgetting in continual learning environments can be
alleviated by adding compressed episodic memory in the softmax layer through DHP and perform-
ing task-specific updates on synaptic parameters based on their individual importance for solving
previously learned tasks. The compressed episodic memory allows new information to be learned
in individual traces without overlapping representations, thus avoiding interference when added to
the structured knowledge in the slow changing weights and allowing the model to generalize across
experiences. The α parameter in the plastic component automatically learns to scale the magnitude
of the plastic connections in the Hebbian traces, effectively choosing when to be less plastic (pro-
tect old knowledge) or more plastic (acquire new information quickly). The neural network with
DHP Softmax showed noticeable improvement across all benchmarks when compared to a neural
network with a traditional softmax layer that had an extra set of slow changing weights. The DHP
Softmax does not introduce any additional hyperparameters since all of the structural parameters of
the plastic part α and η are learned, and setting the initial η value required very little tuning effort.

We demonstrated the flexibility of our model where, in addition to DHP Softmax, we can perform
Hebbian Synaptic Consolidation by regularizing the slow weights using EWC, SI or MAS to im-
prove a model’s ability to alleviate catastrophic forgetting after sequentially learning a large number
of tasks with limited model capacity. DHP Softmax combined with SI outperforms other consolida-
tion methods on the Split MNIST and 5-Vision Datasets Mixture. The approach where we combine
DHP Softmax and MAS consistently leads to overall superior results compared to other baseline
methods on the Permuted MNIST and Imbalanced Permuted MNIST benchmarks. This is interest-
ing because the local variant of MAS does compute the synaptic importance parameters of the slow
weights θi,j layer by layer based on Hebb’s rule, and therefore synaptic connections i, j that are
highly correlated would be considered more important for the given task than those connections that
have less correlation. Furthermore, our model consistently exhibits lower negative BWT across all
benchmarks, leading to higher average test accuracy over methods without DHP. This gives a strong
indication that Hebbian plasticity enables neural networks to learn continually and remember distant
memories, thus reducing catastrophic forgetting when learning from sequential datasets in dynamic
environments. Furthermore, continual synaptic plasticity can play a key role in learning from limited
labelled data while being able to adapt and scale at long timescales. We hope that our work will open
new investigations into gradient descent optimized Hebbian consolidation for learning and memory
in DNNs to enable continual learning.
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A DETAILS ON EXPERIMENTAL SETUP AND HYPERPARAMETER SETTINGS

In the continual learning setup, we train a neural network model on a sequence of tasks T1:nmax ,
where nmax is the maximum number of tasks the model is to learn in the respective benchmarks.
Unlike the conventional supervised learning setup, continual learning trains a model on data that is
fetched in sequential chunks enumerated by tasks. Therefore, in a continual learning sequence, the
model receives a sequence of tasks T1:nmax

that is to be learned, each with its associated training
data (Xn,Yn), where Xn is the input data and the corresponding label data denoted by Yn. Each
task Tn has its own task-specific loss Ln, that will be combined with a regularizer loss term (refer
to Eq. 4) to prevent catastrophic forgetting. After training is complete, the model will have learned
an approximated mapping f to the the true underlying function f̄ . The learned f maps a new input
X to the target outputs Y1:n for all T1:n tasks the network has learned so far. Also, it is to be noted
that the set of classes contained in each task can be different from each other, as we have done in the
SplitMNIST and Vision Datasets Mixture benchmarks. All experiments were run on either a Nvidia
Titan V or a Nvidia RTX 2080 Ti.

A.1 PERMUTED MNIST

We train the network on a sequence of tasks Tn=1:10 with mini-batches of size 64 and optimized
using plain SGD with a learning rate of 0.01. We train for at least 10 epochs and perform early-
stopping once the validation error does not improve for 5 epochs. If the validation error increases
for more than 5 epochs, then we terminated the training on the task Tn, reset the network weights
and Hebbian traces to the values that had the lowest test error, and proceeded to the next task.

Hyperparameters: For the Permuted MNIST experiments shown in Figure 2a, the regularization
hyperparameter λ for each of the task-specific consolidation methods is set to λ = 100 for Online
EWC (Schwarz et al., 2018), λ = 0.1 for SI (Zenke et al., 2017b) and λ = 0.1 for MAS (Aljundi
et al., 2018). We note that for the SI method, λ refers to the parameter c in the original work (Zenke
et al., 2017b) but we use λ to keep the notation consistent across other task-specific consolidation
methods. In SI, the damping parameter, ξ, was set to 0.1. To find the best hyperparameter combi-
nation for each of these synaptic consolidation methods, we performed a grid search using a task
sequence determined by a single seed. For Online EWC, we tested values of λ ∈ {10, 20, 50,. . . ,
400}, SI — λ ∈ {0.01, 0.05,. . . , 0.5, 1.0} and MAS — λ ∈ {0.01, 0.5, . . . , 1.5, 2.0}.

A.2 IMBALANCED PERMUTED MNIST

For each task in the Imbalanced Permuted MNIST problem, we artificially removed training sam-
ples from each class in the original MNIST dataset (LeCun et al., 2001) based on some random
probability. For each class and each task, we draw a different removal probability from a standard
uniform distribution U(0, 1), and then remove each sample from that class with that probability. The
distribution of classes in each dataset corresponding to tasks Tn=1:10 is given in Table 2.

Table 2: Distribution of classes in each imbalanced dataset for the respective tasks Tn=1:10.

Classes Tasks
1 2 3 4 5 6 7 8 9 10

0 4459 3780 1847 3820 5867 122 1013 4608 908 3933
1 1872 3637 1316 6592 1934 1774 5533 2569 831 886
2 2391 4125 2434 4966 5245 4593 4834 4432 3207 3555
3 4433 1907 1682 278 3027 2315 5761 3293 2545 3749
4 186 2728 2002 151 1435 5829 1284 3910 4593 927
5 4292 2472 2924 1369 4094 4858 2265 3289 1134 1413
6 2339 3403 4771 5569 1414 2851 2921 4074 336 3993
7 4717 3090 4800 2574 4086 1065 3520 4705 5400 3650
8 3295 5493 76 4184 2034 4672 682 196 2409 1709
9 2625 3880 4735 1647 2645 3921 901 4546 4649 2045

Total 30609 34515 26587 31120 31781 32000 28714 35622 26012 25860
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For the Imbalanced Permuted MNIST experiments shown in Figure 5, the regularization hyperpa-
rameter λ for each of the task-specific consolidation methods is λ = 400 for Online EWC (Schwarz
et al., 2018), λ = 1.0 for SI (Zenke et al., 2017b) and λ = 0.1 for MAS (Aljundi et al., 2018). In SI,
the damping parameter, ξ, was set to 0.1. Similar to the Permuted MNIST benchmark, to find the
best hyperparameter combination for each of these synaptic consolidation methods, we performed a
grid search using a task sequence determined by a single seed. For Online EWC, we tested values
of λ ∈ {50, 100,. . . ,1×103}, SI — λ ∈ {0.1, 0.5,. . . , 2.5, 3.0} and MAS — λ ∈ {0.01, 0.05, . . . ,
1.5, 2.0}. Across all experiments, we maintained the the same random probabilities detemined by a
single seed to artificially remove training samples from each class.

A.3 SPLIT MNIST

Hyperparameters: For the Split MNIST experiments shown in Figure 2b, the regularization
hyperparameter λ for each of the task-specific consolidation methods is λ = 400 for Online
EWC (Schwarz et al., 2018), λ = 1.0 for SI (Zenke et al., 2017b) and λ = 1.5 for MAS (Aljundi
et al., 2018). In SI, the damping parameter, ξ, was set to 0.001. To find the best hyperparameter
combination for each of these synaptic consolidation methods, we performed a grid search using the
5 task binary classification sequence (0/1, 2/3, 4/5, 6/7, 8/9). For Online EWC, we tested values of
λ ∈ {1, 25, 50, 100, . . . ,1×103, 2×103}, SI — λ ∈ {0.1, 0.5, 1.0, . . . , 5.0} and MAS — λ ∈ {0.01,
0.05, 1.0,. . . , 4.5, 5.0}. We train the network on a sequence of Tn=1:5 tasks with mini-batches of
size 64 and optimized using plain SGD with a fixed learning rate of 0.01 for 10 epochs.

A.4 VISION DATASETS MIXTURE

Dataset Details: The Vision Datasets Mixture benchmark consists of a sequence of 5 tasks where
each task is a different image classification dataset: MNIST, notMNIST, FashionMNIST, SVHN and
CIFAR-10. The notMNIST dataset consists of font glypyhs corresponding to letters ‘A’ to ‘J’. The
original dataset has 500,000 and 19,000 grayscale images of size 28×28 for training and testing,
respectively. However, similar to MNIST, we only use 60,000 images for training and 10,000 for
testing. FashionMNIST consists of 10 categories of various articles of clothing, and there are 60,000
and 10,000 grayscale images sized 28×28 for training and testing, respectively. SVHN consists of
digits ‘0’ to ‘9’ from Google Street View images and there are 73,257 and 26,032 colour images of
size 32×32 for training and testing, respectively. CIFAR-10 consists of 50,000 and 10,000 colour
images of size 32×32 from 10 different categories for training and testing, respectively.

Architecture: The CNN architecture consists of 2 convolutional layers with 20 and 50 channels
respectively, and a kernel size of 5. Each convolution layer is followed by LeakyReLU nonlinearities
(negative threshold of 0.3) and 2×2 max-pooling operations with stride 2. The two convolutional
layers are followed by an FC layer of size 500 before the final softmax output layer (refer to Table 3).
Similar to (Ritter et al., 2018; Zeno et al., 2018), a multi-headed approach was used because the class
definitions are different between datasets.

In the other benchmark problems, we use a single η across all connections. In this benchmark, our
model has a trainable η value for each connection in the final output layer thus, η ∈ Rm×d and we
set the initial η value to be 0.0001. We found that using separate η parameters for each connection
improved the stability of optimization and convergence to optimal test performance. This allows
each plastic connection to modulate its own rate of plasticity when learning new experiences. It was
observed that using a single η value across all connections lead to instability of optimization on the
SVHN and CIFAR-10 tasks.

Hyperparameters: For the 5-Vision Datasets Mixture experiments shown in Figure 6 the regular-
ization hyperparameter λ for each of the task-specific consolidation methods is λ = 100 for Online
EWC (Schwarz et al., 2018), λ = 0.1 for SI (Zenke et al., 2017b) and λ = 1.0 for MAS (Aljundi
et al., 2018). In SI, the damping parameter, ξ, was set to 0.1. To find the best hyperparameter
combination for each of these synaptic consolidation methods, we performed a random search using
the same task sequence ordering (MNIST, notMNIST, FashionMNIST, SVHN and CIFAR-10). For
Online EWC, we tested values of λ ∈ {10, 50, 100,. . . , 500}, SI — λ ∈ {0.01, 0.05, 0.1,. . . , 1.0}
and MAS — λ ∈ {0.01, 0.05, 1.0,. . . , 4.5, 5.0}.
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Table 3: Network architecture used for Vision Datasets Mixture benchmark in Section 4.4. For
convolutional layers, the output size denotes channel size of output. The negative threshold for all
of the LeakyReLU nonlinearities were set to 0.2.

output size kernel padding stride

convolution 20 (5, 5) (1,1) (1,1)
LeakyReLU - - - -

MaxPool - - - (2, 2)
convolution 50 (5, 5) (1, 1) (1, 1)
LeakyReLU - - - -

MaxPool - - - (2, 2)
convolution 50 (5, 5) (1, 1) (1, 1)
LeakyReLU - - - -

MaxPool - - - (2, 2)
fully-connected 500 - - -

LeakyReLU - - - -
fully-connected 10 - - -

A.5 SENSITIVITY ANALYSIS

We provide a summary of the sensitivity analysis performed on the Hebb decay term η and show
its effect on the final average test performance after learning a sequence of tasks in the continual
learning setup. The plots on the left and center in Figure 4 show the effect of the initial η value
on the final test performance after learning tasks Tn=1:10 in a sequential manner for the Permuted
MNIST and Imbalanced Permuted MNIST benchmarks, respectively. We swept through a range
of values η ∈ {0.1, 0.01, 0.001, 0.0005, 0.0001} and found that setting η to low values led to
the best performance in terms of being able to alleviate catastrophic forgetting. Similarly, we also
performed a sensitivity analysis on the η parameter for the Split MNIST problem (see the rightmost
plot in Figure 4). Table 4 presents the average test accuracy across 5 trials for the MNIST-variant
benchmarks, which corresponds to the sensitivity analysis plots in Figure 4.
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Figure 4: A sensitivity analysis on the Hebb decay term η in Eq. 3. We show the average test accu-
racy for different initial values of η after learning all tasks on the (left) Permuted MNIST, (center)
Imbalanced Permuted MNIST and (right) Split MNIST problems. The shaded regions correspond
to the standard error of mean (SEM) across 5 trials.
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Table 4: The average test accuracy (%, higher is better) for different initial η values after learning all
tasks on the Permuted MNIST, Imbalanced Permuted MNIST and Split MNIST continual learning
benchmarks, respectively. The results are averaged over 5 trials.

Hebbian Plasticity
Decay Term (η)

Permuted MNIST Imbalanced
Permuted MNIST

SplitMNIST

η = 0.1 77.43 80.00 98.43
η = 0.01 78.60 80.13 98.47
η = 0.001 78.49 80.85 98.32
η = 0.0001 77.83 80.47 98.43
η = 0.0005 78.05 80.40 98.37

A.6 ADDITIONAL FIGURES FOR SPLITMNIST AND VISION DATASETS MIXTURE
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Figure 5: The average test accuracy on a sequence of on a sequence of 10 imbalanced Permuted
MNIST tasks Tn=1:10. The average test accuracy over all learned tasks is provided in the legend.
The shaded regions correspond to the SEM across 10 trials.
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Figure 6: The average test accuracy on a sequence of 5 diffferent vision datasets Tn=1:5. The average
test accuracy over all learned tasks is provided in the legend. The error bars correspond to the SEM
across 10 trials.
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B EXAMPLE PYTORCH IMPLEMENTATION OF DHP SOFTMAX LAYER

1 c l a s s DHP Softmax Layer ( nn . Module ) :
2 d e f i n i t ( s e l f , i n f e a t u r e s , o u t f e a t u r e s , e t a r a t e = 0 . 0 0 1 ) :
3 s u p e r ( DHP Softmax Layer , s e l f ) . i n i t ( )
4 ””” A p p l i e s a l i n e a r t r a n s f o r m a t i o n t o t h e h id de n a c t i v a t i o n s o f t h e

l a s t h id den l a y e r wi th an a d d i t i o n a l p l a s t i c component implemented
u s i n g D i f f e r e n t i a b l e Hebbian P l a s t i c i t y (DHP) :

5 : math : ‘ z = (w + \ a l p h a ∗ Hebb ) h ‘ .
6

7 Args :
8 i n f e a t u r e s : s i z e o f each i n p u t i n l a s t h i dd en l a y e r .
9 o u t f e a t u r e s : number o f c l a s s e s .

10 e t a r a t e : i n i t i a l l e a r n i n g r a t e v a l u e o f p l a s t i c c o n n e c t i o n s .
11

12 R e t u r n s :
13 z : t h e so f tmax pre−a c t i v a t i o n s ( u n n o r m a l i z e d l o g p r o b a b i l i t i e s ) .
14 hebb : t h e u p d a t e d Hebbian t r a c e s f o r t h e n e x t i t e r a t i o n .
15 ”””
16 s e l f . i n f e a t u r e s = i n f e a t u r e s
17 s e l f . o u t f e a t u r e s = o u t f e a t u r e s
18 s e l f . e t a r a t e = e t a r a t e
19

20 # I n i t i a l i z e f i x e d ( s low ) w e i g h t s wi th He i n i t i a l i z a t i o n .
21 s e l f . w e i gh t = P a r a m e t e r ( t o r c h . Tensor ( s e l f . i n f e a t u r e s ,
22 s e l f . o u t f e a t u r e s ) )
23 i n i t . k a i m i n g u n i f o r m ( s e l f . weight , a=math . s q r t ( 5 ) )
24

25 # I n i t i a l i z e a l p h a s c a l i n g c o e f f i c i e n t s f o r p l a s t i c c o n n e c t i o n s .
26 s e l f . a l p h a = P a r a m e t e r ( ( . 0 1 ∗ t o r c h . r and ( s e l f . i n f e a t u r e s ,
27 s e l f . o u t f e a t u r e s ) ) ,
28 r e q u i r e s g r a d =True )
29

30 # I n i t i a l i z e t h e l e a r n i n g r a t e o f p l a s t i c c o n n e c t i o n s .
31 s e l f . e t a = P a r a m e t e r ( ( s e l f . e t a r a t e ∗ t o r c h . ones ( 1 ) ) ,
32 r e q u i r e s g r a d =True )
33

34 d e f f o r w a r d ( s e l f , h , y , hebb ) :
35 i f s e l f . t r a i n i n g :
36 f o r , c i n enumera t e ( t o r c h . un i qu e ( y ) ) :
37 # Get i n d i c e s o f c o r r e s p o n d i n g c l a s s , c , i n y .
38 y c i d x = ( y == c ) . nonze ro ( )
39 # Count t o t a l o c c u r e n c e s o f c o r r e s p o n d i n g c l a s s , c i n y .
40 s = t o r c h . sum ( y == c )
41

42 i f s > 0 :
43 # Per form Hebbian u p d a t e ( l i n e s 6−7 i n Algo r i t hm 1)
44 h b a r = t o r c h . d i v ( t o r c h . sum ( h [ y c i d x ] , 0 ) ,
45 s . i t em ( ) )
46 hebb [ : , c ] = t o r c h . add ( t o r c h . mul ( t o r c h . sub ( 1 , s e l f . e t a ) ,
47 hebb [ : , c ] . c l o n e ( ) ) ,
48 t o r c h . mul ( h ba r , s e l f . e t a ) )
49

50 # Compute so f tmax pre−a c t i v a t i o n s wi th p l a s t i c ( f a s t ) w e i g h t s .
51 z = t o r c h .mm( h , s e l f . we i gh t + t o r c h . mul ( s e l f . a lpha , hebb ) )
52

53 r e t u r n z , hebb
54

55 d e f i n i t i a l z e r o h e b b ( s e l f ) :
56 r e t u r n V a r i a b l e ( t o r c h . z e r o s ( s e l f . i n f e a t u r e s , s e l f . o u t f e a t u r e s ) ,

16
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57 r e q u i r e s g r a d = F a l s e )

Listing 1: PyTorch implementation of the DHP Softmax model which adds a compressed episodic
memory to the final output layer of a neural network through plastic connections as described
in Algorithm 1. We want to emphasize the simplicity of implementation using popular ML
frameworks.
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