
Under review as a conference paper at ICLR 2020

ATTRACTION-REPULSION ACTOR-CRITIC FOR CON-
TINUOUS CONTROL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning, continuous control tasks are often useful for understand-
ing how agents perform in environments with deceptive rewards where the agent
can easily become trapped into suboptimal solutions. One way to avoid these local
optima is to use a population of agents to ensure coverage of the policy space (a
form of exploration), yet learning a population with the “best” coverage is still an
open problem. In this work, we present a novel approach to population-based RL
in continuous control that leverages properties of normalizing flows to perform
attractive and repulsive operations between current members of the population and
previously observed policies. Empirical results on the MuJoCo suite demonstrate
a high performance gain for our algorithm compared to prior work, including
Soft-Actor Critic (SAC).

1 INTRODUCTION

Many important reinforcement learning (RL) tasks, such as those in robotics and self-driving cars, are
challenging due to large action and state spaces (Lee et al., 2018). In particular, environments with
large non-convex continuous action spaces are prone to deceptive rewards, i.e. fall into local optima
in learning (Conti et al., 2018). Applying traditional policy optimization algorithms to these domains
often leads to locally optimal, yet globally sub-optimal policies. The agent should then explore the
reward landscape more thoroughly in order to avoid falling into these local optima.

Not all RL domains that require exploration are suitable for understanding how to train agents that
are robust to deceptive rewards. For example, Montezuma’s Revenge, a game in the Atari Learning
Environment (Bellemare et al., 2013), has sparse rewards; algorithms that perform the best on
this task encourage exploration by providing a denser intrinsic reward to the agent to encourage
exploration (Tang et al., 2017). On the other hand, many continuous control problems, such as those
found in MuJoCo (Todorov et al., 2012), provide the agent with a dense reward signal, yet their
high-dimensional action spaces induce a multimodal, often deceptive, reward landscape. For example,
in the biped environments, coordinating both arms and legs is crucial for performing well on even
simple tasks such as forward motion. However, simply learning to maximize the reward can be
detrimental across training: agents will tend to run and fall further away from the start point rather
than discovering stable and efficient walking motion. In this setting, exploration serves to provide a
more reliable learning signal for the agent by covering more different types of actions during learning.

One way to maximize action space coverage is the maximum entropy RL framework (Ziebart, 2010),
which prevents variance collapse by adding a policy entropy auxiliary objective. One such prominent
algorithm, Soft Actor-Critic (SAC,Haarnoja et al. (2018)), has been shown to excel in large continuous
action spaces. To further improve on exploration properties of SAC, one can maintain a population of
agents that cover non-identical sections of the policy space. To prevent premature convergence, a
diversity-preserving mechanism is typically put in place; balancing the objective and the diversity
term becomes key to converging to a global optimum (Hong et al., 2018). This paper studies a
particular family of population-based exploration methods, which conduct coordinated local search
in the policy space. Prior work on population-based strategies improves performance on continuous
control domains through stochastic perturbation on a single actor’s parameter (Pourchot & Sigaud,
2019) or a set of actor’s parameters (Conti et al., 2018; Khadka & Tumer, 2018; Liu et al., 2017).
We hypothesize that exploring directly in the policy space will be more effective than perturbing

1

Under review as a conference paper at ICLR 2020

the parameters of the policy, as the latter does not guarantee diversity (i.e., different neural network
parameterizations can approximately represent the same function).

Given a population of RL agents, we enforce local exploration using an Attraction-Repulsion (AR)
mechanism. The later consists in adding an auxiliary loss to encourage pairwise attraction or repulsion
between members of a population, as measured by a divergence term. We make use of the Kullback-
Leibler (KL) divergence because of its desirable statistical properties and its easiness of computation.
However, naively maximizing the KL term between two Gaussian policies can be detrimental (e.g.
drives both means apart). Because of this, we parametrize the policy with a general family of
distributions called Normalizing Flows (NFs, Rezende & Mohamed, 2015); this modification allows
to improve upon AR+Gaussian (see Appendix Figure 6). NFs are shown to improve the expressivity
of the policies using invertible mappings while maintaining entropy guarantees (Mazoure et al., 2019;
Tang & Agrawal, 2018). Nonlinear density estimators have also been previously used for deep RL
problems in contexts of distributional RL (Doan et al., 2018) and reward shaping (Tang et al., 2017).
The AR objective blends particularly well with SAC, since computing the KL requires stochastic
policies with tractable densities for each agent.

2 PRELIMINARIES

We first formalize the RL setting in a Markov decision process (MDP). A discrete-time, finite-horizon,
MDP (Bellman, 1957; Puterman, 2014) is described by a state space S , an action spaceA, a transition
function P : S ×A× S 7→ R+, and a reward function r : S ×A 7→ R.1 On each round t, an agent
interacting with this MDP observes the current state st ∈ S , selects an action at ∈ A, and observes a
reward r(st, at) ∈ R upon transitioning to a new state st+1 ∼ P(st, at). Let γ ∈ [0, 1] be a discount
factor. The goal of an agent evolving in a discounted MDP is to learn a policy π : S × A 7→ [0, 1]
such as taking action at ∼ π(·|st) would maximize the expected sum of discounted returns,

V π(s) = Eπ
[∞∑
t=0

γtr(st, at)|s0 = s

]
.

In the following, we use ρπ to denote the trajectory distribution induced by following policy π. If S
or A are vector spaces, action and space vectors are respectively denoted by a and s.

2.1 DISCOVERING NEW SOLUTIONS THROUGH POPULATION-BASED ATTRACTION-REPULSION

Consider evolving a population of M agents, also called individuals, {πθm}Mm=1, each agent corre-
sponding to a policy with its own parameters. In order to discover new solutions, we aim to generate
agents that can mimic some target policy while following a path different from those of other policies.

Let G denote an archive of policies encountered in previous generations of the population. A natural
way of enforcing π to be different from or similar to the policies contained in G is by augmenting the
loss of the agent with an Attraction-Repulsion (AR) term:

LAR = − E
π′∼G

[
βπ′DKL[π||π′]

]
, (1)

where π′ is an archived policy and βπ′ is a coefficient weighting the relative importance of the
Kullback-Leibler (KL) divergence between π and π′, which we will choose to be a function of the
average reward (see Sec. 3.2 below). Intuitively, Eq. 1 adds to the agent objective a weighted average
distance between the current and the archived policies. For βπ′ ≥ 0, the agent tends to move away
from the archived policy’s behavior (i.e. repulsion, see Figure 1) a). On the other hand, βπ′ < 0
encourages the agent π to imitate π′ (i.e. attraction).

Requirements for AR In order for agents within a population to be trained using the proposed
AR-based loss (Eq. 1), we have the following requirements:

1. Their policies should be stochastic, so that the KL-divergence between two policies is
well-defined.

1A and S can be either discrete or continuous.

2

Under review as a conference paper at ICLR 2020

2. Their policies should have tractable distributions, so that the KL-divergence can be computed
easily, either with closed-form solution or Monte Carlo estimation.

Several RL algorithms enjoy such properties (Haarnoja et al., 2018; Schulman et al., 2015; 2017). In
particular, the soft actor-critic (SAC, Haarnoja et al., 2018) is a straightforward choice, as it currently
outperforms other candidates and is off-policy, thus maintains a single critic shared among all agents
(instead of one critic per agent), which reduces computation costs.

2.2 SOFT ACTOR-CRITIC

SAC (Haarnoja et al., 2018) is an off-policy learning algorithm which finds the information projection
of the Boltzmann Q-function onto the set of diagonal Gaussian policies Π:

π = arg min
π′∈Π

DKL

(
π′(.|st)

∥∥∥∥exp (1
αQ

πold(st, .))

Zπold(st)

)
,

where α ∈ (0, 1) controls the temperature, i.e. the peakedness of the distribution. The policy π, critic
Q, and value function V are optimized according to the following loss functions:

Lπ,SAC = Est∼B[Eat∼π[α log π(at|st)−Q(st,at)]] (2)

LQ = E
(s,a,r,s′)∼B

[
{Q(s, a)− (r + γV πν (s′))}2

]
(3)

LV = Est∼D

[
1

2

{
V πν (st)− Eat∼π[Q(st,at)− α log π(at|st)]

}2
]
, (4)

where B is the replay buffer. The policy used in SAC as introduced in Haarnoja et al. (2018) is
Gaussian, which is both stochastic and tractable, thus compatible with our AR loss function in Eq. 1.
Together with the AR loss in Eq. 1, the final policy loss becomes:

Lπ = Lπ,SAC + LAR (5)

However, Gaussian policies are arguably of limited expressibility; we can improve on the family
of policy distributions without sacrificing qualities necessary for AR or SAC by using Normalizing
Flows (NFs, Rezende & Mohamed, 2015).

2.3 NORMALIZING FLOWS

NFs (Rezende & Mohamed, 2015) were introduced as a means of transforming simple distributions
into more complex distributions using learnable and invertible functions. Given a random variable z0

with density q0, they define a set of differentiable and invertible functions, {fi}Ni=1, which generate a
sequence of d-dimensional random variables, {zi}Ni=1.

Because SAC uses explicit, yet simple parametric policies, NFs can be used to transform the SAC
policy into a richer one (e.g., multimodal) without risk loss of information. For example, Mazoure
et al. (2019) enhanced SAC using a family of radial contractions around a point z0 ∈ Rd,

f(z) = z +
β

α+ ||z− z0||2
(z− z0) (6)

for α ∈ R+ and β ∈ R. This results in a rich set of policies comprised of an initial noise sample
a0, a state-noise embedding hθ(a0, st), and a flow {fφi

}Ni=1 of arbitrary length N , parameterized
by φ = {φi}Ni=1. Sampling from the policy πφ,θ(at|st) can be described by the following set of
equations:

a0 ∼ N (0, I);

z = hθ(a0, st);

at = fφN
◦ fφN−1

◦ ... ◦ fφ1
(z),

(7)

where hθ = a0σI + µ(st) depends on the state and the noise variance σ > 0. Different SAC policies
can thus be crafted by parameterizing their NFs layers.

3

Under review as a conference paper at ICLR 2020

Figure 1: a) Augmenting the loss function with AR constraints allows an agent to reach a target
policy by following different paths. Attractive and Repulsive policies represent any other agent’s

policy. b) General flow of the proposed ARAC strategy.

3 ARAC: ATTRACTION-REPULSION ACTOR-CRITIC

We now detail the general procedure for training a population of agents using the proposed diversity-
seeking AR mechanism. More specifically, we consider here SAC agents enhanced with NFs (Ma-
zoure et al., 2019). Figure 1 displays the general flow of the procedure. Algorithm 1 (Appendix)
provides the pseudo-code of the proposed ARAC strategy, where sub-procedures for rollout and
archive update can be found in the Appendix.

Overview ARAC works by evolving a population of M SAC agents {πmφ,θ}Mm=1 with radial NFs
policies (Eq. 7) and shared critic Qω, and by maintaining an archive of policies encountered in
previous generations of the population. After performing T steps per agent on the environment (Alg. 1
L8-12), individuals are evaluated by performing R rollouts2 on the environment (Alg. 1 L26-28).
This allows to identify the top-K best agents (Alg. 1 L29), also called elites, which will be used to
update the critic as they provide the most meaningful feedback (Alg. 1 L13-17). The archive is finally
updated in a diversity-seeking fashion using the current population (Alg. 1 L30).

The core component of the proposed approach lies within the update of the agents (Alg. 1 L18-25).
During this phase, elite individuals are updated using AR operations w.r.t. policies sampled from the
archive (Eq. 5), whereas non-elites are updated regularly (Eq. 2).

3.1 ENHANCING DIVERSITY IN THE ARCHIVE

Throughout the training process, we maintain an archive G of maximum capacity G, which contains
some previously encountered policies. The process goes as follow: until reaching full capacity, the
archive saves a copy of the parameters of every individual in the population after the evaluation step.
However, by naively adding all individuals as if the archive were just a heap, the archive could end
up filled with policies leading to similar rewards, which would result in a loss of diversity (Mauldin,
1984). We mitigate this issue by keeping track of two fitness clusters (low and high) using the partition
formed by running a k-means algorithm on the fitness value. Hence, when |G| = G is reached and a
new individual is added to the archive, it randomly replaces an archived policy from its respective
cluster. This approach, also known as niching, has proved itself effective at maintaining high diversity
levels (Gupta & Ghafir, 2012; Mahfoud, 1995).

3.2 DISCOVERING NEW POLICIES THROUGH ATTRACTION-REPULSION

The crux of this work lies in the explicit search for diversity in the policy space achieved using the
AR mechanism. Since the KL between two base policies (i.e. input of the first flow layer) can be
trivially maximized by driving their means apart, we apply attraction-repulsion only on the flow
layers, while holding the mean of the base policy constant. This ensures that the KL term doesn’t
depend on the difference in means and hence controls the magnitude of the AR mechanism. Every
time the AR operator is applied (Alg. 1 L20-21), n policies are sampled from the archive and are
used for estimating the AR loss (Eq. 1). As in Hong et al. (2018), we consider two possible strategies

2These steps can be performed in parallel.

4

Under review as a conference paper at ICLR 2020

to dictate the value of βπ′ coefficients for policies π′ ∼ G:

βπ′ = −
[
2

(
f(π′)− fmin
fmax − fmin

− 1

)]
(proactive) (8)

βπ′ = 1− f(π′)− fmin
fmax − fmin

(reactive) (9)

where f(π)3 represents the fitness function of policy π (average reward in our case), and fmin and
fmax are estimated based on the n sampled archived policies. The proactive strategy aims to mimic
high reward archived policies, while the reactive strategy is more cautious, only repulsing away the
current policy from low fitness archived policies. Using this approach, the current agent policy will
be attracted to some sampled policies (βπ′ < 0) and will be repulsed from others (βπ′ ≥ 0) in a more
or less aggressive way, depending on the strategy.

Unlike Hong et al. (2018) who applied proactive and reactive strategies on policies up to 5 timesteps
back, we maintain an archive consisting of two clusters seen so far: policies with low and high fitness,
respectively. Having this cluster allows to attract/repulse from a set of diverse agents, replacing
high-reward policies by policies with similar performance. Indeed, without this process, elements of
the archive would collapse on the most frequent policy, from which all agents would attract/repulse.
To avoid performing AR against a single "average policy" , we separate low-reward and high-reward
agents via clustering.

4 RELATED WORK

The challenges of exploration are well studied in the RL literature. Previously proposed approaches
for overcoming hard exploration domains tend to either increase the capacity of the state-action value
function (Gal & Ghahramani, 2016; Henderson et al., 2017) or the policy expressivity (Mazoure
et al., 2019; Tang & Agrawal, 2018; Touati et al., 2018). This work rather tackles exploration from a
diverse multi-agent perspective. Unlike prior population-based approaches for exploration (Conti
et al., 2018; Khadka & Tumer, 2018; Pourchot & Sigaud, 2019), which seek diversity through the
parameters space, we directly promote diversity in the policy space.

The current work was inspired by Hong et al. (2018), who relied on the KL divergence to at-
tract/repulse from a set of previous policies to discover new solutions. However, in their work, the
archive is time-based (they restrict themselves to the 5 most recent policies), while our archive is
built following a diversity-seeking strategy (i.e., niching and policies come from multiple agents).
Notably, ARAC is different of previously discussed works in that it explores the action space in
multiple regions simultaneously, a property enforced through the AR mechanism.

The proposed approach bears some resemblance with Liu et al. (2017), who took advantage of a
multi-agent framework in order to perform repulsion operations among agents using of similarity
kernels between parameters of the agents. The AR mechanism gives rise to exploration through
structured policy rather than randomized policy. This strategy has also been employed in multi-task
learning (Gupta et al., 2018), where experience on previous tasks was used to explore on new tasks.

5 EXPERIMENTS

5.1 DIDACTIC EXAMPLE

Consider a 2-dimensional multi-armed bandit problem where the actions lie in the real square [−6, 6]2.
We illustrate the example of using a proactive strategy where a SAC agent with radial flows policy
imitates a desirable (expert) policy while simultaneously repelling from a less desirable policy. The
task consists in matching the expert’s policy (blue density) while avoiding taking actions from a
repulsive policy π′ (red). We illustrate the properties of radial flows in Figure 2 by increasing the
number of flows (where 0 flow corresponds to a Gaussian distribution).

We observe that increasing the number of flows (bottom to top) leads to more complex policy’s shapes
and multimodality unlike the Gaussian policy which has its variance shrinked (the KL divergence

3We overload our notation f for both the normalizing flow and the fitness depending on the context

5

Under review as a conference paper at ICLR 2020

Figure 2: Agent trained to imitate a target while avoiding a repulsive policy using a proactive strategy.
Increasing the number of flows leads to more complex policy’s shape.

Figure 3: Mapping in two-dimensional space (t-SNE) of agents’ actions for two arbitrary states. Each
color represents a different agent.

is proportional to the ratio of the two variances, hence maximizing it can lead to a reduction in the
variance which can be detrimental for exploration purpose). Details are provided in Appendix.

5.2 MUJOCO LOCOMOTION BENCHMARKS

We now compare ARAC against the CEM-TD3 (Pourchot & Sigaud, 2019), ERL (Khadka &
Tumer, 2018) and CERL (Khadka et al., 2019) baselines on seven continuous control tasks
from the MuJoco suite (Duan et al., 2016): Ant-v2, HalfCheetah-v2, Humanoid-v2,
HumanoidStandup-v2, Hopper-v2, Walker2d-v2 and Humanoid (rllab). We also
designed a sparse reward environment SparseHumanoid-v2. All algorithms are run over 1M
time steps on each environment, except Humanoid (rllab) which gets 2M time steps and
SparseHumanoid-v2 on 0.6M time steps.

ARAC performs R = 10 rollouts for evaluation steps every 10, 000 interaction steps with the
environment. We consider a small population of N = 5 individuals with K = 2 as elites. Every SAC
agent has one feedforward hidden layer of 256 units acting as state embedding, followed by a radial
flow of length ∈ {3, 4}. A temperature of α = 0.05 or 0.2 is used across all the environments (See
appendix for more details). AR operations are carried out by sampling uniformly n = 5 archived
policies from G. Parameters details are provided in the Appendix (Table 4). All networks are trained
with Adam optimizer (Kingma & Ba, 2015) using a learning rate of 3E−4. Baselines CEM-TD34,
ERL5, CERL6 use the code contained in their respective repositories.

4https://github.com/apourchot/CEM-RL
5https://github.com/ShawK91/erl_paper_nips18
6https://github.com/IntelAI/cerl

6

https://github.com/apourchot/CEM-RL
https://github.com/ShawK91/erl_paper_nips18
https://github.com/IntelAI/cerl

Under review as a conference paper at ICLR 2020

ARAC CEM-TD3 CERL ERL SAC - NF SAC TD3
Ant 6044 4239 1639 1442 4912 4370 4372
HC 10 264 10 659 5703 6746 8429 11 900 9543

Hopper 3587 3655 2970 1149 3538 2794 3564
Hu 5965 212 4756 551 5506 5504 71

Standup 175 000 29 000 117 000 12 900 116 000 149 000 54 000
Hu (rllab) 14 230 1334 3340 57 5531 1963 286
Walker2d 4704 4710 4386 1107 5196 3783 4682

Hu (Sparse) 816 0 1.32 8.65 547 88 0

Table 1: Maximum average return after 1M (2M for Humanoid (rllab) and 600k for
SparseHumanoid-v2) time steps 5 random seeds. Bold: best methods when the gap is less than
100 units. See appendix for average return with standard deviation. Environment short names: HC:

HalfCheetah-v2, Hu: Humanoid-v2, Standup: HumanoidStandup-v2

Figure 4 displays the performance of all algorithms on three environments over time steps (see
Appendix Figure 7 for all environments). Results are averaged over 5 random seeds. Table 1 reports
the best observed reward for each method.

Figure 4: Average return and one standard deviation on 5 random seeds across 8 MuJoCo tasks.
Curves are smoothed using Savitzky-Golay filtering with window size of 7.

Small state space environments HalfCheetah-v2, Hopper-v2, and Walker2d-v2 are
low-dimensional state space environments (d ≤ 17). Except for HalfCheetah-v2, the proposed
approach shows comparable results with its concurrent. Those results match the findings of (Plappert
et al., 2018) that some environments with well-structured dynamics require little exploration. Full
learning curves can be found in the Appendix.

Deceptive reward and Large state space environments Humanoid-v2,
HumanoidStandup-v2 and Humanoid (rllab) belong to bipedal environments with
high-dimensional state space (d = 376 and d = 147), and are known to trap algorithms into
suboptimal solutions. In addition to the legs, the agent also needs to control the arms, which may
influence the walking way and hence induce deceptive rewards (Conti et al., 2018). Figure 4 shows
the learning curves on MuJoCo tasks. We observe that ARAC beats both baselines in performance as
well as in convergence rate.

Ant-v2 is another high-dimensional state space environment (d ≥ 100). In an unstable setup, a
naive algorithm implementing an unbalanced fast walk could still generate high reward, the reward
taking into account the distance from start, instead of learning to stand, stabilize, and walk (as
expected).

Sparse reward environment To test ARAC in a sparse reward environment, we created
SparseHumanoid-v2. The dynamic is the same as Humanoid-v2 but rewards of +1 is granted
only given is the center of mass of the agent is above a threshold (set to 0.6 unit in our case). The

7

Under review as a conference paper at ICLR 2020

challenge not only lies in the sparse reward property but also on the complex body dynamic that can
make the agent falling down and terminating the episode. As shown in Figure 4, ARAC is the only
method that can achieve non zero performance. A comparison against single agent methods in the
Appendix also shows better performance for ARAC.

Sample efficiency compared with single agent methods Figure 8 (in Appendix) also shows that
the sample efficiency of the population-based ARAC compares to a single SAC agent (with and
without NFs) and other baselines methods (SAC, TD3). On Humanoid-v2 and Ant-v2 ARAC
converges faster, reaching the 6k (4k, respectively) milestone performance after only 1M steps, while
a single SAC agent requires 4M (3M, respectively) steps according to (Haarnoja et al., 2018). In
general, ARAC achieves competitive results (no flat curves) and makes the most difference (faster
convergence and better performance) in the biped environments.

Attraction-repulsion ablation study To illustrate the impact of repulsive forces, we introduce a
hyperparameter λ in the overall loss (Eq. 5):

Lθ,φ,λ = Lθ,φ,SAC + λLφ,AR (10)

We ran an ablation analysis on Humanoid-v2 by varying that coefficient. For two random states,
we sampled 500 actions from all agents and mapped these actions onto a two-dimensional space
(via t-SNE). Figure 3 shows that without repulsion (λ = 0), actions from all agents are entangled,
while repulsion (λ > 0) forces agents to behave differently and hence explore different regions of the
action space.

The second ablation study is dedicated to highlight the differences between a Gaussian policy (similar
to Hong et al. (2018) and an NF policy under AR operators. As one can observe in Figure 6, using a
Gaussian policy deteriorates the solution as the repulsive KL term drives apart the means of agents
and blows up/ shrinks the variance of the Gaussian policy. On the other hand, applying the AR term
on the NF layers maximizes the KL conditioned on the mean and variance of both base policies,
resulting in a solution which allows sufficient exploration. More details are provided in the Appendix.

Finally, through a toy example subject to AR, we characterize the policy’s shape when increasing the
number of the radial flow policy in Figure 2 (experimental setup in Appendix). Unlike the diagonal
Gaussian policy (SAC) that has symmetry constraints, increasing the number of flows allows the
radial policy to adopt more complex shapes (from bottom to top).

6 CONCLUSION

In this paper, we addressed the issue of RL domains with deceptive rewards by introducing a
population-based search model for optimal policies using attraction-repulsion operators. Our method
relies on powerful density estimators (normalizing flows), to let policies exploit the reward landscape
under AR constraints. Our ablation studies showed that (1) the strength of AR and (2) the number of
flows are the two factors which predominantly affect the shape of the policy. Selecting the correct
AR coefficient is therefore important to obtain good performance, while at the same time preventing
premature convergence.

Empirical results on the MuJoCo suite demonstrate high performance of the proposed method in
most settings, including with sparse rewards. Moreover, in biped environments that are known to trap
algorithms into suboptimal solutions, ARAC enjoys higher sample efficiency and better performance
compared to its competitors which confirms our intuitions on using AR with normalizing flows. As
future steps, borrowing from multi-objective optimization literature methods could allow one to
combine other diversity metrics with the performance objective, to in turn improve the coverage of
the solution space among the individuals by working with the corresponding Pareto front (Horn et al.,
1994).

8

Under review as a conference paper at ICLR 2020

REFERENCES

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, pp.
679–684, 1957.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth Stanley, and
Jeff Clune. Improving exploration in evolution strategies for deep reinforcement learning via a
population of novelty-seeking agents. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 5027–5038, 2018.

Thang Doan, Bogdan Mazoure, and Clare Lyle. Gan q-learning. arXiv preprint arXiv:1805.04874,
2018.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning
(ICML), pp. 1329–1338, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In International conference on machine learning (ICML), pp. 1050–
1059, 2016.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 5302–5311, 2018.

Deepti Gupta and Shabina Ghafir. An overview of methods maintaining diversity in genetic algorithms.
International journal of emerging technology and advanced engineering, 2(5):56–60, 2012.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning (ICML), pp. 1856–1865, 2018.

Peter Henderson, Thang Doan, Riashat Islam, and David Meger. Bayesian policy gradients via alpha
divergence dropout inference. NIPS Bayesian Deep Learning Workshop, 2017.

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee.
Diversity-driven exploration strategy for deep reinforcement learning. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 10489–10500, 2018.

Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. A niched pareto genetic algorithm
for multiobjective optimization. In Proceedings of the 1st IEEE Conference on Evolutionary
Computation, IEEE World Congress on Computational Intelligence, pp. 82–87, 1994.

Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement learning.
In Advances in Neural Information Processing Systems (NeurIPS), pp. 1188–1200, 2018.

Shauharda Khadka, Somdeb Majumdar, Tarek Nassar, Zach Dwiel, Evren Tumer, Santiago Miret,
Yinyin Liu, and Kagan Tumer. Collaborative evolutionary reinforcement learning. CoRR,
abs/1905.00976, 2019. URL http://arxiv.org/abs/1905.00976.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Kyowoon Lee, Sol-A Kim, Jaesik Choi, and Seong-Whan Lee. Deep reinforcement learning in con-
tinuous action spaces: a case study in the game of simulated curling. In International Conference
on Machine Learning, pp. 2943–2952, 2018.

Yang Liu, Prajit Ramachandran, Qiang Liu, and Jian Peng. Stein variational policy gradient. In
Conference on Uncertainty in Artificla Intelligence (UAI), 2017.

9

http://arxiv.org/abs/1905.00976

Under review as a conference paper at ICLR 2020

Samir W Mahfoud. Niching methods for genetic algorithms. PhD thesis, University of Illinois at
Urbana-Champaign Champaign, USA, 1995.

Michael L Mauldin. Maintaining diversity in genetic search. In AAAI Conference on Artificial
Intelligence (AAAI), pp. 247–250, 1984.

Bogdan Mazoure, Thang Doan, Audrey Durand, R Devon Hjelm, and Joelle Pineau. Leveraging
exploration in off-policy algorithms via normalizing flows. Proceedings of the 3rd Conference on
Robot Learning (CoRL 2019), 2019.

Joelle Pineau. The machine learning reproducibility checklist. 2018.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations (ICLR), 2018.

Aloïs Pourchot and Olivier Sigaud. CEM-RL: Combining evolutionary and gradient-based methods
for policy search. In International Conference on Learning Representations (ICLR), 2019.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning (ICML), pp. 1530–1538, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning (ICML), pp. 1889–1897,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint: 1707.06347, 2017.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # Exploration: A study of count-based exploration
for deep reinforcement learning. In Advances in neural information processing systems (NeurIPS),
pp. 2753–2762, 2017.

Yunhao Tang and Shipra Agrawal. Boosting trust region policy optimization by normalizing flows
policy. arXiv preprint: 1809.10326, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5026–5033.
IEEE, 2012.

Ahmed Touati, Harsh Satija, Joshua Romoff, Joelle Pineau, and Pascal Vincent. Randomized value
functions via multiplicative normalizing flows. arXiv preprint: 1806.02315, 2018.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. PhD thesis, figshare, 2010.

10

Under review as a conference paper at ICLR 2020

APPENDIX

REPRODUCIBILITY CHECKLIST

We follow the reproducibility checklist (Pineau, 2018) and point to relevant sections explaining them
here.
For all algorithms presented, check if you include:

• A clear description of the algorithm, see main paper and included codebase. The
proposed approach is completely described by Alg. 1 (main paper), 2 (Appendix), and 3
(Appendix). The proposed population-based method uses attraction-repulsion operators in
order to enforce a better policy space coverage by different agents.
• An analysis of the complexity (time, space, sample size) of the algorithm. See Appendix

Figure 7 and 8. Experimentally, we demonstrate improvement in sample complexity as
discussed in our main paper. In term of computation time, the proposed method scales
linearly with the population size if agents are evaluated sequentially (as presented in Alg. 1
for clarity). However, this as mentioned in the paper, can be parallelized. All our results are
obtained using M small network architectures with 1× 256-units hidden layer followed by
f layers of |A|+ 2 units each (f being the number of radial flows and |A| being the action
space dimension).
• A link to a downloadable source code, including all dependencies. The code is included

with the Appendix as a zip file; all dependencies can be installed using Python’s package
manager. Upon publication, the code would be available on Github.

For all figures and tables that present empirical results, check if you include:

• A complete description of the data collection process, including sample size. We use
standard benchmarks provided in OpenAI Gym (Brockman et al., 2016).
• A link to downloadable version of the dataset or simulation environment. See:

https://github.com/
• An explanation of how samples were allocated for training / validation / testing. We

do not use a training-validation-test split, but instead report the mean performance (and
one standard deviation) of the policy at evaluation time, openai/gym for OpenAI Gym
benchmarks and https://www.roboti.us/index.html for MuJoCo suite. obtained with 5
random seeds.
• An explanation of any data that were excluded. We did not compare on easy environ-

ments (e.g. Reacher-v2) because all existing methods perform well on them. In that case,
the improvement of our method upon baselines is incremental and not worth mentioning.
• The exact number of evaluation runs. 5 seeds for MuJoCo experiments, 1M, 2M or 3M

environment steps depending on the domain.
• A description of how experiments were run. See Section 5 in the main paper and didactic

example details in Appendix.
• A clear definition of the specific measure or statistics used to report results. Undis-

counted returns across the whole episode are reported, and in turn averaged across 5 seeds.
• Clearly defined error bars. Confidence intervals and table values are always mean± 1

standard deviation over 5 seeds.
• A description of results with central tendency (e.g. mean) and variation (e.g. stddev).

All results use the mean and standard deviation.
• A description of the computing infrastructure used. All runs used 1 CPU for all experi-

ments (toy and MuJoCo) with 8Gb of memory.

11

Under review as a conference paper at ICLR 2020

IMPACT OF REPULSIVE FORCE

Figure 5: Mapping in two-dimension space (t-SNE) of agents’ actions for two arbitrary states. Each
color represents a different agent.

To illustrate the impact of the repulsive force coefficient λ, we ran an ablation analysis by varying
that coefficient (recall that the overall loss function is Lπ = Lπ,SAC + λLAR where λ = 1 in our
experiment).

For two random states, we sampled 500 actions from all agents and mapped theses actions in a
common 2-dimensional space (t-SNE).

As shown in the Figure 5, policies trained without AR (λ = 0) result in entangled actions, while
increasing the repulsive coefficient λ forces agents to have different actions and hence explore
different regions of the policy space. Note that due to the specific nature of t-SNE , the policies are
shown as Gaussians in a lower-dimensional embedding, while it is not necessarily the case in the true
space.

12

Under review as a conference paper at ICLR 2020

STABILIZING ATTRACTION-REPULSION WITH NORMALIZING FLOW

In this section, we illustrate the consequence of the AR operators with a Gaussian policy (as
in Hong et al. (2018)) and our Normalizing flow policy for Ant-v2, Humanoid-v2 and
HalfCheetah-v2. As shown in the figure below, AR with Gaussian policies yield worse re-
sults. One reason is that the KL term drives apart the mean and variance of the Gaussian policy which
deteriorates the main objective of maximizing the reward. On the other side, our method applies
the AR only on the NF layers allows enough exploration by deviating sufficiently from the main
objective function.

Figure 6: Comparison of ARAC agents using (1) AR with radial flows, (2) AR with only the base
(Gaussian) policy and (3) no AR with radial flows.

COMPARING ARAC AGAINST BASELINES ON MUJOCO TASKS

Figure 7 shows the performance of ARAC and baselines (CEM-TD3, CERL and ERL) over time
steps. Learning curves are averaged over 5 random seeds and displayed with one standard deviation.
Evaluation is done every 10, 000 environment steps using 10 rollouts per agent. Overall, ARAC has
reasonable performance on all tasks (no flat curves) and demonstrates high performance, especially
in humanoid tasks.

Figure 7: Average return and one standard deviation on 5 random seeds across 7 MuJoCo tasks for
ARAC against baselines. Curves are smoothed using Savitzky-Golay filtering with window size of 7.

13

Under review as a conference paper at ICLR 2020

BENEFITS OF POPULATION-BASED STRATEGIES: ARAC AGAINST SINGLE AGENTS

In this section, we highlight the benefits of the proposed population-based strategy by comparing
with single agents. Figure 8 shows the performance of ARAC against a single SAC agent (with
and without normalizing flows). Learning curves are averaged over 5 random seeds and displayed
with one standard deviation. Evaluation is done every 10, 000 environment steps using 10 rollouts
per agent. We observe a high beneficial impact on the convergence rate as well as on the perfor-
mance. ARAC outperforms single agents in almost all tasks (except for HalfCheetah-v2 and
Walker-v2) with large improvement. Note the high sample efficiency on humanoid environments
(Humanoid-v2 and Humanoid (rllab)), where it shows faster convergence in addition to
better performance. Indeed, on Humanoid (rllab) a single SAC agent reaches the 4k milestone
after 4M steps (Haarnoja et al., 2018) while ARAC achieves this performance in less than 2M steps.
Also, in SparseHumanoid-v2, due to its better coordinated exploration, ARAC could find a good
solution faster than SAC-NF.

Figure 8: Average return and one standard deviation on 5 random seeds across 7 MuJoCo tasks for
ARAC against single SAC agents (with and without NFs). Curves are smoothed using

Savitzky-Golay filtering with window size of 7.

14

Under review as a conference paper at ICLR 2020

OVERALL PERFORMANCES ON MUJOCO TASKS

ARAC CEM-TD3 CERL ERL SAC - NF SAC TD3
Ant-v2 6,044 ± 216 4, 239± 1, 048 1, 639± 564 1, 442± 819 4, 912± 954 4, 370± 173 4, 372± 900

HalfCheetah-v2 10, 264± 271 10,659 ± 1,473 5, 703± 831 6, 746± 295 8, 429± 818 11,896 ± 574 9, 543± 978
Hopper-v2 3,587 ± 65 3,655 ± 82 2, 970± 341 1, 149± 3 3, 538± 108 2, 794± 729 3, 564± 114

Humanoid-v2 5,965 ± 51 212± 1 4, 756± 454 551± 60 5, 506± 147 5, 504± 116 71± 10
HumanoidStandup-v2 175k ± 38k 29k ± 4k 117k ± 8k 129k ± 4k 116k ± 9k 149k ± 7k 54k ± 24k

Humanoid (rllab) 14,234 ± 7251 1, 334± 551 3, 340± 3, 340 57± 17 5, 531± 4, 435 1, 963± 1, 384 286± 151
Walker2d-v2 4,704 ± 261 4,710 ± 320 4,3860 ± 615 1, 107± 60 5,196 ± 527 3,783 ± 366 4,682 ± 539

SparseHumanoid-v2 816 ± 20 0± 0 1.32± 2.64 8.65± 15.90 547 ± 268 88 ± 159 0± 0

Table 2: Maximum average return after 1M (2M for Humanoid (rllab) and 600k for
SparseHumanoid-v2) time steps ± one standard deviation on 5 random seeds. Bold: best

methods when the gap is less than 100 units.

CLEAR TRPO PPO Trust-PCL Plappert et al. (2017) Touati et al. (2018) Hong et al. (2018)
HalfCheetah-v2 10,264 −15 2, 600 2, 200 5, 000 7, 700 4, 200

Walker-v2 4,764 2, 400 4, 050 400 850 500 N/A
Hopper-v2 3,588 600 3, 150 280 2, 500 400 N/A

Ant-v2 6,044 −76 1, 000 1, 500 N/A N/A N/A
Humanoid-v2 5,939 400 400 N/A N/A N/A 1, 250

HumanoidStandup-v2 163,884 80, 000 N/A N/A N/A N/A N/A
Humanoid (rllab) 4,117 23 200 N/A N/A N/A N/A

Table 3: Performance after 1M (except for rllab which is 2M) timesteps on 5 seeds. Values taken
from their corresponding papers. N/A means the values were not available in the original paper.

15

Under review as a conference paper at ICLR 2020

EXPERIMENTAL PARAMETERS

Table 4 provides the hyperparameters of ARAC used to obtain results in the MuJoCo domains. The
noise input for normalizing flows in SAC policies (see Sec. 2.3) is sampled from N (0, σ), where the
variance σ is a function of the state (either fixed at a given value or learned).

ARAC parameters
flows σ G p alpha strategy

Ant-v2 3 0.2 10 1 0.2 proactive
HalfCheetah-v2 4 0.4 20 2 0.2 proactive

Hopper-v2 4 0.8 20 1 0.05 proactive
Walker2d-v2 4 0.6 10 3 0.05 proactive
Humanoid-v2 3 0.6 10 1 0.05 reactive

HumanoidStandup-v2 3 σ 20 1 0.2 reactive
Humanoid (rllab) 3 σ 10 1 0.05 proactive

SparseHumanoid-v2 2 0.6 20 1 0.2 proactive
Adam Optimizer parameters
αγ 3.10−4

αω 3.10−4

αθ 3.10−4

αφ 3.10−4

Algorithm parameters
Batch size m 256
Buffer size B 106

Archive sample size n 5

Table 4: ARAC parameters.

16

Under review as a conference paper at ICLR 2020

IMPACT OF NUMBER OF FLOWS ON THE POLICY SHAPE

We used a single SAC agent with different radial flows numbers and randomly initialized weights,
starting with actions centered at (0, 0). All flow parameters are `1 regularized with hyperparameter
2. The agent is trained with the classical evidence lower bound (ELBO) objective augmented with
the AR loss (Eq. 1), where the coefficient of the repulsive policy π′ is given by βt = 10

t+1 . Fig. 9
shows how both the NF and learned variance Gaussian policies manage to recover the target policy.
We see that NF takes advantage of its flexible parametrization to adjust its density and can show
asymmetric properties unlike the Gaussian distribution. This indeed can have advantage in some
non symmetric environment where the Gaussian policy would be trapped into a suboptimal behavior.
Finally, increasing the number of flows (from bottom to top) can lead to more complex policy’s shape.

Figure 9: Single state didactic illustration of attraction-repulsion operators. Comparing behavior of
NF policy against Gaussian policy with learned variance under a repulsive constraint.

17

Under review as a conference paper at ICLR 2020

6.1 PSEUDO-CODE FOR ARAC

Algorithm 1 ARAC: Attraction-Repulsion Actor-Critic

1: Input: population size M ; number of elites K; maximum archive capacity G; archive sample
size n; number of evaluation rollouts R; actor coefficient p; strategy (either proactive or reactive).

2: Initialize value function network Vν and critic network Qω
3: Initialize population of policy networks {πmφ,θ}Mm=1

4: Initialize empty archive G and randomly assign K individuals to top-K

5: total_step← 0
6: while total_step ≤ max_step do
7: step← 0

8: for agent m = 1 . . .M do
9: (_, step s)← rollout(πm,with noise, over 1 episode)

10: step← step + s
11: total_step← total_step + s
12: end for

13: C = step/K
14: for policy πe in top-K do
15: Update critic with πe for C mini-batches (Eq. 3)
16: Update value function (Eq. 4)
17: end for

18: for agent m = 1 . . .M do
19: if policy πm is in top-K then
20: Sample n archived policies uniformly from G
21: Update actor πm for step

M .p mini-batches (Eq. 5 and 8 or 9)
22: else
23: Update actor πm for step

M .p mini-batches (Eq. 2)
24: end if
25: end for

26: for agent m = 1 . . .M do
27: (Fitnessm, _)← rollout(πm,without noise, over R episodes)
28: end for
29: Rank population {πmφ,θ}Mm=1 and identify top-K
30: update_archive(G, {πmφ,θ}Mm=1, G)
31: end while

Collect samples

Update critic

Update actors

Evaluate actors

18

Under review as a conference paper at ICLR 2020

COMPLEMENTARY PSEUDO-CODE FOR ARAC

Algorithms 2 and 3 respectively provide the pseudo-code of functions rollout and
update_archive used in Algorithm 1.

Algorithm 2 rollout
Input: actor π; noise status; number of episodes E; replay buffer B;
Fitness← 0
for episode = 1, . . . , E do
s← Initial state s0 from the environment
for step t = 0 . . . termination do

if with noise then
Sample noise z

else
Set z ← 0

end if
at ∼ π(.|st, z)
Observe st+1 ∼ P (·|st,at) and obtain reward rt
Fitness← Fitness + rt
Store transition (st,at,rt,st+1) in B

end for
end for
Fitness← Fitness/E
return Average fitness per episode and number of steps performed

Algorithm 3 update_archive
Input: archive G; population of size M ; maximal archive capacity G.
if |G| < G then

Add all agents of current population to G
else
c1, c2 ← 2-means(fitness of individuals in G)
for agent m = 1, . . . ,M do

Assign agent m to closest cluster c ∈ {c1, c2} based on its fitness
Sample an archived agent j ∼ Uniform(c)
Replace archived individual j by m

end for
end if
return Updated archive G

19

	Introduction
	Preliminaries
	Discovering new solutions through population-based Attraction-Repulsion
	Soft actor-critic
	Normalizing flows

	ARAC: Attraction-Repulsion Actor-Critic
	Enhancing diversity in the archive
	Discovering new policies through Attraction-Repulsion

	Related Work
	Experiments
	Didactic example
	MuJoCo locomotion benchmarks

	Conclusion
	Pseudo-code for ARAC

