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ABSTRACT

Batch Normalization (BatchNorm) has shown to be effective for improving and accelerat-
ing the training of deep neural networks. However, recently it has been shown that it is also
vulnerable to adversarial perturbations. In this work, we aim to investigate the cause of
adversarial vulnerability of the BatchNorm. We hypothesize that the use of different nor-
malization statistics during training and inference (mini-batch statistics for training and
moving average of these values at inference) is the main cause of this adversarial vulner-
ability in the BatchNorm layer. We empirically proved this by experiments on various
neural network architectures and datasets. Furthermore, we introduce Robust Normal-
ization (RobustNorm) and experimentally show that it is not only resilient to adversarial
perturbation but also inherit the benefits of BatchNorm.

1 INTRODUCTION

In spite of their impressive performance on challenging tasks in computer vision such as image classification
and semantic segmentation, deep neural networks (DNNs) are shown to be highly vulnerable to adversarial
examples, i.e. carefully crafted samples which look similar to natural images but designed to mislead a
trained neural network model (Goodfellow et al., 2014; Nguyen et al., 2015; Carlini & Wagner, 2017).
Designing defense mechanisms against these adversarial perturbations has been subjected to much research
recently (Xie et al., 2019; Madry et al., 2017; Tramèr et al., 2017; Papernot et al., 2016).

Meanwhile, Batch Normalization (BatchNorm or BN) (Ioffe & Szegedy, 2015) has successfully proliferated
throughout all areas of deep learning as it enables stable training, higher learning rates, faster convergence,
and higher generalization accuracy. Initially, the effectiveness of the BatchNorm has been attributed to its
ability to eliminate the internal covariate shift (ICS), the tendency of the distribution of activations to drift
during training. However, later on, alternative reasons including avoiding exploding activations, smooth loss
landscape, reducing the sensitivity to initialization, etc. have also been proposed as the basis of BatchNorm’s
success (Santurkar et al., 2018; Bjorck et al., 2018; Luo et al., 2018).

While there exist a plethora of reasons for the adversarial vulnerability of deep neural networks (Jacobsen
et al., 2018; Simon-Gabriel et al., 2018), a recent study by Galloway et al. (2019) showed that BatchNorm is
one of the reasons for this vulnerability. Specifically, they empirically showed that removing the BatchNorm
layer enhances robustness against adversarial perturbations. However, removal of BatchNorm also means a
sacrifice of benefits such as the use of higher learning rates, faster convergence, and significant improvement
in the clean test set accuracy among many others.

In this paper, we propose a new perspective regarding the adversarial vulnerability of the BatchNorm layer.
Specifically, we probe why BatchNorm layer causes the adversarial vulnerability. We hypothesize that the
use of different normalization statistics during training and inference phase (mini-batch statistics for training
and moving average of these statistics also called tracking, at inference time) is the cause of this adversarial
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vulnerability of the BatchNorm layer. Our experiments show that by removing this part of the BatchNorm,
the robustness of the network increases by 20%. Similarly, robustness can further be enhanced by up to 30%
after adversarial training. However, by removing the tracking part, the test accuracy on the clean images
drops significantly ( though better than without normalization). To circumvent this issue, we propose Robust
Normalization (RobustNorm or RN). Our experiments demonstrate that RobustNorm not only significantly
improve the test performance of adversarially-trained DNNs but is also able to achieve the comparable test
accuracy to that of BatchNorm on unperturbed datasets. We perform numerical experiments over standard
datasets and DNN architectures. In almost all of our experiments, we obtain a better adversarial robustness
performance on perturbed examples for training with natural as well as adversarial training.

2 BACKGROUND

We consider a standard classification task for data, having underlying distribution denoted as D, over the
pair of examples x ∈ Rn and corresponding true labels y ∈ {1, 2, ..., k} where k represents different labels.
We denote deep neural network (DNN) as a function Fθ(x), where θ denotes trainable parameters. θ is
learned by minimizing a loss function L(x, y) with training data x, y. The output of the DNN is a feature
representation f ∈ Rd, that we give input to a classifier C : Rn → {1, 2, ..., k}. The objective of the
adversary is to add the additive perturbation δ ∈ Rn under the constrain that the generated adversarial
sample xadv = x+ δ that looks visually similar to the true image x, and for which the corresponding labels
are not same i.e. C(x) 6= C(xadv). In this work, we have added the perturbation via following well-known
adversarial attack approaches.

Fast Gradient Sign Method: Given an input image x along with its corresponding true label y, FGSM
Goodfellow et al. (2014) aims to generate the adversarial image xadv as,

xadv = x+ ε · sign(∇xL(x, y), (1)
where ε is the perturbation budget that is chosen to be sufficiently small. We use two of its variants: Gradient
(Grad) where graidents are used and Gradient sign (GradSign) which is similar to 1.

Basic Iterative Method (BIM): BIM (Kurakin et al., 2016) is a straight forward extension of FGSM, that
applies it multiple times with a smaller step size. Specifically,

x0
adv = x, xNadv = Clipx,ε{x

N−1
adv + α · sign(∇xL(xN−1adv , y))} (2)

where x0
adv is the clean image and N denotes iteration number.

Carlini-Wagner attack (CW): CW is an effective optimization-based attack model introduced by Carlini
& Wagner (2017). It works by definining an auxilary variable ϑ and minimizes the following objective
functions

min
ϑ
‖1

2
(tanh(ϑ) + 1)− x‖+ c.f(

1

2
(tanh(ϑ) + 1)), (3)

where 1
2 (tanh(ϑ) + 1)− x is the perturbation δ, c is a scalar constant, and f(.) is defined as:

f(xadv) = max(Z(xadv)y −max{Z(xadv)k : k 6= y},−%)). (4)

Here, % is to control the adversarial sample’s confidence and Zxadv
are the logits values for class k.

Projected Gradient Descent (PGD): PGD perturbs the true image x for total number of N steps with
smaller step sizes. After each step of perturbation, PGD projects the adversarial example back onto the
ε-ball of normal image x , if it goes beyond the ε-ball. Specifically,

xNadv = Π(xN−1adv + α.sign(∇xL(xN−1adv , y))), (5)
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where Π is the projection operator, α is step size, and xN denotes adversarial example at the N -th step. We
have used `∞ norm as a distance measure. Gaussian Noise For comparison purposes, we also have used
Gaussian noise with 0 mean and 0.25 variance.

2.0.1 ADVERSARIAL TRAINING:

It has been shown that empirical risk minimization using only clean images for training can decrease the
robustness performance of DNNs. A standard approach to achieve the adversarial robustness in DNNs is
adversarial training which involves fitting a classifier C on adversarially-perturbed samples along with clean
images. We have used PGD based adversarial training which has shown to be effective against many first-
order adversaries (Madry et al., 2017) unlike other methods which overfit for on a single attack.

2.1 EXPERIMENTAL SETUP

We have used two network architectures, Resnet He et al. (2016) with 20,38 and 50 layers and VGG Si-
monyan & Zisserman (2014) with 11 and 16 layers. We have used CIFAR10 and 100 datasets (Krizhevsky
et al., 2009) for all the evaluations. We have used term natural training for training with clean images while
adversarial training is done with PGD based method formulated by Madry et al. (2017). We have always
used a learning rate of 0.1 except for no normalization scenarios where convergence is not possible with
higher learning rates. In such cases, we have used a learning rate of 0.001. We decrease the learning rate
10 times after 120 epochs and trained all the networks for 164 epochs. For robustness evaluations, we have
used ε=0.03/1 for most of the experiments and used 20 epochs for all the iterative attacks. We also have
tested the model on different noise levels ranging from 0.003/1 to 0.9/1.

3 HOW DOES BATCHNORM CAUSES ADVERSARIAL VULNERABILITY

3.1 HOW BATCHNORM WORKS

In this section, we briefly explain the working principle of BatchNorm layer. Broadly speaking, the Batch-
Norm layer has been introduced to circumvent the issue of internal covariate shift (ICS). Consider a mini-
batch B of size M , containing samples xm for m = 1, 2, ...,M . BatchNorm normalizes the mini-batch
during training, by calculating the mean µβ and variance σ2

β as follows:

µB =
1

M

M∑
i=1

xi ; σB =

√√√√ 1

M

M∑
i=1

(xi − µB)2 + ε. (6)

Activation normalization is then performed as,

x̂i =
xi − µB
σB

. (7)

To further compensate for the possible loss of representational ability of network, BatchNorm also learns
per-channel linear transformation as:

yi = γx̂i + B, (8)

for trainable parameters γ and β that represent scale and shift, respectively. These parameters are learnt using
the same procedure, such as stochastic gradient descent, as other weights in the network. During training,
the model usually maintains the moving averages of mini-batch means and variances(a.k.a. tracking), and
during inference, uses these tracked statistics in place of the mini-batch statistics. Formally, tracking (moving
average) of mean and variance, for scalar τ are given as,
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Figure 1: Comparison of mini-batch mean and variance at the start of the training with tracked mean and
variance which are used at inference for all the channels. Note the difference between both of these values.

µ̂ = (1− τ)µ̂+ τµβ , σ̂2 = (1− τ)σ̂2 + τσ2
B (9)

For inference, we can write,

ytest =
xtest − µ̂

σ̂
.γ + β. (10)

3.2 BATCHNORM AND ADVERSARIAL VULNERABILITY

Recently, Galloway et al. (2019) empirically showed that the accelerated training properties and occasion-
ally higher clean test accuracy of employing BatchNorm in network come at the cost of low robustness
to adversarial perturbations. While removing the BatchNorm layer may be helpful for robustness, it also
means the loss of desirable properties of BatchNorm like very high learning rate, faster convergence, boost
in test accuracy, etc. Therefore, it is pertinent to devise a normalization method that is not only robust to the
adversarial perturbations but also inherits the desirable properties of the BatchNorm layer.

3.3 DEVIL IS IN THE TRACKING

In this section, we aim to investigate the reasons behind the adversarial vulnerability of the BatchNorm layer
on the following two grounds;

• We note that during training, mini-batch statistics are used to normalize activations as shown in
Equations 6 and 7. Moving average of these statistics are also calculated during the training that
is called tracking (shown in Equation 9). The tracked mean and variance are used in the inference
step (Equation 10). In this way, different values for mean and variance are used during training and
inference. We show this in Figure 1 where it is clear that batch statistics at the start of the training
are very different from tracked values that are used at the inference.

• Our second observation is based on the recent work of (Ding et al., 2019; Jacobsen et al., 2019).
These works shed light on the link of the distributional shift in input data and robustness. Specif-
ically, Ding et al. (2019) showed that adversarial robustness is highly sensitive to change in the
input data distribution and prove that even a semantically-lossless shift on the data distribution
could result in drastically different robustness for adversarially trained models.

Based on the above two observations, we hypothesize that: Different values of first-order statistics (mean
and variance) are used in the normalization layer for training and inference. This means different internal
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Norm Clean Noise Gradient Sign BIM-`∞ PGD-`∞

Natural
Training

BatchNorm 92.05 ± 0.34 59.16±6.74 33.75 ± 0.99 25.43± 2.37 29.73 ±0.86
No Norm 82.93 ± 0.64 66.96±4.03 41.81 ± 2.20 41.47±2.16 37.01±2.04
BatchNorm w/o Tracking 89.23± 1.43 77.65 ± 2.45 53.32± 0.71 48.38 ± 1.40 48.54± 0.91

Adversarial
Training

BatchNorm 79.53 ± 9.16 67.38±10.41 49.91 ± 6.30 47.90 ± 5.41 46.75 ± 6.05
No Norm 83.60 ± 1.08 73.75 ±3.95 63.46 ± 1.61 58.29 ± 2.53 60.01 ± 1.54
BatchNorm w/o Tracking 89.28 ± 1.58 84.36 ± 1.06 72.42 ± 1.04 68.60±0.91 69.30 ±1.77

Table 2: Comparison of adversarial robustness of BatchNorm with BatchNorm without tracking and no
normalization for CIFAR10 and Resnet20. The results are shown with 95% confidence interval calculated
with 5 random restarts. Highlighted values show the best accuracy for that particular adversarial noise.
While BatchNorm without Tracking has significantly higher robust accuracy compare to both BatchNorm
and no norm, its clean accuracy is lower than BatchNorm. But BatchNorm w/o Tracking also retains its
clean accuracy when adversarially trained. This figure confirms our tracking-robustness hypothesis.

representations being used at training and inference time which causes drift in input distributions of these
layers. Therefore, the tracking part is the main culprit behind the adversarial vulnerability of the BatchNorm
layer.

To prove our hypothesis, we have done extensive experiments. For each experiment, we train a neural
network model with three different normalization layers: BatchNorm, BatchNorm without tracking, and no
normalization. To prove the generality of our argument, we have used various architectures, depths, and
datasets as written in section 2.1. We train these networks on clean images as well as with based adversarial
training procedure. For adversarial training, we use PGD attack for perturbation. We choose PGD due to its
ability to generalize well for other adversarial attacks.

Table 1 shows our results on Resnet20. For detailed experimental results on various architectures, depths and
dataset with different attacks see Table 4, 5 in appendix. The results clearly show that while the elimination
of BatchNorm and training at a very small learning rate can help increase robustness, it also reduces clean
data accuracy (with BatchNorm). More importantly, this proves our hypothesis that by removing tracking,
we can increase the robustness of a neural network significantly. By using BatchNorm without tracking, we
also keep many benefits of BatchNorm. Unfortunately, by eliminating the tracking part of BatchNorm, clean
accuracy of a network also reduces as compared to clean accuracy with BatchNorm. We tackle this issue in
the next section.

4 ROBUST NORMALIZATION

Although alleviation of ICS was claimed reason for the success of BatchNorm, recently, Bjorck et al. (2018)
have shown that BatchNorm works because it avoids activation explosion by repeatedly correcting all acti-
vations. For this reason, it is possible to train networks with large learning rates, as activations cannot grow
uncontrollably and convergence becomes easier. On a different side, recent work on robustness has shown
a connection between the removal of outliers in activations and robustness (Xie et al., 2019; Etmann et al.,
2019). Based on these observations, we use min-max rescaling that is often employed in preprocessing. This
is also useful in the elimination of outliers since it rescales the data to a specific scale, Minmax normalization
is defined as;

yi =
xi −min(xi)

max(xi)−min(xi)
. (11)
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Natural Training Adversarial Training
CIFAR10 CIFAR100 CIFAR10 CIFAR100

BatchNorm with tracking 92.11 ± 0.40 68.20 ± 0.8 79.53 ± 9.16 35.39 ± 3.91
BatchNorm w/o tracking 89.07 ± 1.73 62.28 ± 0.79 89.28 ± 1.58 61.73 ± 4.17

RobustNorm with tracking 91.97 ± 0.30 68.13 ± 0.28 85.15 ±5.37 42.19 ± 6.10
RobustNorm w/o tracking 91.49 ± 0.28 67.41 ± 0.66 90.76 ±0.63 64.95 ± 0.72

Table 3: Comparison of clean accuracy of BatchNorm with RobustNorm for both adversarial and natural
training scenarios. RobustNorm’s accuracy is better than BatchNorm when tracking is not used while its
accuracy is same when tracking is used.

However, we experimentally found this layer to be less effective in terms of convergence. Considering the
importance of mean (Salimans & Kingma, 2016), we modify this to;

yi =
xi − µ

max(xi)−min(xi)
. (12)

We empirically observe the effectiveness of Equation 12 over Equation 11 but the overall performance was
still inadequate. During debugging, we found that Equation 12 suppress activations much stronger than
BatchNorm. This can also be seen from Popoviciu’s inequality (Popoviciu, 1935),

4σ2 ≤ (max(xi)−min(xi))
2. (13)

Following Popoviciu’s inequality, we introduce the hyperparameter 0 < p < 1, that reduces the denominator
in Equation 12,

yi =
xi − µ

(max(xi)−min(xi))p
(14)

We experimentally found that p = 0.2 value generalizes well for many networks as well as datasets. We call
this normalization Robust Normalization (RobustNorm or RN) due to its robustness properties. We do not
use tracking for the RobustNorm. But for comparison purposes, we keep running average of both mean and
denominator and use this running average during inference and call this normalization RobustNorm with
tracking.

Table 3 shows the accuracy of RobustNorm on Resnet20 for clean as well as adversarial training with both
CIFAR10 and CIFAR100 datasets with 95% confidence interval calculated over 5 random restarts. These
results show a better clean accuracy of RobustNorm in both natural and adversarial training scenarios. Apart
from this, RobustNorm with tracking also shows better performance compared to BatchNorm with tracking.
For adversarial robustness, we have shown Figure 2 with different attacks on CIFAR100 dataset. From the
Table 3 and Figure 2, it is clear that RobustNorm keeps its clean accuracy while being more robust. For
more results on Resnet38, Resnet50, VGG11, and VGG16 with CIFRAR10 and CIFAR100 datasets and
both natural and adversarial training and many attack methods, please have a look at Table 4 and 5.

Figure3 shows the evolution of validation loss and accuracy for PGD based adversarial training with a con-
fidence interval of 95% on Resnet20 architecture and CIFAR100 dataset. From Figure 8 in the appendix, it
can also be seen that the evolution of training loss and accuracy is normal. But validation loss and accuracy
for normalizations with tracking is much different for different random restarts. This can probably be ex-
plained based on flat and sharp minima attained by different normalizations as can be seen in loss landscape
in Figure 9 in the appendix. For further discussion on the loss landscape, please see section B in appendix.
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Figure 2: Comparison of adversarial robustness of different normalizations for different Whitebox attacks
with CIFAR100. Results are shown with 95% confidence interval computed over 5 random restarts. Batch-
Norm w/o Tracking and RobustNorm have significantly higher adversarial robustness compared to other
norms. The results are even more clear when they are adversarially trained where RobustNorm’s robustness
is even more than BatchNorm w/o Tracking.

Figure 3: Comparison of evolution of validation loss and accuracy for CIFAR100 on Resnet20 with confi-
dence intervals calculated with 5 random restarts. BatchNorm without tracking and RobustNorm have higher
accuracy and lower loss while RobustNorm being better than BatchNorm w/o tracking. For further details,
please have a look at appendix B

4.1 RESISTANCE FOR DIFFERENT VALUES OF ADVERSARIAL PERTURBNESS

To further understand the performance of RobustNorm under adversarial conditions, we run an experiment
where ε values are increased for the test set. We train networks with BatchNorm, BatchNorm w/o Tracking
and RobustNorm with Natural as well as PGD-`∞ based adversarial training and tested them on different
values of ε. The results are shown in Figure 4. As ε increases, the robustness of neural network decreases
but the robustness of neural network with RobustNorm is much higher than BatchNorm while also higher
than BatchNorm w/o tracking. To see the effect of an increase in adversarial noise on CIFAR100 dataset,
see Figure 6 in the appendix.

5 IS TRACKING A NECESSARY EVIL?

In the previous sections, we have empirically shown the wickedness of tracking in BatchNorm. But there is
more to the story. One benefit of tracking that makes it a necessary evil in BatchNorm is its ability to have
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Figure 4: Comparison of robust accuracy as ε(adversarial noise power) increases. Values are calculated for
CIFAR10 with 3 random restarts and confidence interval of 95%. Robustness of RN is higher than both
BatchNorm and BatchNorm without tracking. While BatchNomr with and without tracking collapses with
higher epsilon BIM, RobustNorm’s accuracy is much higher. For same curves on CIFAR10, see appendix
for more details.

consistent results on small inference time batch sizes. For all the results mentioned in this paper, we have
used 100 as inference time batch size. By removing tracking, we lose this ability as shown in Figure 5. Does
this make tracking a necessary evil? Based on the observations in section 3, one straight forward solution
to this problem could be the use of tracked values during training as well since it will change the issue of
different distributions. This, however, causes the model to blow up as argued by Ioffe & Szegedy (2015);
Ioffe (2017). To resolve this issue, one possible solution is Batch Renormalization like formulation (Ioffe,
2017) but it requires careful tuning of many hyperparameters which makes its use very difficult. Similarly,
other possible solutions such as Arpit et al. (2016); Salimans & Kingma (2016); Wu & He (2018) have their
own challenges as well. From these observations, we argue that this problem requires more investigation.
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Figure 5: Effect of using very small inference time batch size on different norms. Part(a) shows results for
natural training while part(b) shows results for adversarial trained networks.
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It is also important to note that RobustNorm’s results are restored by increasing batch size by a small number.
Similarly, tracking is also less harmful for RobustNorm and RobustNorm with tracking is still more robust
while having all the benefits of BatchNorm.

6 CONCLUSION

Addition of maliciously crafted noise in normal inputs, also called adversarial examples has proven to be
deceptive for neural networks. While there are many reasons for this phenomena, recent work has shown
BatchNorm to be a cause of this vulnerability as well. In this paper, we have investigated the reasons behind
this issue and found that tracking part of BatchNorm causes this adversarial vulnerability. Then, we showed
that by eliminating it, we can increase the robustness of a neural network. Afterward, based on the intuitions
from the work done for the understanding of BatchNorm, we proposed RobustNorm which has much higher
robustness than BatchNorm for both natural as well as adversarial training scenarios. In the end, we have
shown how tracking can be a necessary evil and argued that it requires further careful investigation.
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A ROBUSTNORM

A.1 ROBUSTNORM FOR OTHER ARCHITECTURES

In this section, we provide more detailed results for our experiments for both CIFAR10 and CIFAR100
datasets. Table 4 and 5 shows detailed results.

Norm Clean Noise GradSign BIM-linf PGD-l inf

Natural Training
Resnet38

BatchNorm 93.11 62.67 41.53 36.88 35.12
BatchNorm w/o tracking 90.62 79.42 56.80 51.31 50.68
RobustNorm 92.24 80.35 58.37 55.01 53.69
RobustNorm with Tracking 92.71 62.31 43.46 38.33 37.45

Adversarial Training
Resnet38

BatchNorm 73.21 59.21 43.54 42.06 39.77
BatchNorm w/o Tracking 89.74 84.82 75.21 69.45 71.91
RoubstNorm 91.77 85.57 77.29 72.23 74.23
RoubstNorm with Tracking 87.08 72.86 58.42 54.56 54.09

Natural Training
Resnet50

BatchNorm 93.61 60.44 42.06 36.15 35.71
BatchNorm w/o Tracking 90.38 77.88 57.36 51.18 51.44
RoubstNorm 91.67 79.33 57.01 53.12 51.75
RoubstNorm with Tracking 93.23 66.14 44.88 40.33 38.50

Adversarial Training
Resnet50

BatchNorm 65.99 52.33 30.92 35.42 28.40
BatchNorm w/o Tracking 90.22 86.29 78.17 73.01 75.21
RoubstNorm 90.91 86.14 78.03 73.29 75.21
RoubstNorm with Tracking 63.12 50.68 43.37 39.45 40.36

Natural Training
VGG11

BatchNorm 91.66 81.80 51.71 54.07 46.66
BatchNorm w/o Tracking 90.28 86.70 64.29 62.86 59.97
RoubstNorm 90.51 86.69 29.53 48.69 25.71
RoubstNorm with Tracking 91.74 79.53 52.35 52.65 47.04

Adversarial Training
VGG11

BatchNorm 79.18 70.48 52.63 52.38 48.99
BatchNorm w/o Tracking 89.69 86.78 76.98 73.10 74.51
RoubstNorm 90.81 87.81 77.53 74.2 74.84
RoubstNorm with Tracking 0 0 0 0 0

Natural Training
VGG16

BatchNorm 93.56 66.68 49.83 44.52 44.38
BatchNorm w/o Tracking 92.44 84.56 59.64 54.35 52.81
RoubstNorm 92.62 85.52 45.01 52.01 39.02
RoubstNorm with Tracking 93.54 73.86 50.98 48.52 45.43

Adversarial Training
VGG16

BatchNorm 82.27 71.77 56.78 53.58 52.61
BatchNorm w/o Tracking 92.06 87.52 76.49 71.48 72.98
RoubstNorm 92.53 88.32 80.65 77.65 78.70
RoubstNorm with Tracking 91.20 75.39 68.66 65,28 65.34

Table 4: Comparison of clean and adversarial accuracy of different network architectures. We present two
depths of Resnet, 38 and 50 and two for VGG, 11 and 16. We trained all these networks with both natural
as well as adversarial training and use noise as well as different attacks methods to find their robustness. All
of these results are for CIFAR10 dataset.
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Norm Clean Noise GradSign BIM-linf PGD-l inf

Natural Training
Resnet38

BatchNorm 70.22 31.43 18.77 18.01 15.88
BatchNorm w/o Tracking 63.9 46.65 27.03 26.38 23.06
RoubstNorm 68.16 47.88 28.12 27.98 24.27
RoubstNorm with Tracking 70.46 26.79 17.91 15.80 15.20

Adversarial Training
Resnet38

BatchNorm 42.54 30.78 24.63 21.88 22.33
BatchNorm w/o Tracking 65.71 57.70 46.46 41.47 42.68
RoubstNorm 67.91 57.39 48.03 42.18 44.14
RoubstNorm with Tracking 43.44 26.29 28.49 21.01 25.99

Natural Training
Resnet50

BatchNorm 73.67 29.18 18.19 17.15 15.55
BatchNorm w/o Tracking 66.90 48.11 27.25 27.06 23.16
RoubstNorm 67.88 46.04 28.60 27.98 25.17
RoubstNorm with Tracking 72.79 31.67 17.72 17.90 14.92

Adversarial Training
Resnet50

BatchNorm 25.00 16.01 14.21 12.25 13.11
BatchNorm w/o Tracking 66.55 59.06 49.31 44.10 45.79
RoubstNorm 67.24 58.14 50.87 45.46 47.77
RoubstNorm with Tracking 24.32 13.38 17.75 12.77 16.33

Natural Training
VGG11

BatchNorm 69.93 50.97 26.88 30.56 23.53
BatchNorm w/o Tracking 67.62 60.49 36.30 37.99 32.66
RoubstNorm 68.77 61.35 16.18 31.21 13.16
RoubstNorm with Tracking 69.96 48.29 25.89 28.90 22.63

Adversarial Training
VGG11

BatchNorm 47.69 28.78 28.56 23.50 26.56
BatchNorm w/o Tracking 66.12 61.33 49.82 46.85 47.06
RoubstNorm 68.02 61.40 50.68 47.09 47.57
RoubstNorm with Tracking 64.43 43.31 44.67 41.67 41.77

Natural Training
VGG16

BatchNorm 73.28 36.12 22.49 21.74 19.49
BatchNorm w/o Tracking 70.34 56.15 33.97 33.36 29.46
RoubstNorm 72.28 56.33 16.65 28.87 13.53
RoubstNorm with Tracking 73.40 38.31 25.43 24.93 23.78

Adversarial Training
VGG16

BatchNorm 53.11 26.39 31.23 31.21 28.89
BatchNorm w/o Tracking 69.33 61.49 51.16 46.83 48.19
RoubstNorm 71.01 61.89 53.07 48.89 50.39
RoubstNorm with Tracking 68.34 39.22 43.89 34.10 41.07

Table 5: Comparison of clean and adversarial accuracy of different network architectures for CIFAR100.
We present two depths of Resnet, 38 and 50 and two for VGG, 11 and 16. We trained all these networks
with both natural as well as adversarial training and use noise as well as different attacks methods to find
their robustness.

A.2 RESISTANCE TO INCREASE IN ADVERSARIAL NOISE

In this section, we put results of increasing adversarial noise on CIFAR100 dataset.
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Figure 6: Figure shows effect of increase in adversarial noise ε on three normalizatons for CIFAR100 dataset.

A.3 ANOTHER ASPECT OF ROBUSTNORM

As we have discussed, ICS hypothesis has been negated by a few recent studies. One of these studies
(Santurkar et al., 2018) suggested that based on the results, “ it might be valuable to perform a principled
exploration of the design space of normalization schemes as it can lead to better performance.” In this
way, we can see RobustNorm with tracking as a new normalization scheme which is based on alternative
explanations yet having performance equal to BatchNorm which, in a way, weakens ICS hypothesis. See
Figure 7 for a comparison of accuracies over different models for CIFAR10 and CIFAR100 datasets.
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Figure 7: Comparison of BatchNorm with RobustNorm in terms of accuracy when tracking is used. Both of
these norms have very similar clean accuracy despite RobustNorm being different in terms of ICS hypothesis.

B LOSS LANDSCAPE

In this section, we discuss possible reasons for the high variation of validation loss for a network with
normalization with tracking. As shown in Figure 8, training loss of all the norms converges with similar
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Figure 8: Training and validation loss and accuracy evolution for adversarial training. Interestingly, Batch-
Norm’s training loss decreases normally, its validation loss has lot more uncertainty and either remaining
same or start increasing. This way, BatchNorm is overfitting. A similar trend is also shown by RobustNorm
when tracking is used thought it vanishes when remove tracking and decrease in loss becomes normal and
less uncertain.

fashion for all the random restarts but validation loss has a lot of variation over these restarts. In other
words, the value of training loss is similar among many restarts while the same loss values change drastically
for validation. To further understand it, we draw loss landscape of these networks using formulation given
by Li et al. (2018b) in Figure 9. From these plots, we observe an interesting behaviour: networks having
normalization without tracking(i.e. better robustness) tend to have sharp minima as can be seen in figures 9c,
9d, 9e, 9f while their counterparts have more flat loss landscape i.e. figures 9a, 9b, 9g, 9h. There is a long
history of debate on generalization ability of sharp vs flat minima Hochreiter & Schmidhuber (1997); Keskar
et al. (2016); Dinh et al. (2017). We think more work in this direction can lead to a better understanding of
how BatchNorm causes this vulnerability.

C MORE EXPERIMENTS ON ROBUSTNORM

In this section, we discuss some less interesting experiments done to understand the role of power in Ro-
bustNorm.
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(a) BatchNorm with Natural Training (b) BatchNorm with Adversarial Training

(c) BatchNorm w/o Tracking, Natural Training (d) BatchNorm w/o Tracking, Adversarial Training

(e) RobustNorm, No tracking, Natural Training (f) RobustNorm, No Tracking, Adversarial Training

(g) RobustNorm, with Tracking, Natural Training (h) RobustNorm, with Tracking, Adversarial Training

Figure 9: Plots of loss landscape (Li et al., 2018a) of Resnet20 trained with different norms. Right column
shows Resnet20 trained on natural images while left column shows adversarially trained. Note that network
without tracking (9c, 9d, 9e, 9f) tends to have sharp minima.
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Figure 10: Comparison of effect of hyperparameter p on clean accuracy for both adversarially trained and
naturally trained Resnet20 with RobustNorm with and without tracking.
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Figure 11: Comparison of effect of hyperparameter p on clean accuracy.

C.1 EFFECT OF POWER ON ROBUSTNORM

In this section, we show the effect of changing hyperparameter p for clean as well as robust accuracy. From
figure 4 and 11, it can be seen that both robustness to many attacks as well as accuracy changing with the
power. So it can be concluded that by tuning hyperparameters, we can get better results.
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