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ABSTRACT

Natural language uses words in an associative way to construct sentences: it is not
words in isolation, but the appropriate use of hierarchical structures that makes
communication successful. We propose a deep learning framework for explicitly
tying together the representations between single words and full sentences, result-
ing in a fluid transfer of knowledge between these two levels of granularity. We
construct a multi-head attention mechanism for sentence classification, where the
individual attention heads simultaneously learn to perform multi-class sequence
labeling. Supervision on individual tokens explicitly teaches the classifier which
areas it needs to focus on in each sentence, while the sentence-level objective
regularizes the token-level predictions and even enables sequence labeling with-
out token-level training data. Our experiments show that the proposed architecture
systematically outperforms its single-task counterparts and exhibits strong transfer
capabilities, while also achieving reasonable performance as a zero-shot sequence
labeler 1

1 INTRODUCTION

Natural language has vast syntactic and semantic complexity: it involves using words in an associa-
tive way to construct structured sentences. Meaningful expressions are built from other meaningful
expressions (Goldberg, 1995), or, as stated by the Principle of (Semantic) Compositionality (Hirst,
1987), the meaning of the whole is determined by the meaning of the parts. Neural architectures are
often trained end-to-end, expecting the models to independently discover the necessary methods for
language composition. However, due to data limitations on most tasks, composition patterns can be
difficult to learn automatically. Furthermore, these discovered patterns can pick up noise and bias in
the datasets and do not always match the desired model behavior.

We investigate a novel approach to applying the compositionality principle in a deep learning frame-
work, allowing for more direct supervision. Our model learns to perform both sentence classifi-
cation and token-level sequence labeling while tying these two objectives together in a way that
enables them to reinforce each other. The network uses a multi-head attention mechanism to con-
struct a sentence-level representation for multi-class sentence classification. At the same time, the
customized attention heads are also used to construct token-level representations for multi-class se-
quence labeling. The token-level supervision explicitly teaches the classifier which areas it needs
to focus on in each sentence, while the sentence-level objective regularizes the sequence labeling
predictions.

Changpinyo et al. (2018) advocate for the beneficial integration of several, related tasks. In our
case, the sentence and word predictions are explicitly tied together, so the network is incentivized
to develop an organic relationship between hierarchies that resembles how humans use language.
Moreover, as we formulate two distinct tasks based on the same dataset, we effortlessly provide
the network with more training examples. We introduce different optimization objectives to satisfy
the aim of each task – this implicitly regularizes the weights towards better (i.e., more general)
text representations (Ruder, 2017). Despite these theoretical guarantees, we seek to empirically
determine whether (and how) the interaction between the two levels of granularity benefits learning.

1Code available at https://github-placeholder.
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Recent work has shown promising results for directly supervising the internal components of a
model. For example, Liu et al. (2016) used alignment annotations to improve the performance of a
neural machine translation system. Rei & Søgaard (2019) described an architecture for supervising
attention in a binary text classification setting. Barrett et al. (2018) used a related model to guide the
network to focus on similar areas as humans, based on human gaze recordings. We build on these
ideas and describe a more general framework, extending it to both multi-class text classification and
multi-class sequence labeling.

We propose the following training conditions and experimental settings, grouped by the amount of
word-level annotation used by our model to guide its learning:

• Fully supervised: the system is provided with full annotations both on the sentence and
on the token level. The model has all the information needed to perform very well on
each isolated task. However, we are more interested in how the multi- and single-task
performances compare. Does the model take advantage of the joint learning regime and the
supplemental labeled data to increase its performance on each task?

• Semi-supervised: the system is provided with some supervision signal, but only for a sub-
set of the tokens, while sentences are always receiving it in full. We investigate our model’s
inference abilities and determine the proportion of token annotation that is sufficient for the
network to reach as good a performance as the fully supervised one.

• Unsupervised: learning sequence labeling without any token-level annotations (zero-shot
sequence labeling). In other words, we train a sentence classifier and evaluate it as a se-
quence labeler. If knowledge can be transferred from a higher, abstract sentence-level to
a lower, fine-grained token-level, the system will perform sophisticated word-predictions
solely based on the considerably cheaper sentence annotations.

We augment our model with several auxiliary objectives and add a new regularization term to in-
centivize the construction of distinct tag-specific sub-spaces. As we intertwine the two hierarchical
levels, our network exhibits strong transfer capabilities that we validate on three different tasks.

2 THE MULTI-HEAD ATTENTION LABELER (MHAL)

Our architecture is designed to tie the token and sentence representations together. It has two core
components: the first one uses Bi-LSTMs to build compact vectors for each word; the second uses a
multi-head attention mechanism to obtain two distributions, over the tagset and the sentence labels.
The goal of the mechanism is to perform sentence classification. However, because each head acts
as a separate label predictor, the system also behaves like a sequence labeler: the scores based
on which we make sentence-level predictions are obtained by combining the individual attention
weights, which are attached to each word and used to make token-level predictions. Joining multiple
levels in this way to detect multiple labels is one of our main contributions.

The first component takes as input a tokenized sentence of length N and maps it to a sequence
of vectors [x1, x2, ..., xN ]. Each vector xi, corresponding to the ith token in a sentence, is the
concatenation of its pre-trained word embeddingwi with its character-level representation ci, similar
to Lample et al. (2016). Passing each vector xi to a Bi-LSTM (Graves & Schmidhuber, 2005), we
obtain compact token representations zi by merging the hidden states from each direction at every
time step and projecting these onto a joint feature space using a tanh activation (equations 1 to 3).

−→zi = LSTM(xi,
−−→zi−1) (1)

←−zi = LSTM(xi,
←−−zi+1) (2)

zi = tanh(Wz[
−→zi ;←−zi ] + bz) (3)

The second component of our architecture is a multi-head attention mechanism (Vaswani et al.,
2017) that creates H heads. We set H equal to the size of our tagset and create a correspondence
between attention heads and token labels. For each continuous vector representation zi, and for each
head h ∈ {1, 2, ...,H}, we obtain three vectors of keys, queries and values (denoted by kih, qih, and
vih, respectively) by non-linearly projecting zi onto a different sub-space that is H times smaller
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Figure 1: MHAL architecture, taking a sequence of three words. Illustrated for one head h only. We
obtain character representations as presented in the dashed rectangle (here, for the word sat).

than the original input size. A critical difference between our approach and the standard multi-head
attention mechanism is that we collapse the queries qih (operating over each token i and each head
h) into a single query qh that is specific to head h. We achieve this by averaging qih across the
sentence, as in equation 4. The motivation is to obtain a compressed, individual representation that
is shared across the sentence but still encapsulates the identity of a single, specific tag.

We define our attention function as the dot product (denoted by •) between a query and its corre-
sponding key, resulting in the attention evidence scores aih ∈ R1. We apply a sigmoid (σ) activa-
tion function2 and normalize the attention scores across the words to obtain the attention weights
αih ∈ [0, 1]. Next, similar to Yang et al. (2016), we determine the importance of each value vector
by multiplying it with its corresponding attention weight. Summing these over the words in a sen-
tence, we get a representation sh ∈ Rd, which is further passed through two feedforward layers: the
first one is non-linear and projects the sentence representation onto a smaller feature space, while
the last one is linear and outputs a scalar sentence score oh for each head h (equations 5 to 8).

qh =
1

N

N∑
i=1

qih (4) aih = qh • kih (5)

αih =
σ(aih)
N∑
j=1

σ(ajh)

(6) sh =

N∑
i=1

αihvih (7)

oh =Wotanh(Wssh + bs) + bo (8)

where Wo and Ws are weight matrices, and bo and bs are bias vectors.

We need to collect the sentence scores across all heads and make a sentence prediction. The chal-
lenge arises as we have to map these H scores (equal to the number of token labels) to the number
of sentence labels S, which are not necessarily in direct correspondence. To solve this, we use the
fact that datasets typically have a default label that is common between the token and the sentence
label sets and that vastly outnumbers the others. We distinguish two situations:

2We chose the sigmoid over the softmax to impose a smoother distribution over the tokens attended.

3



Under review as a conference paper at ICLR 2020

1. H = S: Each sentence label has a corresponding word-tag (and thus, a head associated).
We can concatenate the sentence scores across all heads into a vector õ = [o1; o2; ...; oH ].

2. H 6= S and S = 2: The sentence labels are binary, while the token labels are not, so
we have to find a correspondence between the heads and the two sentence labels. We
concatenate the score obtained for the default head od (corresponding to the default label)
with the maximum score obtained for the non-default heads ond: õ = [od; ond], where d and
nd are the indices of the default and non-default heads, respectively, and ond = max

h6=d
(oh).

We obtain a normalized distribution ỹ over the sentence labels by applying a softmax on the extracted
scores õ ∈ RS and predict the label corresponding to the most probable sentence score.

In addition to sentence classification, we also want to make token-level predictions. To achieve this,
we treat each attention evidence aih as the score of an individual word i and head h. It is crucial to
note that the sentence scores (and thus, predictions) rely on the attention evidence – we conditioned
the sentence label distribution ỹ on the token scores. Thus, the sentence and token-level predictions
are intertwined, and we can perform sequence labeling in tandem with sentence classification by
re-using the attention evidence scores and re-interpreting them as token-specific predictions. By
explicitly tying together these two levels of granularity, we incentivized the network to learn better
composition functions and share language features between layers. Finally, we apply a softmax
on the concatenation of scores across all heads to obtain the token label distribution t̃i ∈ RH and
predict the tag with the maximum probability.

This subsumes the architectural design of our joint text classifier, to which we refer to as the multi-
head attention labeler (MHAL), schematically represented in Figure 1.

3 OPTIMIZATION OBJECTIVES

Our model can be optimized both as a sentence classifier and as a sequence labeler. Both losses,
Lsent and Ltok, minimize the summation over the categorical cross-entropy between the predicted
sentence (or token) label distribution ỹ (or t̃i) and its true annotation y (or its true gold tag ti):

Lsent = −
∑
s

S∑
j=1

y
(s)
j log(ỹ

(s)
j ) (9)

Ltok = −
∑
s

N∑
i=1

H∑
j=1

t
(s)
ij log(t̃

(s)
ij ) (10)

where y(s)j and t(s)ij are binary indicator variables specifying whether sentence s truly is a sentence
of label j and token t at position i in sentence s truly is a token of tag type j, respectively.

Recall that the sentence label distribution is based on the attention evidence scores, which represent,
in turn, the token scores used for word-level classifications. If we train our model solely as a sentence
classifier (by providing only sentence-level annotations), the network will also optimize the token
scores because the parameter updates on the sequence labeling task are performed at layers below
the sentence classification task. Moreover, the network will learn the important areas of a sentence,
combining the scores from individual words to determine the overall sentence label. In this way,
our model performs zero-shot sequence labeling, a type of transductive transfer learning (Ruder,
2017). In contrast, optimizing only the parameters used in the sequence labeling task does not
implicitly train the sentence scores since they are situated above it in the architecture. However,
when both levels receive supervision, the token signal encourages the network to put more weight
on the attention heads indicative of the correct labels.

Previous research in multi-task learning provides significant evidence that including several related
tasks along with the core task positively impacts performance due to the regularization and general-
ization effects of the procedure (Bingel & Søgaard, 2017; Søgaard & Goldberg, 2016; Changpinyo
et al., 2018). Closely following the setting proposed by Rei (2017), we include language modeling
(LM) as a secondary objective, operating both over characters and words. In this way, we inject
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corpus-specific information into the model as well as syntactic and semantic patterns (Linzen et al.,
2016; Marvin & Linzen, 2018) and expect them to lead to more transferable features.

We consider another auxiliary loss, whose purpose is to better wire the two granularity levels, of
sentences and words. We call it attention objective because it directly operates on the attention
heads corresponding to the correct sentence label, imposing two conditions:

1. There should be at least one word of the same label as the ground-truth sentence. Intuitively,
most of the focus should be on the words indicative of the sentence type.

2. There should be at least one word that has a default label. Even if the sentence has a
non-default class, it should still contain at least one default word.

These conditions can be formulated as a loss function and then optimized during training:

Lattn =
∑
s

(
max
i

(t̃∗
(s)
i,h=k)− q′k

)2
+
∑
s

(
max
i

(t̃∗
(s)
i,h=d)− q′d

)2
(11)

where

t̃∗i,h =

{
t̃i,h, if (H = S) ∨ (h = d ∧H 6= S ∧ S = 2)

max
j 6=d

(t̃i,j), if (h 6= d ∧H 6= S ∧ S = 2) (12)

and d is the default head, k is the true sentence label, t̃i is the predicted token label distribution for
word i (so t̃i,h is its value for head h), and, finally, q′ is the smoothed sentence label distribution
(so q′j is its value for sentence label j), whose expression is obtained as in Szegedy et al. (2016),
choosing ε = 0.15 and K = H .

Lastly, we propose a custom regularization term for the multi-head attention mechanism to motivate
the network to learn a truly distinct representation sub-space for each of the query vectors qh. As
opposed to the keys and values, which are associated with (possibly reoccurring) words, the queries
qh encapsulate the essence of a certain tag. Thus, they need to capture the distinctive features that
are specific to a particular head. To push the network towards this goal, we introduce the term Rq
and calculate it as the average cosine similarity between every pair of queries qh and qi, with h 6= i
(equation 13). Rq can be viewed as an orthogonality penalty: it attains a minimum for two query
vectors spanning over orthogonal sub-spaces, and a maximum when their sub-spaces coincide. Thus,
this technique imposes a wider angle between the queries, encouraging the model to learn unique,
diverse, and meaningful vector representations.

Rq =
2

H(H − 1)

H−1∑
h=1

H∑
i>h

qh · qi
‖qh‖ · ‖qi‖

(13)

The final loss function Ltot is a weighted sum of our objectives, allowing us to observe the effect of
the different components as well as to control the flow of the supervision signal and the importance
of each auxiliary task: Ltot = λsentLsent + λtokLtok + λLMLLM + λattnLattn + λRq

Rq .

4 EXPERIMENTS

Our model was evaluated on three different datasets: Stanford Sentiment Treebank (SST, Socher
et al., 2013) for sentiment analysis, CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003) for named
entity recognition (NER), and the First Certificate in English (FCE, Yannakoudakis et al., 2011) for
fine-grained grammatical error detection. All of them have already been tokenized and split into
train, development, and test sets. In the appendix, we provide some corpus statistics (Table 4) and a
detailed breakdown of the number of annotated examples available per split and per label (Table 5).

Our datasets contain sentences with labeled words, used to make token-level predictions. Thus,
they can be phrased as sequence labeling tasks: for SST, identifying the positive, negative and
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neutral words; for CoNLL-2003, detecting the persons, organizations, locations, miscellaneous, and
the non-named entities; for FCE, identifying the errors in content, form, function, orthography,
or others as well as the correct words. Given a sequence of labeled words, there is an implicit
label for the sentence too. For instance, a sentence containing at least one grammatical mistake
makes it ungrammatical overall. SST provides annotations for each sentence in the corpus, using
the same labels as for the tagset. For CoNLL-2003 and FCE, there are no pre-existing sentence-level
annotations, but we can infer a binary label for each sentence based on the existence of at least one
word annotated as an entity or as a grammatical error, respectively. As already mentioned, each
dataset has a default label, common between the token and the sentence label sets, and, in our case,
it corresponds to neutral phrases, non-named entities, and grammatical words, respectively.

We did not engage in fine-tuning our neural network’s components and largely followed the settings
proposed by Rei & Søgaard (2019). We manually searched the best values for our new parameters
based on the performance on the development set (see Table 6 in the appendix for a complete list).
To avoid outliers, we ran each experiment with five different random seeds and reported the mean
results using the metrics specific to each dataset along with the mean micro-average score (denoted
by a subscript µ) of the non-default labels (denoted by a superscript ∗), as commonly used in the
multi-task learning literature (Changpinyo et al., 2018; Martı́nez Alonso & Plank, 2017).

We train our models under the different regimes mentioned in the introduction by assigning corre-
sponding values to the weights λ in the expression of Ltot. We distinguish the following models:

• MHAL-sent: single-task sentence classifier; λsent = 1.0, while all the other λs are zero.

• MHAL-tok: single-task sequence labeler; λtok = 1.0, while all the other λs are zero.

• MHAL-sent+tok: optimized both as a sentence classifier and a sequence labeler; λsent =
λtok = 1.0, while all the other λs are set to zero.

• MHAL-joint: just like MHAL-sent+tok, it performs symmetric multi-task learning. In
addition, it also sets λattn = 0.01, λLM = 0.1, and Rq = 0.5.

• MHAL-zero: zero-shot sequence labeling where only sentence-level annotation is avail-
able for training; setting λsent = 1.0, λtok = 0.0, and all the other λs as in MHAL-joint.

SST CoNLL-2003 FCE
P∗µ R∗µ F∗1µ Acc P∗µ R∗µ F∗1µ F1µ P∗µ R∗µ F∗1µ F1µ

Random 38.99 30.81 34.42 31.58 79.11 48.91 60.45 48.91 67.64 51.16 58.26 51.07
MHAL-sent 71.40 83.75 77.08 70.12 97.16 99.20 98.17 97.06 79.46 89.09 84.00 77.58

MHAL-zero 71.61 83.80 77.23 71.08 97.18 98.80 97.98 96.80 77.96 93.41 84.99 77.90
MHAL-sent+tok 72.23 83.14 77.30 70.14 97.92 99.09 98.50 97.53 85.61 84.66 85.13 78.92

MHAL-joint 71.34 84.90 77.53 70.24 97.82 99.13 98.47 97.32 83.58 86.82 85.17 79.50

Table 1: Sentence classification performance on SST, CoNLL-2003, and FCE datasets.

In Table 1, we present the performance of our models when trained as sentence classifiers. For
SST and FCE, MHAL-zero outperforms MHAL-sent, suggesting that MHAL-zero’s additional aux-
iliary objectives further refine the predictions. Comparing these single-task sentence classifiers to
their multi-task counterparts (MHAL-sent+tok and MHAL-joint, which have also received token-
annotated examples), we observe that the F ∗1µ score consistently increases for the latter. This finding
suggests that the additional information extracted from individually labeled words was successfully
transferred to the sentence-level task. Therefore, MHAL-sent+tok and MHAL-joint become expo-
nents of the usefulness of multi-task learning, being our best models.

In Table 2, we present the performance of our models when trained as sequence labelers. Our zero-
shot sequence labeling model MHAL-zero exploits the generality of neural networks, sharing fea-
tures from a higher to a lower level task, and performs the best amongst other models that do not use
token-level supervision. For instance, the random label assignment can be a strong baseline, partic-
ularly for highly skewed datasets, such as FCE; MHAL-zero surpasses it, while the simple sentence
classifier MHAL-sent does not always do so. MHAL-zero persistently outperforms MHAL-sent by
a large margin on all datasets (e.g. it gave a 16.31% boost in F∗1µ on SST). Since the difference be-
tween them resides in the activated objectives, these results show that our auxiliary losses introduce
a necessary inductive bias, improving MHAL performance.
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SST CoNLL-2003 FCE
P∗µ R∗µ F∗1µ F1µ C-P C-R C-F1 F∗1µ P∗0.5µ R∗0.5µ F∗0.5µ F0.5µ

Random 11.01 33.59 16.59 26.41 13.09 20.14 15.87 7.20 2.60 16.78 4.50 16.63
MHAL-tok 87.20 70.90 78.19 92.13 90.75 91.47 91.11 90.31 44.48 15.89 23.34 87.36

MHAL-sent 8.67 13.85 10.62 56.35 13.18 21.95 16.47 9.52 2.46 15.85 4.24 35.33
MHAL-zero 21.60 39.78 26.93 67.26 24.02 27.23 25.51 21.54 4.03 12.00 5.64 60.84

MHAL-sent+tok 87.52 72.35 79.21 92.21 91.05 91.69 91.37 90.77 43.41 17.45 24.47 87.97
MHAL-joint 87.47 73.12 79.65 92.37 91.02 91.75 91.38 90.70 45.66 20.65 28.25 87.98

Table 2: Sequence labeling performance on SST, CoNLL-2003, and FCE datasets. Metrics starting
with C- represent span-sensitive scores, specific to the NER task.

Figure 2: Attention evidence scores, normalized acrossed heads, assigned by MHAL-zero for the
words in a sentence from the CoNLL-2003 dataset.

Visualization of the MHAL-zero attention heads can provide a way to understand the patterns
learned by the network. Figure 2 shows a sentence from the CoNLL-2003 dataset along with its
attention evidence scores, normalized across the heads. The model is able to identify entities in the
sentence even when trained with only a binary sentence-level signal. However, this is a difficult task
and it does not always assign the correct entity type, here mistaking the person for an organization.
By including token-level supervision into the model, MHAL-joint is able to further improve on this
result. We include additional visualizations of both MHAL-zero and MHAL-joint in the appendix.

Note that our multi-task models (MHAL-sent+tok, MHAL-joint) register systematic improvements
across all our datasets over the single-task sequence labelers, which were trained in isolation
(MHAL-tok, MHAL-sent), further emphasizing the effectiveness of sharing information between
the two granularity levels. On our way to obtaining the sentence scores, we re-interpreted each at-
tention evidence as a token score. Now, based on the results presented, it follows that wiring each
head to a classifier designated for a single label has better stimulated the network to learn shared
representations and excel at performing two tasks, under the same architecture.

Figure 3: Semi-supervised experiments for SST, CoNLL-2003, and FCE, comparing the sequence
labeling performance of the multi-task model MHAL-joint with the single-task model MHAL-tok.

We perform a semi-supervised experiment on MHAL-joint, using the supervision signal of all sen-
tences and only a percentage p of the word-level annotations. In Figure 3, we present the sequence
labeling results of our multi-task MHAL-joint, in comparison to the single-task MHAL-tok, gradu-
ally increasing p to allow more tokens to guide learning. We observe that adding as little as 10% of
the token-annotated sentences increases MHAL-zero’s performance by substantial amounts (38.01%
on SST, 61.31% on CoNLL-2003, and 12.15% on FCE), suggesting that the two tasks are positively
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influencing each other. Using only 30% of the data, MHAL already approaches its fully-supervised
performance, showing that the transfer of knowledge has benefits that flow in both directions be-
tween sentences and words. Compared to MHAL-tok, MHAL-joint is systematically better – the
multi-task model has the annotated sentences at its disposal and learns to use them to its advantage
particularly when receiving weak token supervision signals (steep increases for ≤ 50%).

Dev metric SST CoNLL-2003 FCE
P∗µ R∗µ F∗1µ S-Acc C-P C-R C-F1 S-F1 P∗µ R∗µ F∗0.5µ S-F1

S-F∗1µ 21.60 39.78 26.93 71.08 24.02 27.23 25.51 96.80 4.03 12.00 5.64 77.90
F∗1µ 23.21 32.97 27.24 68.64 20.03 24.25 21.79 93.05 3.56 18.52 5.96 75.83
(S-F∗1µ+F∗1µ)/2 23.34 47.00 30.22 70.92 24.10 28.02 25.92 96.90 3.85 17.12 6.28 78.03

Table 3: The effect of the stopping criterion metric during the training of MHAL-zero.

Across all our experiments, we impose two stopping criteria and apply them on the development set:
1. the sentence-level classification performance (S-F∗1µ), adopted by all models that do not receive
any token-level annotation (e.g. MHAL-zero); 2. the token-level classification performance (F∗1µ),
adopted by all models that receive some token annotation (e.g. MHAL-tok, MHAL-joint).

We observed that, even in the case of MHAL-zero, stopping based on the token performance im-
proves the word-level predictions at test time, but usually hurts the sentence predictions. However,
as suggested by the results in Table 3, stopping based on the average of these two metrics generally
improves both the token and the sentence predictions.

The network usually takes more time to reach the common optimal point when we include the token-
based stopping criterion. Sentence classification is an easier task than sequence labeling – being
predicted at a higher layer in the network hierarchy, it accumulates more information and thus builds
solid abstractions, not to mention that it has fewer unique labels. For these reasons, the network falls
into a local minimum when guided by the sentence-level performance. However, choosing tokens
as a stopping criterion requires annotated development data, which does not generally comply with
the framing of our zero-shot learning experiment. Nevertheless, reporting this finding emphasizes
that the stopping criterion requires careful consideration – it is responsible for choosing the best
performing model used during testing and for driving the application of the learning rate decay. A
few performance percentage points could be gained by carefully selecting the stopping metric.

5 CONCLUSION

In this paper, we proposed MHAL, a novel model that ties together two hierarchical levels (for sen-
tences and words) to build representations whose richness and utility were evaluated on three differ-
ent tasks: sentiment analysis, named entity recognition, and grammatical error detection. MHAL’s
architecture is based on a multi-head attention mechanism that re-interprets each head as an indi-
vidual label classifier, treating each attention evidence as a token score, based on which we make
multi-class word-level predictions. The attention weights also contribute to making sentence pre-
dictions, so the two granularity levels are intertwined and incentivized to help each other by sharing
knowledge. Therefore, through this design innovation, our model can perform two prediction prob-
lems – sequence labeling and sentence classification – using the same, shared architecture.

We proposed training MHAL under various regimes; the results confirm its versatility and robust-
ness. The several auxiliary objectives introduced (attention loss, language modeling, query reg-
ularization), whose purpose was to be “bridges” between the two prediction tasks, proved to be
beneficial additions. Our zero-shot sequence labeling model learned suggestive patterns for the
whole sentence and successfully transferred them to the lower-level task. Helped by their archi-
tectural design, our multi-task models (MHAL-sent+tok and MHAL-joint) always outperform their
single-task counterparts (MHAL-sent and MHAL-tok). This finding is important as it reveals the
benefits of cooperation between related tasks: conditioning the sentence scores on the unnormal-
ized attention weights, which are, in turn, used as token scores, caused a fluid flow of information
and the development of an organic relation between granularity levels. Therefore, by (re-)designing
joint models, we can bring NLP transfer learning closer to performing structured multi-level text
understanding and labeling.
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A APPENDIX

Dataset No. labels Prop. O Full Entropy Non-O Entropy
sent tok sent tok sent tok sent tok

SST 3 3 0.19 0.78 1.509 0.961 0.999 0.956
CoNLL-2003 2 5 0.20 0.83 0.731 0.979 0.263 1.929
FCE 2 6 0.37 0.89 0.952 0.775 0.421 2.288

Table 4: We list, for sentences and tokens: number of unique labels, proportion of default labels (O),
entropy of the label distribution, and entropy of the non-default label distribution (using log2).

Dataset Label Number of sentences Number of tokens
Train Dev Test Train Dev Test

SST

O 1,624 229 389 128,156 16,684 33,128
N 3,310 428 912 13,384 1,740 3,488
P 3,610 444 909 22,026 2,850 5,789

Total 8,544 1,101 2,210 163,566 21,274 42,405

CoNLL-2003

O 2,909 645 697 169,578 42,759 38,323
LOC

11,132 2,605 2,756

8,297 2,094 1,925
MISC 4,593 1,268 918
ORG 10,025 2,092 2,496
PER 11,128 3,149 2,773

Total 14,041 3,250 3,453 203,621 51,362 46,435

FCE

O 10,718 824 900 396,479 30,188 35,525
CONTENT

17,836 1,384 1,806

7,194 527 673
FORM 8,174 621 850
FUNC 11,084 888 1,194
ORTH 12,655 1,126 1,429

OTHER 11,415 861 1,116

Total 28,554 2,208 2,706 447,001 34,211 40,787

Table 5: Statistics of the labeled sentences and tokens, separated by the train, dev or test split.
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Hyperparameter Value Description
word embedding size 300 Size of the word embeddings.
char embedding size 100 Size of the character embeddings.
word recurrent size 300 Size of the word-level Bi-LSTM hidden layers.
char recurrent size 100 Size of the character-level Bi-LSTM hidden layers.
word hidden layer size 50 Compact word vector size, applied after the last Bi-LSTM.
char hidden layer size 50 Char representation size, applied before concatenation.
attention evidence size 100 Layer size for predicting attention weights.
hidden layer size 200 Final hidden layer size, right before word-level predictions.
max batch size 32 Number of sentences taken for training.
epochs 200 Maximum number of epochs to run the experiment for.
stop if no improvement 7 Stop if there has been no improvement for this many epochs.
learning rate 1.0 The learning rate used in AdaDelta.
decay 0.9 Learning rate decay used in AdaDelta.
input dropout 0.5 Value of the dropout applied after the LSTMs.
attention dropout 0.5 Value of the dropout applied on the attention mechanism.
LM max vocab size 7500 Max vocabulary size for the language modeling objective.
smoothing epsilon 0.15 The value of the epsilon in label smoothing.
stopping criterion F∗1µ The development metric used as the stopping criterion.
optimization algorithm AdaDelta Optimization algorithm used.
initializer Glorot Method for random initialization.

Table 6: Hyperparameter settings for all of our MHAL models.

Figure 4: Attention evidence scores, normalized acrossed heads, assigned by MHAL-zero for the
words in three sentences from the SST (leftmost), CoNLL-2003 (middle), and FCE (rightmost)
datasets.
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Figure 5: Attention evidence scores, normalized acrossed heads, assigned by MHAL-joint for the
words in three sentences from the SST (leftmost), CoNLL-2003 (middle), and FCE (rightmost)
datasets.
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