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ABSTRACT

Pre-trained Deep Convolutional Neural Network (CNN) features have popularly
been used as full-reference perceptual quality features for CNN based image
quality assessment, super-resolution, image restoration and a variety of image-
to-image translation problems. In this paper, to get more insight, we link basic
human visual perception to characteristics of learned deep CNN representations
as a novel and first attempt to interpret them. We characterize the frequency and
orientation tuning of channels in trained object detection deep CNNs (e.g., VGG-
16) by applying grating stimuli of different spatial frequencies and orientations as
input. We observe that the behavior of CNN channels as spatial frequency and ori-
entation selective filters can be used to link basic human visual perception models
to their characteristics. Doing so, we develop a theory to get more insight into
deep CNN representations as perceptual quality features. We conclude that sensi-
tivity to spatial frequencies that have lower contrast masking thresholds in human
visual perception and a definite and strong orientation selectivity are important
attributes of deep CNN channels that deliver better perceptual quality features.

1 INTRODUCTION

Quantifying human perception of image quality has been a subject of significant research for quite
some time. Full-reference objective metrics such as the PSNR (Peak Signal to Noise Ratio) and
SSIM (Structural Similarity Index) (Wang et al. (2004)), being fair metrics of distortion between
two images, are not a satisfactory metrics to measure differences in perceptual quality. Considering
the recent interest in the applications of deep CNNs in perception-oriented problems such as super-
resolution, image-restoration, frame-interpolation and style-transfer etc, research into effective loss
metrics that quantify perceptual quality and help train CNNs in delivering better perceptual quality
has become paramount.

The perceptual loss proposed by Johnson et al. (2016) was one of the first to demonstrate how ef-
fective the feature representations of pre-trained image classification CNNs could be as features of
full-reference perceptual quality, especially when incorporated into loss functions for image restora-
tion. The perceptual loss is now popularly adopted in many image restoration problems such as
super-resolution, style transfer, denoising etc. (Ledig et al. (2017),Wang et al. (2018),Gatys et al.
(2016)). Zhang et al. (2018) and Blau & Michaeli (2018) further demonstrate how effective deep
CNN representations can be as features of perceptual quality, but without any analysis into their
characteristics. More recently, Mechrez et al. (2018) proposed a variation of the perceptual loss
called the contextual loss, which still employs deep CNN features as perceptual quality features
but uses an approximation of the KL-divergence to quantify distance. The contextual loss has been
demonstrated to be quite effective in maintaining natural image statistics during SISR. The recent
PIRM Super-Resolution Challenge Report (Blau et al. (2018)) clearly iterates that the perceptual
loss and the contextual loss are the most widely used loss functions for CNN based perceptual im-
age Super-Resolution.

Nevertheless, like most applications of deep learning, there has been little or no effort to understand
and interpret the role of deep CNN representations as effective perceptual quality features. This
is quite understandable, as it is difficult to find a direction to approach this problem from. Neural
networks are non-linear, which makes a tractable analysis tricky. Furthermore, human perception of
quality is also something that is still not understood completely. Most of our basic understanding
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of human visual perception of quality is in the frequency domain, with models such as the Contrast
Sensitivity Function (CSF) (de Faria et al. (1998)). To make a connection between deep CNN
features and human perception, it is important to realize that deep CNN channels are essentially
complex spatial frequency and orientation selective filters.

We stimulate pre-trained image classification CNNs with sinusoidal grating stimuli, record the re-
sponse in the form of mean activation of each channel as function of spatial frequency/orientation of
input grating, thus quantifying the frequency and orientation selectivity of different channels. This
approach makes it significantly easier to establish a connection between perception models such as
the CSF with learned deep feature representations. We hypothesize that two attributes are important
for deep CNN channels that are good perceptual quality features. The first attribute is sensitivity to
spatial frequencies at which there is minimal contrast masking in human visual perception (Nade-
nau et al. (2000)), making the CNN channel sensitive to highly perceivable distortions. The second
attribute being a definite and strong orientation selectivity, which helps the channel respond better
to image regions with less pattern complexity, where there is less masking for distortions from a
perceptual standpoint (Wu et al. (2017)).

We verify our hypothesis by designing an Objective Quality Assessment (OQA) experiment (Sheikh
et al. (2006)). OQA experiments correlate the performance of any quality metric with human per-
ception of quality, which is an accepted and standard experimental technique. We group the set of
channels in different CNN layers into subsets on the basis of our hypothesis and demonstrate that
the group which has channels with our described attributes, delivers a much better as a set of per-
ceptual quality features. We repeat our experiment across multiple layers of many pre-trained image
classification networks such as the VGG-16 (Simonyan & Zisserman (2014)), AlexNet (Krizhevsky
& Hinton (2012)), ShuffleNet (Zhang et al. (2017)) and SqueezeNet (Iandola et al. (2017)).

2 DEEP CNN REPRESENTATIONS AS PERCEPTUAL QUALITY FEATURES

The main motivation behind using pre-trained image classification deep CNN representations as
perceptual quality features is that instead of a distance measure between two images being a good
FR metric, computing distance after non-linear transformation of images into a high dimensional
manifold, might result in a better perceptual quality measure. The high dimensional manifold in this
case is the manifold of pre-trained CNN features. The general form for the perceptual loss (Johnson
et al. (2016)) is given by Eq. (1)

lp =
1

M ·W ·H

M∑
m=1

‖Φkm(Iout)− Φkm(IGT)‖22 (1)

Where ’Φkm’ is the feature map corresponding to the ’mth’ channel in the ’kth’ layer which as ’M’
number of total channels with feature map dimensions ’H·W’. As mentioned before, applying pre-
trained deep CNN representations as perceptual quality features has proven to be quite effective in
FR-IQA methods (Bosse et al. (2017)), image restoration (Wang et al. (2018)) and style transfer
(Gatys et al. (2016)) problems, as iterated by Blau et al. (2018).

However, little else is known of the ability and characteristics of deep CNN representations as per-
ceptual quality features. In this work, using basic human perception models, we aim to get more
insight into the role of pre-trained deep representations as perceptual quality features.

3 PROBLEM FORMULATION

Section. 2 iterates the motivation and wide spread use of pre-trained deep CNN representations
as features of full-reference perceptual quality. However, there has been no effort to explain and
interpret the role of deep representations as perceptual features. We consider a CNN convolution
layer as collection channels which deliver perceptual quality features. For example, the relu3 2
layer of the VGG-16 has 256 channels. Are all of the channels equally effective in delivering good
perceptual quality features? Are some channels better than others and if so, what attributes make
them better?
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Figure 1: Experimental Setup. The network is stimulated by gratings of varying spatial frequency.
The responses of different feature maps are recorded as activation vs spatial frequency data. To
quantify orientation tuning, the network is stimulated by gratings of fixed spatial frequency and
varying orientations to record mean activation vs orientation data.

The problem in question is important in explaining the role of deep CNN representations as percep-
tual quality features, but it is somewhat difficult to approach because of the ’black-box’ nature of
neural networks. In section. 4.1, we will introduce a methodology to quantify the spatial frequency
and orientation tuning of channels in pre-trained CNNs. Using this formulation, we will interpret
and explain deep CNN features as perceptual quality features by making use of basic human visual
perception models, which rely on spatial frequency and orientation characteristics of input stimuli.
In essence, the formulation in Section. 4.1 will act as a bridge to link attributes of deep representa-
tions and basic visual perception.

(a) Spatial Frequency Tuning (b) Orientation Tuning

Figure 2: Characterizing spatial frequency and orientation tuning in channels across different layers
of the pre-trained VGG-16.
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4 A PSYCHOVISUAL APPROACH

4.1 FREQUENCY/ORIENTATION TUNING QUANTIFICATION

Our experimental method is inspired by the grating stimulus experiments used by neuro-scientists to
study human visual perception characteristics (Kulikowski et al. (1982)). We aim to quantify both
the spatial frequency and orientation tuning of different channels in the pre-trained CNN.

To quantify the spatial frequency tuning, we generate concentric sinusoidal gratings of a fixed con-
trast and varying spatial frequencies (cycles per degree), use them to stimulate pre-trained image
classification CNNs and record the responses of the feature maps in the form of mean activation ver-
sus spatial frequency for each channel. Fig. 1 illustrates the overall scheme of measuring the spatial
frequency responses of channels in various convolution layers of the trained VGG-16 network. The
reason we are using a concentric pattern is to eliminate the factor of orientation selectivity from this
part of the analysis. Some concentric grating stimulus patterns are shown as input to the trained
VGG-16 network in Fig. 2.(a).

To quantify orientation selectivity at low contrast masking thresholds, we stimulate the pre-trained
network with linear pattern sinusoidal gratings with different orientations. The gratings have a fixed
spatial frequency, which corresponds the the peak of the Contrast Sensitivity Function (CSF). Some
sample grating patterns are shown in Fig. 1. Sample observations of orientation selectivity for
channels in different layers of the pre-trained VGG-16 are shown in Fig. 2.(b).

4.2 VISUAL FREQUENCY SENSITIVITY

In this section, we will use the spatial frequency selectivity quantification in section. 4.1 to intro-
duce the concept of visual frequency sensitivity. Human perception of images is largely dependent
on attributes of input stimulus. A significant proportion of neuro-science research advocates the
role of the early visual cortex as a spatial frequency analyzer (Maffei & Fiorentini (1973)). Human
perception characteristics are dependent on spatial frequency and one of the most significant mod-
els that quantifies this characteristic is called the Contrast Sensitivity Function (CSF). The spatial
frequencies where the CSF has a higher value, correspond to lower contrast masking thresholds in
perception. In essence, this corresponds to a higher probability of perceiving distortions at high CSF
valued spatial frequencies.

Considering the presented analysis on the spatial frequency selective behavior of deep feature maps.
Our hypothesis is that the deep representations that are more sensitive to high CSF valued spatial
frequencies, can be better features of perceptual quality. Fig. 3 plots mean activation of two channels
versus spatial frequency of the input grating. Feature Map-2 can be seen to have a higher sensitivity
compared to Feature Map-1 at high CSF valued spatial frequencies, making Feature Map-2 more
sensitive to distortions corresponding to low contrast masking threshold regions in input images.

We model this attribute quantitatively as µ1 defined in Eq. 2

µ1(k,m) =
∑

f
CSF (f).

∣∣∣∂akm
∂f

∣∣∣ (2)

where ’k’ is the index for the convolution layer, ’m’ is the feature map index in each convolution
layer, ’CSF’ is the contrast sensitivity function (CSF), ’a’ is the mean activation of the feature map
and ’f ’ is the spatial frequency in cycles per degree. µ1 quantifies the average sensitivity of a CNN
channel weighted by the CSF over different spatial frequencies. The channels having higher µ1

values should deliver better perceptual features according to our hypothesis, because they can be
more sensitive to visually perceivable distortions in input images.

4.3 ORIENTATION SELECTIVITY

In addition to the underlying spatial frequency, orientation also plays an important part in human
perception of visual stimulus. Neuro-science research indicates that the HVS is highly adapted to
extract repeated patterns for visual content representation (Wu et al. (2017)). The complexity of a
visual pattern has an effect in its perception. If a pattern is regular, the visual masking for such a
pattern is weak, and distortions are easily perceivable. For complex and irregular image patches, the
visual system presents a stronger masking effect.
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Figure 3: Two different feature maps may have different sensitivities to important visual frequencies.

We have quantified orientation selectivity of different channels in a pre-trained image classification
CNN (VGG-16) in Fig. 2.(b). We observe that a significant proportion of channels show a definite
orientation selective tuning, such as the ones represented in Fig. 2(b)(a), Fig. 2(b)(b), Fig. 2(b)(j)
etc. There channels should in theory be more sensitive in responding to simple patterns. However,
quite a few channels show weaker orientation sensitivity such as the ones represented in Fig. 2(b)(c),
Fig. 2(b)(k), Fig. 2(b)(n) and Fig. 2(b)(o) etc. We hypothesize the channels that show strong and
definite orientation selective tuning, respond better to regular image patterns, which have lower
masking thresholds, making these channels deliver better perceptual quality features.

Suppose that within some layer ’k’, amθ be the mean activation of a feature map corresponding to
channel ’m’ to the input grating of orientation ’θ’. Let the maximum mean activation be âm =
maxθ a

m
θ . We model our orientation selectivity attribute for a channel as µ2 in Eq. (3).

µ2(k,m) =
∑
θ

(amθ − âm)2 (3)

Considering our hypothesis, channels with higher µ2 should deliver relatively better features of
perceptual quality.

4.4 PERCEPTUAL EFFICACY SCORE (PE)

Based on our defined attributes, we devise a quantification for the efficacy of channels in pre-trained
deep CNNs to deliver good features for perceptual quality, called the Perceptual Efficacy (PE). The
perceptual efficacy of a channel with index ’m’ in layer ’k’ is defined as the product of normalized
µ2 and µ2.

PE(k,m) =
µ1(k,m) · µ2(k,m)∑

m µ1(k,m) ·
∑
m µ2(k,m)

(4)

5 EXPERIMENTAL SETUP

We devise an experimental methodology to verify our hypotheses that deep CNN representations
that have a higher PE are better perceptual quality features. Let Fk be the set of all channels within
a layer ’k’ of a pre-trained CNN (e.g VGG-16).

Fk = {Φk0 ,Φk1 , . . . ,ΦkM} (5)

We constitute subsets of channels from Fk based on the quantification of our proposed attributes
(PE). For example, if there are 128 channels in the relu2 2 layer of the VGG-16, we can group the
top 15% (19 channels) of the total 128 with the highest PE as

H-15 = {Φk0 ,Φk1 , . . . ,Φkm} (6)

Similarly, the bottom 15% channels with the lowest PE can be represented as

L-15 = {Φk0 ,Φk1 , . . . ,Φkm} (7)
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where H-x,L-x ⊆ Fk and x ∈ (0, 100]. For x = 100, the subsets become the complete set of
channels Fk.

To validate our hypotheses, it is necessary to demonstrate that subsets containing higher PE val-
ued channels deliver better perceptual quality features compared to subsets with lower PE valued
channels.

5.1 OBJECTIVE QUALITY ASSESSMENT (OQA) TESTS

OQA tests correlate the performance of any quality metric, with human subjective assessment and
perception of quality (Sheikh et al. (2006)). Human assessment of perceptual image quality is quan-
tified using the Differential Mean Opinion Score (DMOS) over images with varying levels of dis-
tortion. Metrics that have higher correlation with DMOS scores after regression, measured using
statistical indicators such as the RMSE (Root Mean Square Error), LCC (Linear Correlation Co-
efficient) and the SROCC (Spearman Rank Order Correlation Coefficient), are regarded as better
quality metrics.

In our problem setting, we will use Eq. 1 with the different subsets of channels, as defined in Section
5. We demonstrate that for use with Eq. 1, within different CNN layers, channels having higher
PE, give much better correlation with DMOS compared to channels with lower PE. Essentially,
we demonstrate that CNN channels with our pre-described attributes are indeed better perceptual
quallity features.

We use images and DMOS scores from both the LIVE image quality dataset (Sheikh et al. (2006))
and multiple distortion dataset (Jayaraman et al. (2012)) which collectively include images with
Gaussian Blur, JPEG compression, JPEG2000, White Noise as well as images which have been
corrupted with multiple types of distortions (such as white noise, Gaussian blur and camera noise)
simultaneously.

We will repeat our experiment accross multiple layers of several pre-trained image classification
CNNs such as AlexNet, ShuffleNet, SqueezeNet and VGG-16.

(a) H-10 (b) L-10

Figure 4: Correlation of metric scores in Eq. 1 with human subjective DMOS for the
’fire2 ReLU exp2x2’ layer of the ’SqueezeNet’. It can be seen that the metric in Eq. 1 with the
channel subset H-10 has a much better correlation with DMOS, compared to Eq. 1 with the L-10
subset of channels.

5.2 2AFC SIMILARITY TESTS

In the 2AFC test, two distorted images are shown to an observer and he/she is asked to rate which
one is closer to the ground truth, in perceptual appearance. This process is repeated for multiple
image triplets and observers per-triplet to construct a data-set called the Berkley-Adobpe Perceptual
Patch Similarity Data-set (BAPPS) (Zhang et al. (2018)). Objective metrics such as the one in Eq.
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Table 1: Objective Quality Assessment Test. The correlation of metric scores delivered by Eq. 1
(for different feature subsets) with human subjective assessment of perceptual quality, quantified by
DMOS.

Network Layer Feature
Set RMSE LCC SROCC

VGG-16

ReLU2 2

F 9.8366 0.8146 0.8028
H-10 8.8286 0.8538 0.8486
L-10 12.3114 0.6878 0.6806
L-90 10.5863 0.7813 0.7739

ReLU4 1

F 9.8149 0.8155 0.8076
H-2 8.8183 0.8542 0.8476
L-2 10.2338 0.7874 0.7863
L-80 9.8485 0.8141 0.8070

AlexNet

ReLU1

F 9.7580 0.8179 0.8155
H-10 9.1514 0.8419 0.8368
L-10 12.8110 0.6553 0.6562
L-70 10.3186 0.7936 0.7931

ReLU4

F 8.8015 0.8548 0.8605
H-5 8.5467 0.8637 0.8651
L-5 9.8927 0.8122 0.8197
L-50 9.0697 0.8450 0.8507

SqueezeNet

fire2
ReLU
exp 3x3

F 11.2791 0.7468 0.7397
H-10 10.8632 0.7679 0.7625
L-10 12.6927 0.6632 0.6614
L-50 11.6555 0.7264 0.7199

fire6
ReLU
exp 3x3

F 11.4191 0.7394 0.7314
H-5 11.8710 0.7142 0.7017
L-5 12.6857 0.6637 0.6540
L-50 12.0600 0.7063 0.6988

ShuffleNet

node7

F 11.0810 0.7570 0.7519
H-10 9.9055 0.8117 0.8002
L-10 14.2481 0.5424 0.5583
L-70 11.6409 0.7272 0.7232

node17

F 9.1354 0.8425 0.8421
H-10 8.8577 0.8528 0.8477
L-10 11.5070 0.7346 0.7407
L-70 9.2306 0.8389 0.8414

Table 2: 2AFC Similarity Test. How well metric decisions conform with human assessment of
image triplets .

SqueezeNet
(fire2 ReLU exp 3x3)

ResNet18
(Res4a ReLU)

F H-10 L-10 L-75 F H-2 L-2 L-80
60.23 62.85 56.08 59.83 60.69 62.53 60.10 60.21
VGG-16
(ReLU3 2)

AlexNet
(ReLU4)

F H-5 L-5 L-50 F H-2 L-2 L-75
59.97 60.86 58.28 59.41 64.62 63.38 61.30 62.35
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1 are thereafter evaluated to see how well they conform to the pair-wise human judgment. For
example, in an image triplet, let x0 and x1 be two distorted versions of the ground truth image xg

that are shown to 5 human observers, 4 of which judge x0 to be closer to xg, as opposed to x1 being
closer to xg. If an objective metric evaluates x0 to be closer to the ground truth, it will get an 80%
credit which in the opposite case would be 20%.

The BAPPS data-set contains images with distortions such as super-resolution, frame-interpolation
and deblurring, which do not have subjective DMOS data-sets available online. Therefore, as a
secondary experiment, we perform a 2AFC test on super-resolution, frame-interpolation and video-
deblurred frame images in the BAPPS data-set with Eq. 1 for different channel subsets defined in
Section. 5. In order to verify our hypothesis, we will show that subsets that contain channels with
higher PE, deliver better perceptual quality features.

6 RESULTS AND DISCUSSIONS

Table 1 quantifies the correlation of Eq. 1 with DMOS for different subsets of channels, constructed
on the basis of our described attributes, as explained in Section 5. Table 1 validates our hypothesis
that within a CNN layer, channels which have higher PE (Eq. 4) deliver better perceptual quality
features. It can be observed that very small proportions (2%-10% of total) of channels with the
highest PE, deliver better perceptual quality features compared to a much higher proportion (50%-
90% of total) of channels having lower PE. Furthermore, in a majority of cases, a small proportion of
channels that have our described attributes (higher PE), perform even better than the complete set of
channels in the layer. This implies that our proposed attributes are indeed important characteristics
that make learned deep CNN representations good perceptual quality features.

Table. 2 shows the results of our secondary 2AFC similarity test on the super-resolution, frame-
interpolation and video-deblurring distorted images in the BAPPS data-set. It can been seen that
yet again, similar to the conclusion in the primary QQA experiment, the subsets with channels
having higher PE are better perceptual quality features compared to even much larger subsets having
channels with lower PE.

7 FUTURE WORK

We have proposed a model to explain and interpret which channels in pre-trained image classification
CNNs deliver better perceptual quality features. The model may be used to improve the use of deep
representations as perceptual quality features by helping in feature selection for IQA methods such
as (Bosse et al. (2017)) and maybe designing channel attentive mechanism to improve the perceptual
loss (Johnson et al. (2016)). The model may also be reference for learning better perceptual quality
feature representations which may benefit a wide variety of applications. Furthermore, the model
may be enhanced to include more psychophysical factors such as eccentricity etc. Another possible
application may be CNN-based image compression where prior knowledge of the potential efficacy
of different channels may help efficient perceptual compression of redundant image data.

8 CONCLUSIONS

Deep CNN representations of pre-trained image classifications CNNs have been popularly used as
perceptual quality features for perception orientated applications such as CNN based quality assess-
ment, image/video super-resolution and many image-to-image translation problems. In this paper,
as a novel and first effort, we have linked basic human visual perception models to pre-trained deep
CNN representations in order to explain and interpret them as perceptual quality features. Based on
masking characteristics in human visual perception, we formulate attributes of channels in different
layers of pre-trained networks, and experimentally demonstrate that the attributes are important char-
acteristics that make some deep CNN representations better perceptual quality features compared to
others.
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A GRATING GENERATION

In this section, we present details behind the generation of sinusoidal gratings of different spatial
frequencies.

The contrast sensitivity function is expressed on the domain of spatial frequency in cycles per degree
(cyc/deg). The cycles per degree express the number of sine cycles captured by the observer per unit
degree of observation. Obviously, the distance of viewing and dimensions of the screen play an
important part in this measurement.

We essentially generate gratings in the computer simulation in cycles per pixel. Let the display
screen being used in the experiment have a height ’h’ inches and resolution ’r’ pixels per inch. The
optimal viewing distance in psychovisual experiments should satisfy a function called the PVD (42
(2002)). The PVD is a function that expresses the optimal ratio of viewing distance to the height of
the display screen. The optimal viewing distance ’d’ for the screen with height ’h’ can be calculated
using the PVD.

The transformation between cycles/degree and cycles/pixel is

cycles

pixel
=

cycles

degree
× degrees

pixel
(8)

Where
pixels

degree
=

180

π × d× r
(9)

Therefore,
cycles

pixel
=

cycles

degree
× π × d× r

180
(10)

We have tested with a number of different display systems of SD, 2K and 4K resolutions. Consider-
ing that the PVD takes the viewing angle into account, the changes in the resultant spatial frequencies
of the gratings are small and insignificant. Therefore, it can be concluded that the choice of display
system has a negligible effect on the experiment.

For the generation of grating with fixed spatial frequency and varying orientation, the experimental
setup is the same.
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Table 3: Objective Quality Assessment Test. The correlation of metric scores delivered by Eq. 1
(for different feature subsets) with human subjective assessment of perceptual quality, quantified by
DMOS.

Network Layer Feature Set RMSE LCC SROCC

GoogleNet

conv2
ReLU
3x3

F 9.2730 0.8370 0.8351
H-5 9.1360 0.8425 0.8364
L-5 12.6595 0.6654 0.6674
L-80 9.6636 0.8218 0.8203

inception
4a-ReLU
3x3

F 10.2264 0.7977 0.8061
H-5 9.8592 0.8137 0.8201
L-5 10.8882 0.7667 0.7750
L-45 10.0326 0.8063 0.8163

MobileNet-v2

block1
expand
ReLU

F 11.9441 0.7099 0.7017
H-10 11.6059 0.7292 0.7256
L-10 13.7130 0.5884 0.5825
L-70 12.7912 0.6566 0.6505

block3
expand
ReLU

F 10.1957 0.7991 0.8063
H-10 9.2423 0.8385 0.8459
L-10 13.2810 0.6219 0.6223
L-70 10.7877 0.7716 0.7804

ResNet-18

Res2a
ReLU

F 10.8622 0.7680 0.7702
H-10 10.0841 0.8040 0.7898
L-10 11.6195 0.7284 0.7339
L-75 11.2807 0.7467 0.7549

Res4a
ReLU

F 9.1073 0.8436 0.8611
H-5 9.2559 0.8379 0.8509
L-5 10.1132 0.8028 0.8072
L-75 9.3484 0.8344 0.8518

B ADDITIONAL NETWORKS

We demonstrate the validity of our hypothesis for other pre-trained image classification CNNs as
well. These networks include:

• GoogleNet (Szegedy et al. (2014))
• MobileNet-v2 (Sandler et al. (2018))
• ResNet-18 (He et al. (2015))

It can be seen in Table 3 that our hypothesis regarding important attributes is valid for these ad-
ditional CNNs as well. Small proportions of channels (H-(5-10)) with higher PE (Eq. 4) deliver
much better perceptual quality features compared to a much higher proportion of channels with
lower PE (H-(45-80)) and even the complete set of channels in the layer (F). A scatter plot of some
correlations, shown side by side is depicted in Fig. 5.
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(a) H-10 (b) L-10

(c) H-5 (d) L-5

(e) H-10 (f) L-10

Figure 5: Correlation of metric scores in Eq. 1 with human subjective DMOS shows that the metric
in Eq. 1 with the channel subset H has a much better correlation with DMOS compared to Eq. 1
with the L subset of channels. Each pair shown side by side is for a different network.
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