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ABSTRACT

The recent success of the lottery ticket hypothesis by Frankle & Carbin (2018)
suggests that small, sparsified neural networks can be trained as long as the network
is initialized properly. Several follow-up discussions on the initialization of the
sparsified model have discovered interesting characteristics such as the necessity of
rewinding (Frankle et al. (2019)), importance of sign of the initial weights (Zhou
et al. (2019)), and the transferability of the winning lottery tickets (S. Morcos et al.
(2019)). In contrast, another essential aspect of the winning ticket, structure of the
sparsified model, has been little discussed. To find the lottery ticket, unfortunately,
all the prior work still relies on computationally expensive iterative pruning.
In this work, we conduct an in-depth investigation of the structure of winning
lottery tickets. Interestingly, we discover that there exist many lottery tickets that
can achieve equally good accuracy much before the regular training schedule even
finishes. We provide insights into the structure of these early winning tickets with
supporting evidence. 1) Under stochastic gradient descent optimization, lottery
ticket emerges when weight magnitude of a model saturates; 2) Pruning before the
saturation of a model causes the loss of capability in learning complex patterns,
resulting in the accuracy degradation. We employ the memorization capacity
analysis to quantitatively confirm it, and further explain why gradual pruning
can achieve better accuracy over the one-shot pruning. Based on these insights,
we discover the early winning tickets for various ResNet architectures on both
CIFAR10 and ImageNet, achieving state-of-the-art accuracy at a high pruning rate
without expensive iterative pruning. In the case of ResNet50 on ImageNet, this
comes to the winning ticket of 75.02% Top-1 accuracy at 80% pruning rate in only
22% of the total epochs for iterative pruning.

1 INTRODUCTION

Deep Neural Networks (DNNs) achieve superior accuracy in a wide spectrum of applications through
the use of very large and deep models (Goodfellow et al. (2016)). These high-capacity but com-
plex models, however, pose a tremendous challenge for their deployment, particularly in resource-
constrained edge environments. Over the years, many techniques have been developed to compress
the models to a compact counterpart to alleviate the computational costs. Among these techniques,
pruning less important parameters to obtain a compact sub-network has emerged to be a popular
and efficient approach (Cun et al. (1990); Han et al. (2015)). In search of these sub-networks, new
intuitions are also built up for understanding the DNN working mechanism, one example of which is
the recently proposed "lottery ticket hypothesis" by Frankle & Carbin (2018).

The lottery ticket hypothesis states that, once a sub-network is found to match the accuracy of the
original neural network, the sub-network (i.e., lottery ticket) together with its initialized weights
can be trained in isolation and still achieve accuracy comparable to the original network within
a similar number of iterations. This conjecture intrigues discussions on a series of topics, such
as the importance of initialization scheme (Liu et al. (2018), Zhou et al. (2019)), the role of over-
parameterization in training (Frankle et al. (2019)) and even the transferability of the "winning ticket"
(S. Morcos et al. (2019)). However, all these discussions start from the point that the winning ticket
has been obtained after painfully long iterative pruning procedures, which often take up to thousands
of epochs. When and how a winning ticket can be found in the course of pruning procedures has
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not been studied; most of the prior works use a traditional way of repeated cycles of pruning and
retraining, which makes such study less practical.

In this work, we provide insights to find the winning tickets early. We start with an interesting
observation that there exist many lottery tickets that can achieve equally good accuracy much
before the regular training schedule finishes. This leads to our in-depth investigation of the weight
magnitude; we discover that a model saturates early but not too early under stochastic gradient
descent (SGD) optimization. To understand this characteristic of the winning lottery tickets, we
conjecture that pruning a premature model causes the loss of capability in learning complex patterns,
leading to accuracy degradation. We confirm this conjecture with the empirical evidence as well as
the quantitative analysis based on the memorization capacity. Using this analysis framework, we
further provide a reasoning behind the success of the gradual pruning over the one-shot pruning.
Based on these insights, we identify the early winning tickets for various ResNet architectures on
both CIFAR10 and ImageNet, achieving state-of-the-art accuracy at a high pruning rate without
expensive iterative pruning. In the case of ResNet50 on ImageNet, this comes to the winning ticket of
75.02% Top-1 accuracy at 80% pruning rate obtained within only 22% of the total epochs for iterative
pruning. This promising outcome not only sheds light on understanding the optimization behavior of
the pruned models but also enables performance gain for fast training of the pruned models.

2 RELATED WORK

The lottery ticket hypothesis was first proposed in Frankle & Carbin (2018) where the presence of a
trainable sub-network that achieves compelling final accuracy with the inherited initial values for the
un-pruned connections is demonstrated. This paper also argued that the initial weight of the original
network is essential for maintaining good accuracy when the model is sparsified. This claim has been
extended to the over-parameterized neural networks on the larger datasets in Frankle et al. (2019)
with the notion of "rewinding"; the authors claim that rewinding of the weight not to the initial values
but to the values after a few epochs can stabilize the accuracy of the winning lottery tickets. As a
follow-up work, Zhou et al. (2019) studied the critical components of the lottery tickets such as zeros,
signs and the super-mask. Also, S. Morcos et al. (2019) investigated the transferability of winning
tickets obtained in one dataset to the network of a similar structure for the other datasets. But none of
these focused on the structure of the winning lottery tickets; it involves several repetitions of the full
training schedule for iterative pruning and retraining, often taking hundreds to thousands of epochs.
In this work, we demonstrate that many winning tickets can be found in the early stage of the baseline
training schedule, drastically reducing the computational effort to obtain them.

Most work on the lottery ticket hypothesis, including this work, rely on magnitude-based weight
pruning for identifying unimportant weights to be pruned (usually via global sorting). Such an
intuitive method was first proposed in Han et al. (2015) and became popular. Afterwards, more
complex pruning methodologies have been presented to improve pruning performance, such as having
different pruning criteria (Li et al. (2017), Wen et al. (2016), Liu et al. (2017)) or different pruning
granularity (Mao et al. (2017), Molchanov et al. (2019)). While these attempts offer insights on
training pruned models, there is little discussion about the interesting interplay between the pruning
criteria and the structure of a model pruned by it. In this work, we reveal that the pruned structure
obtained based on the weight magnitude has tangible impact on the final accuracy, and further propose
a way to quantitatively distinguish good structures for pruning.

There have been various strategies to apply pruning to the neural networks. Iterative pruning by Han
et al. (2015) involves several repetition of pruning (with gradual increase of the pruning rate) and
retraining. One can increase the repetition cycles arbitrarily large to achieve good accuracy at high
pruning rate; Frankle & Carbin (2018) employed iterative pruning with hundreds to thousands of
pruning epochs to match the baseline accuracy for the challenging neural networks. On the other hand,
gradual pruning introduced by Zhu & Gupta (2017) determines the pruning rate and frequency via a
polynomial equation as a function of the starting and ending epochs as well as the target pruning rate.
Although it provides a systematic pruning schedule, there is lack of discussion about when to start
the gradual pruning. Lastly, Lee et al. (2018) proposes a method of pruning weights at initialization.
This method takes most advantage in performance since a pruned model can be obtained without
any expensive retraining procedures. However, its effectiveness has not been demonstrated for the
challenging neural networks on large datasets such as ImageNet. In contrast, we propose a mechanism
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to identify the winning lottery ticket early in the course of baseline training so that we can avoid
costly iterative pruning while maintaining the baseline accuracy.

Figure 1: Extended lottery ticket experiments using ResNet20 on CIFAR10. From the baseline ResNet20
training, weight-magnitude based pruning is applied at different epoch (columns, labeled as s) to obtain the
sparsified structure. Each structure is then rewound to the weights from another epoch (rows, labeled as v),
where v=0 indicates rewind to the initial weight. Lottery tickets emerge much earlier before the full training
ends, achieving matching accuracy compared to the conventional winning ticket, i.e., (s=200,v=200).

3 STRUCTURE OF EARLY WINNING TICKETS

In this section, we extend the lottery ticket hypothesis by Frankle & Carbin (2018); Frankle et al.
(2019) to discuss the early winning tickets. The lottery ticket hypothesis can be summarized as:

for a given network of f(x;w0 �m0) with the initial weight w0 and the mask of all ones m0, there
exists a winning lottery ticket mf where |mf |/|m0| = 1− p% (p is the pruning rate) and training of
f(x;wv �mf ) for 0 < v � f achieves test accuracy comparable to the baseline f(x;wf �m0).

There are two main components of a winning lottery ticket: the sparsified structuremf and the weight
that initializes it, wv. In the previous work, mf has been obtained only after expensive iterative
pruning. We characterize the structure of the early lottery ticket ms where s � f , then propose a
strategy for finding it early.

3.1 EXTENDED LOTTERY TICKET EXPLORATION

Frankle et al. (2019) suggests that a lottery ticket found after a baseline training can achieve the
accuracy of the baseline model if it is initialized with the weight of the baseline model after a few
epochs, which is called rewinding. We extend this exploration toward different structures obtained at
different epochs of the baseline training (via magnitude-based weight pruning).

Fig. 1 shows the validation accuracy after retraining of a ResNet20 model on CIFAR10 pruned at
different epochs of its baseline training. The same learning rate schedule of 0.1 reduced by 10x at
epoch 120 and 160 is used for both the baseline training and retraining, and the total number of
epochs is 200. The rows (= v) correspond to the different rewinding epoch, whereas the columns
(= s) correspond to the different epoch that we apply one-shot pruning (pruning rate= 80%). For
example, the validation accuracy along the lottery ticket configurations of (s = 200, v = 0 ∼ 200)
resembles the phenomena of "rewinding" observed in Frankle et al. (2019).

Interestingly, Fig. 1 further demonstrates that the winning tickets emerge at much earlier epochs of
the baseline training; the lottery ticket configurations of (s ≥ 100, v ≥ 5) achieve almost the same
accuracy as the accuracy of (s = 200, v = 200). The accuracy then gradually decreases as s ≤ 80.
This result implies two important aspects: 1) a winning ticket can be found in the middle of the
baseline training so that one can avoid expensive iterative pruning used in the prior work, and 2) the
winning ticket, however, does not emerge arbitrarily early in the process of training. In the following
sections, we investigate the characteristics of these early winning tickets. In particular, we focus on
their structure, as the weight initialization is not the major factor provided a proper rewinding.
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(a) Per-Layer Weight Stdev. (b) Per-Layer Pruning Rate

Figure 2: (a) Change of the standard deviation of weights (Wstd) in each layer during the training of ResNet20
on CIFAR10. In the beginning of the training, the weights of different layers change in different rate, dominated
by the gradient terms. When the training evolves, weight magnitude is primarily determined by the interplay
between learning rate and weight decay, resulting in parallel movement of Wstd. (b) Change of per-layer pruning
rate over the epochs. Due to regular shift of Wstd at the later epochs of training, the per-layer pruning rate
converges to a saturating point, emerging stable structure for pruning.

3.2 ANALYSIS ON WEIGHT MAGNITUDE

As the first step of understanding the characteristics of the early winning tickets, we focus on the
important quantity of pruning, weight magnitude. At pruning, we determine the structure of the
sparsified model based on the rank of the weight magnitude (via global sorting). Therefore, the
change in the weight magnitude during training has large impact on the lottery ticket structure.

In Fig. 2a, we measure the standard deviation of weight (Wstd) for each layer in the course of training
ResNet20 on CIFAR10 (note: the mean of weight is typically near zero). The same learning rate
schedule is used as above. The first thing to note is that the change in Wstd has strong correlation
with the learning rate change. In particular, different layers show different rate of change in Wstd

when the learning rate is 0.1, but from the second learning rate (after epoch 120), all the weights
follow a very similar decreasing trend.

This trend in Wstd can be understood via steps of stochastic gradient descent. From the typical setting
of weight update with momentum and weight decay, we have:

vt+1 = mvt + (λwt + wg,t), wt+1 = wt − ηvt+1. (1)

where wt, wg,t and vt are the weight, gradient and momentum at step t, respectively; m is the
momentum factor, η is the learning rate and λ is the weight decay factor. After n steps,

vt+n = mnvt +

n∑
k=1

(mn−kwg,t+k−1) + λ

n∑
k=1

(mn−kwt+k−1), (2)

wt+n = (1− ηλ)nwt − η
n∑
k=1

((1− ηλ)n−k(mvt+k−1 + wg,t+k−1)). (3)

From this derivation, we can see that the two factors determine the mode of change in Wstd. When
learning rate is high, the gradient terms play the major role in weight update. On the other hand, if the
gradient activity becomes low, e.g., when the learning rate is low and the gradients oscillate around
zero, we can further simplify Eq. 3. Assume that mnvt approaches to zero when n is relatively large,
wt+k−1 ≈ wt, and

∑n
k=1((1− ηλ)n−kwg,t+k−1) and

∑n
k=1(mn−kwg,t+k−1) approach to zero as

the gradients oscillate around zero, we have vt+i ≈ λwt

1−m . Then wt+n is approximated as,

wt+n ≈ (1− ηλ)nwt − η
n−1∑
i=0

((1− ηλ)i
mλwt
1−m

). (4)

Note that (1− ηλ)n ≈ 1− nηλ since ηλ� 1 and
∑n−1
i=0 ((1− ηλ)i) ≈ n. Thus,

wt+n ≈ (1− nηλ)wt −
nηλmwt
1−m

= (1− nηλ

1−m
)wt. (5)
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In other words, when the gradient activity is low, the change in Wstd is dominated by the both the
learning rate and the weight decay. As an example, in Fig. 2a, Wstd is decreased with the slope
following Eq. 5 when learning rate is low; Wstd of layer 10 is decreased by 1.5e-3 in 782 updates of
CIFAR10 (with λ =1e-4 and m = 0.9), confirming the slope from Eq. 5.

These two modes governing the change of weight magnitude are critical for understanding the
behavior of pruning. In particular, the interplay between learning rate and weight decay causes
the per-layer pruning rate to converge after enough number of epochs. Fig. 2b shows the pseudo
per-layer pruning rate, where we just measure the layer-wise pruning rate without really pruning
out the weights in the model, for the same CIFAR10 training experiment. As the figure shows, the
per-layer pruning rates saturate around epoch 100, indicating that pruning before that would select
the weights based on the premature model.

Moreover, although the weight magnitude is an important factor, we discovered that the ranking of
individual weight does not play a critical role in winning lottery tickets. Specifically, we empirically
show that there exist many winning lottery tickets that are vastly different in terms of its sparse
structure mv. Fig. 3 shows the hamming distance of the sparse structure of the lottery tickets at
different configuration (s, v). Note that the two distant lottery tickets (e.g., (s = 200, v = 100) and
(s = 100, v = 100)) show large hamming distance of 0.159 (where x/y = 200/100) while achieving
the equally good accuracy as shown in Fig. 1, indicating that the ranking of the weights itself can not
explain the quality of the structure of the lottery ticket.

Figure 3: The hamming distance of the sparse structure of the lottery tickets at different configuration for
ResNet20 on CIFAR10. x/y denotes the distance between (s = x) and (s = y). A large distance between two
lottery tickets with equally good accuracy suggests the existence of many winning tickets.

3.3 UNDERSTANDING IMPACT OF PRUNED STRUCTURE

The weight magnitude analysis motivates us not to prune a model too early. It is also implied that a
distance-based metric might not reveal the winning structure of the model at different epochs. To
understand the early winning structures, we further investigate the impact of the sparsified structure
on the final accuracy. Considering that a highly pruned network is likely to have limited learning
capability, we make a conjecture that the accuracy degradation of a pruned model is due to the loss of
capability for learning complex pattern if pruned too early. Recently, Li et al. (2019) reveals that the
training behavior of a sufficiently over-parameterized model with non-linearity highly depends on the
learning rate schedule, where a model tends to memorize the complex patterns when a small learning
rate is applied while learning simple patterns with a large learning rate. To validate this claim in
the context of pruning, we construct an experiment where a model is pseudo-pruned at every epoch
of the baseline training then then retrained with large or small learning rate for just one epoch. For
the pseudo-pruned-then-retrained (PPR) model at each baseline epoch, we measure the validation
accuracy recovered from the retraining.

Fig.4 shows the result of this experiment on CIFAR10 ResNet20. When it is retrained with the large
retraining learning rate (= 0.1), in just 1-epoch retraining, the PPR models from all the baseline
epochs achieve the accuracy matching with the baseline accuracy. This indicates that those pruned
models maintain the capability of learning the simple patterns. Whereas, when the small retraining
learning rate (= 0.01) is used, the accuracy of the PPR models pruned at later epochs (epoch 100-200)
is higher than the accuracy of the models from earlier epochs (epoch 20-60). This reveals that the PPR
models from different epoch exhibit varying capability of learning complex patterns. In particular,
the accuracy of the PPR models increases until around 100 epoch of the baseline training, then it
saturates. Note that this coincides with the epoch when the early winning tickets emerges in Fig. 1.

Based on this observation, we hypothesize that the models pruned at 100 epoch of the baseline
training or later will preserve the capability of learning complex patterns. To validate this hypothesis,
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Figure 4: The pseudo-pruned-then-retrained
(PPR) models for CIFAR10 ReNet20, which
exhibit increasing capability of memorizing the
complex patterns over the epochs. Validation ac-
curacy for the baseline training is also included
for comparison.

Figure 5: Memorization capacity (i.e., training accu-
racy) of the models pruned at different epochs. The
models pruned at epoch 120 and 200 show identical
memorization capacity, whereas the model pruned at
epoch 20 suffers lower memorization capacity.

we conducted the memorization test proposed by Boo et al. (2019), where a model is trained with a
training data of a varying size with the randomized labels. A model has "high memorization capacity"
if it achieves high training accuracy for a large size dataset. Fig. 5 shows the training accuracy
of the models pruned at different epochs. As the training data size increases, the memorization
capacity is decreased. The model pruned too early (i.e., at epoch 20) suffers higher degradation in
the memorization capacity compared to the models pruned at later epochs (e.g., epoch 120 or 200).
Also, note that those models pruned at later epochs (i.e., the early winning tickets) exhibit the similar
memorization capacity. This result not only confirms our conjecture on the impact of pruned structure
to the capability of learning complex patterns, but also leads us to employ the PPR accuracy check as
a computationally reasonable heuristic to discover the early winning tickets.

3.4 UNDERSTANDING GRADUAL PRUNING

Gradual pruning is a popular pruning approach that applies pruning gradually over a period of training.
For example, gradual pruning proposed by Zhu & Gupta (2017) provides a systematic way to schedule
iterative pruning as follows:

st = sf + (si − sf )

(
1− t− t0

n∆t

)3

, (6)

where sf and si are the final and initial sparsity, and t is the time when pruning is applied. Eq. 6
determines how much sparsity is applied at a certain time step t. But it is still a user-hyper-parameter
to decide when t0 or how often ∆t apply pruning. Based on the insights we discussed in the previous
section, we explain why gradual pruning helps to obtain better lottery tickets.

The reasoning behind the gradual pruning is that the model can be changed graciously if the pruning
is applied gradually. In terms of the early winning ticket analysis, there are two factors playing the
critical role: 1) by applying low pruning rate in the beginning, the structure found at that pruning level
can preserve the memorization capacity better, 2) once pruning is applied, the remaining weights of
the pruned model is updated via SGD, granting a chance for the pruned model to adopt its weights
toward better accuracy. Thanks to these two factors, a structure with better memorization capacity
can be found when the increased pruning rate is applied next time.

Table 1 confirms this explanation using the CIFAR10 ResNet20 example. In this experiment, we
perform the memorization test for the 4-step gradual pruning as well as four 1-step pruning at the
corresponding epoch for comparison. The gap in memorization capacity is maintained across the
different epochs, demonstrating that the memorization capacity is maintained thanks to the gradual
application of pruning and the evolution of weights after pruning. This suggests a strategy for gradual
pruning where 1) we can use gradual pruning to reduce the loss of capability in learning complex
patterns, and 2) by applying a smaller pruning rate in the beginning, we can start pruning early and
finding the winning lottery tickets faster. The benefit of this strategy combining gradual pruning with
the early winning tickets will be demonstrated in Sec. 4.
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Table 1: Memorization capacity (i.e., train accuracy) comparison between 1-shot and 4-shot pruning.

Epoch 120 160 200 240 Unit

Pruning rate 40 60 70 80 %

1-shot pruning 79.72 66.88 59.81 50.46 %

4-shot gradual pruning 79.72 68.83 61.21 51.45 %

Table 2: One-shot and gradual pruning for ResNet20 and ResNet56 on CIFAR10

One-Shot Pruning 20 60 100 120 160 200

ResNet20 Top-1 Acc. (%) 90.27 90.96 91.54 91.62 91.36 91.32
ResNet56 Top-1 Acc. (%) 92.78 93.38 93.87 93.78 93.76 94.00

Gradual Pruning 25-75 50-100 75-125 100-150 125-175 150-200

ResNet20 Top-1 Acc. (%) 91.01 91.83 92.15 92.25 92.15 91.91

4 EXPERIMENTS: FINDING WINNING TICKET EARLY

In this section, we demonstrate our strategy of finding the early winning tickets over popular neural
networks on CIFAR10 and ImageNet. The detail experimental setup is described in Appendix A.
We perform the lottery ticket experiments of Sec. 3.1 for both one-shot and gradual pruning with
the pruning rate of 80%.We also conduct the PPR accuracy check of Sec. 3.3 to predict from which
epoch the early winning ticket can be found. By comparing the two results, we demonstrate that
the proposed heuristic for finding early winning tickets works robustly across the networks and the
datasets. Furthermore, we showcase our gradual pruning strategy by comparing the performance in
terms of the accuracy and the required pruning epochs with the existing lottery ticket approaches.

4.1 EXPERIMENTS ON CIFAR10

Table 2 summarizes the lottery ticket experiments of ResNet20 and ResNet56 on CIFAR10 dataset. In
case of one-shot pruning, the winning tickets can be found from epoch 100. In case of gradual pruning,
the gradual pruning schedule can start from epoch 75 (which is earlier than the one-shot pruning).
Note that the gradual pruning can achieve better accuracy as it can preserve higher memorization
capacity as discussed in Sec. 3.4. Fig. 6a shows the pseudo-pruning curve that highlights the presence
of the winning tickets from the epoch around 100, which is consistent with the results of the lottery
ticket experiment in Table 2.

(a) ResNet56 on CIFAR10 (b) ResNet18 on ImageNet

Figure 6: The results of PPR accuracy check (retraining learning rate=0.01) for (a) ResNet56 on CIFAR10
(sampled at every epoch) and (b) ResNet18 on ImageNet (sampled every 5 epochs).
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Table 3: One-shot and gradual pruning for ResNet18 and ResNet50 on ImageNet.

One-Shot Pruning 0 15 30 45 60 75 90

ResNet18 Top-1 Acc. (%) 64.89 66.53 67.30 68.32 68.79 68.98 69.03
Gradual Pruning 0-30 10-40 20-50 30-60 40-70 50-80 60-90

ResNet18 Top-1 Acc. (%) 66.11 67.31 68.31 68.64 69.24 69.06 69.18
ResNet50 Top-1 Acc. (%) 72.37 73.49 74.22 74.51 75.02 74.86 74.76

Table 4: Performance gain by our gradual pruning strategy on CIFAR-10 and ImageNet.

ResNet20 (CIFAR-10) ResNet18 (ImageNet) ResNet50 (ImageNet)
PR∗ / acc.∆† / epochs PR / acc.∆ / epochs PR / acc.∆ / epoch

GP + EWT 80.0 / -0.20 / 150+200∗∗ 80.0 / -0.56 / 70+90 80.0 / -0.7 / 70+90

IP + WT 82.2 / 0.00 / 1600 - / - / - 79.0 / 0.0 / 720Frankle et al. (2019)
GP: gradual pruning, IP: iterative method, EWT: early winning ticket, WT: winning ticket
∗: pruning rate (PR), ∗∗: number of pruning epochs + regular retraining epochs
†: the delta of accuracy is measured against the baseline accuracy.Bold: highlight of comparison

4.2 EXPERIMENTS ON IMAGENET

Table 3 summarizes the lottery ticket experiments on ImageNet dataset, and the predicted results of
the early winning tickets from the pseudo-pruning are shown in Fig. 6b. Similar to the CIFAR10
experiments, the results of the lottery ticket experiment matches with the results from the PPR accu-
racy check (which indicates epoch 45 for early winning tickets), demonstrating the robust behavior
of the proposed strategy of finding the early winning tickets. Furthermore, the gradual pruning at
the early winning tickets achieves the accuracy near to the baseline (ResNet18: baseline=69.7% vs
ours=69.24%, ResNet50: baseline=75.7% vs ours=75.02%), showcasing the superior quality of the
winning tickets discovered by the proposed gradual pruning strategy.

4.3 PERFORMANCE GAIN FROM EARLY WINNING TICKET

To demonstrate the performance gain from our gradual pruning strategy, the pruning results of the
proposed algorithm (GP + EWT) and the previous implementation of iterative pruning (IP) along with
the winning ticket (WT) of Frankle & Carbin (2018) are shown for the ResNet variants on CIFAR10
and ImageNet in Table 4. Our GP+EWT algorithm consistently achieves high pruning rate with the
number of pruning epochs even lower than the regular retraining epochs for all the models, i.e., 80%
pruning with negligible accuracy degradation on ResNet50 for ImageNet. In contrast, the iterative
pruning approach (IP+WT) achieves the similar accuracy at the cost of more than 4.5× increase in
the total training epochs.

5 CONCLUSION

In this work, we investigate the structure of the winning lottery ticket, which leads to the computation-
ally efficient discovery of the winning lottery tickets. Based on a careful analysis of the characteristics
of the structure of the winning lottery tickets, we proposed a computationally reasonable heuristic to
identify when the early lottery tickets emerge. Furthermore, we proposed a gradual pruning strategy
incorporating the early lottery ticket analysis to achieve high accuracy at large pruning rate. This
results in the state-of-the-art accuracy on ResNet50 for 80% pruning only within 22% of the total
epochs for iterative pruning.
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A EXPERIMENTAL SETUP

A.1 EXPERIMENTS ON CIFAR10

We try to find the winning tickets early for ResNet20 (baseline accuracy: 92.5%) and ResNet56
(baseline accuracy: 94.25%) on CIFAR10 dataset. All the baseline models are trained using SGD
optimizer with momentum (m =0.9) and weight decay (λ =1e-4) for 200 epochs. The initial learning
rate for the first 120 epochs is 0.1 and decrease to 0.1× every 40 epochs. For the lottery ticket
experiments, the retraining schedule is the same as the baseline learning rate schedule. Following
convention, we do not prune the first and the last layers of the ResNets.
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A.2 EXPERIMENTS ON IMAGENET

We further try to find the winning tickets early for ResNet18 (baseline accuracy: 69.7%) and ResNet50
(baseline accuracy: 75.7%) on ImageNet dataset. All the baseline models are trained using SGD
optimizer with momentum (m =0.9) and weight decay (λ =1e-4) for 90 epochs. The initial learning
rate for the first 30 epochs is 0.1 and decrease to 0.1× every 30 epochs. For the lottery ticket
experiments, the retraining schedule is the same as the baseline learning rate schedule. Following
convention, we do not prune the first and the last layers of the ResNets.
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