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ABSTRACT

Convolutional Neural Networks (CNNs) typically treat normalization methods
such as batch normalization (BN) and rectified linear function (ReLU) as build-
ing blocks. Previous work showed that this basic block would lead to channel-
level sparsity (i.e. channel of zero values), reducing computational complexity
of CNNs. However, over-sparse CNNs have many collapsed channels (i.e. many
channels with undesired zero values), impeding their learning ability. This prob-
lem is seldom explored in the literature. To recover the collapsed channels and en-
hance learning capacity, we propose a building block, Channel Equilibrium (CE),
which takes the output of a normalization layer as input and switches between
two branches, batch decorrelation (BD) branch and adaptive instance inverse (AII)
branch. CE is able to prevent implicit channel-level sparsity in both experiments
and theory. It has several appealing properties. First, CE can be stacked after
many normalization methods such as BN and Group Normalization (GN), and in-
tegrated into many advanced CNN architectures such as ResNet and MobileNet
V2 to form a series of CE networks (CENets), consistently improving their per-
formance. Second, extensive experiments show that CE achieves state-of-the-art
results on various challenging benchmarks such as ImageNet and COCO. Third,
we show an interesting connection between CE and Nash Equilibrium, a well-
known solution of a non-cooperative game. The models and code will be released
soon.

1 INTRODUCTION

Normalization is a useful technique for a wide range of learning tasks such as image classification
(He et al., 2016; Ioffe & Szegedy, 2015), object detection (Ren et al., 2015; He et al., 2017a; Wu &
He, 2018), and image generation (Goodfellow et al., 2014; Miyato et al., 2018). In recent years, we
have witnessed a lot of effort to improve normalization, such as batch normalization (BN) (Ioffe &
Szegedy, 2015), group normalization (GN) (Wu & He, 2018), and switchable normalization (SN)
(Luo et al., 2018). These normalization methods are often used together with the ReLU activa-
tion function (Glorot et al., 2011; Nair & Hinton, 2010), which has become the most widely-used
building block of modern CNNs, i.e. the ‘BN+ReLU’ block, and has been widely adopted in many
advanced CNN architectures, such as Inception (Szegedy et al., 2017; 2016), ResNet (He et al.,
2016), DenseNet (Huang et al., 2017), and ResNeXt (Xie et al., 2017).

However, recent work has disclosed a critical problem of ‘BN+ReLU’, known as channel collapse
as investigated in (Mehta et al., 2019), which refers to the problem when certain channels become
inactive and always output 0 value for any input. Such sparsity typically leads to reduced effective
learning capacity of the network (Mehta et al., 2019; Lu et al., 2019). Common normalizers such as
BN and IterNorm (Huang et al., 2019) rescale normalized/whitened features by learning additional
parameters γ in a channel-wise way. The magnitude of γ implies the importance of different chan-
nels, which has been widely employed in network slimming (Liu et al., 2017; Yu et al., 2018) and
channel pruning (He et al., 2017b). According to the lottery hypothesis (Frankle & Carbin, 2018),
one over-parameterized network always contains unimportant channels that may become inactive
(small γ) after training.

A key observation is that the dependency (covariance) matrix of features (denoted as Σ) after
normalization is scaled by γγT. Therefore, a decorrelation operation (Σ−

1
2 ) can not only effec-

tively eliminate the influence of the magnitude of γ, but even equalize the magnitude of result-
ing features in a feed-forward way (Barlow et al., 1961; Bengio & Bergstra, 2009). This op-
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erator enables all the channels to contribute equally to the feature representation learning pro-
cess. Fig.1 shows decorrelating features after normalization using batch decorrelation (BD) can
effectively prevent channel-level sparsity and improves the learning capacity of the network.
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Figure 1: Top-1 accuracy and sparsity ra-
tio1of batch normalization, iterative normal-
ization (Huang et al. (2019)), the proposed
batch decorrelation (BD) and channel equilib-
rium (CE) when training VGGNet (Simonyan
& Zisserman, 2014) on CIFAR 10. Both BD
and CE can effectively prevent channel-level
sparsity.

This work aims to alleviate the channel collapse
problem by encouraging different channels to play
an equal role in learning a feature representa-
tion. To this end, we introduce a building block,
termed as Channel Equilibrium (CE), to condition-
ally decorrelate features after normalization layer
and explicitly enhance the representation capabil-
ity of a neural network in a feed-forward way.

As is shown in Fig.2b, CE takes the output of a
normalization layer as input and switches between
two complementary branches, including a branch
of batch decorrelation and a branch of adaptive
instance inverse. We will show that BD explic-
itly prevents channel-level sparsity by a batch-
estimated covariance matrix, and AII helps CE
learn preciser feature representation by learning
an adaptive instance variance. As shown in Fig.1,
equipped with CE, the VGGNet (Simonyan & Zis-
serman, 2014) is able to effectively mitigate un-
desired over-sparsity and improve recognition per-
formance. Specifically, CE can be inserted between the normalization layer and the activation func-
tion, making it flexible to be integrated into many advanced CNN architectures such as ResNet50 and
MobileNet V2. These networks can be upgraded into CE-Networks by replacing the ‘BN-ReLU’
building block using ‘BN-CE-ReLU’, only increasing the computational complexity marginally. Ex-
tensive experiments show that CENets consistently outperform their counterparts. For example, the
CE-ResNet50 and CE-MobileNet V2 achieve 78.3% and 74.6% top-1 accuracy on ImageNet respec-
tively, outperforming the plain networks by 1.7% and 2.1% with nearly the same FLOPs. We also
show that CE with synchronization, which estimates the covariance matrix across multiple GPUs,
increases the AP metric on the MS-COCO dataset to 42.0, surpassing its counterpart by 3.4.

Overall, the main contributions of this work are three-fold. First, we introduce an efficient feed-
forward propagation that can largely prevent filter collapse and enhance representation capacity
of CNNs. Second, CE blocks can be stacked after common normalization methods such as BN
and GN and plugged into many advanced architectures, consistently improving their performance
by a large margin. Third, CENet can be easily transferred to many other tasks like object detec-
tion/segmentation.

2 RELATED WORK

Channel equalization. The success of the two most commonly used regularization techniques,
i.e. BN (Ioffe & Szegedy, 2015) and Dropout (Srivastava et al., 2014), is attributed to channel or
neuron equalization. For example, Mianjy et al. (2018) showed that Dropout makes the norm of
incoming/outgoing weight vectors of all the hidden nodes equal, indicating a kind of equalization
between neurons. Meanwhile, Morcos et al. (2018) pointed out that BN implicitly discourages
single direction reliance. Intuitively, equalizing different channels enhances the generalization of
learned feature representation. Note that the squeeze-and-excitation (SE) network (Hu et al., 2018)
is a pioneer work that investigates network design by explicitly modeling interdependencies between
channels. However, SE selectively emphasizes informative features and suppresses less useful ones.
By contrast, this work proposes to explicitly expand representational power of all the channels by
CE blocks, which, as will be shown, can be linked with Nash Equilibrium. More related work on
sparsity in ReLU and normalization methods are provided in Sec.A of Appendix.

1The sparsity ratio is defined as the average percentage of values less than 1e-3 in the first six feature maps
of VGGNet.
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3 METHOD

In this section, we first review the normalization method and then introduce the proposed Channel
Equilibrium (CE) block. CE contains two complementary branches, i.e. batch decorrelation (BD)
and adaptive instance inverse (AII). We show how BD and AII benefit from each other through
parameter γ and how CE is linked with Nash Equilibrium.

Notations. For CNNs, we use x ∈ RN×C×H×W to represent the feature in a layer, specifically,
xncij denotes a pixel (i, j) in the c-th channel of the n-th sample. Sometimes, we ignore the subscript
‘n’ and denote it as xcij for clarity of notation. xnij ∈ RC is obtained by stacking all elements in
all channels of xncij into a column vector. Diag(·) returns a matrix with the given diagonal and
zero off-diagonal entries, and diag(·) extracts the diagonal of the given matrix. γ, β ∈ RC are
normalization parameters.

3.1 OVERVIEW OF NORMALIZATION

Normalization is usually employed after convolution layers to stabilize the training of CNNs. Given
a feature x ∈ RN×C×H×W , a normalizer first standardizes it to x̄, and then maps it to x̃ by an affine
transformation as written in the following,

x̃ncij = γcx̄ncij + βc, x̄ncij = (xncij − µs)/σs (1)

where s ∈ Ω = {IN,BN,LN, · · · } indicates a normalizer and µs, σs are the mean and standard
deviation of the given normalizer. From Eqn.(1), we claim that normalization would result in an
unequal feature representation in a channel basis. To see this, firstly we know that common-used
normalizers like IN and BN are performed channel-wisely. Consequently, dependencies between
channels are not considered, resulting in weak correlation between some channels. In addition,
normalization parameters γ and β are usually computed channel-wise and the magnitude of them
indicates the importance of channels. Previous work (Frankle & Carbin, 2018; Mehta et al., 2019)
revealed that channel level sparsity emerges with small-values of γ. Typically, the degradation of
some channels causes reduced effective learning capacity of the network (Mehta et al., 2019; Lu
et al., 2019). To mitigate such disequilibrium between channels, we propose a building block in the
next section, namely Channel Equilibrium (CE).

3.2 CHANNEL EQUILIBRIUM (CE) BLOCK

A Channel Equilibrium (CE) block is a computational unit which aims to equalize feature represen-
tation capacity among channels. Towards this goal, the idea of decorrelation is adopted. Previous
methods (Huang et al., 2018; 2019) decorrelate features by a single batch estimated covariance ma-
trix Σ. However, as revealed in existing work, channel dependency is specific to each input (Hu
et al., 2018). Inspired by this, we bring in an adaptive instance variance, Sn, on the diagonal of the
covariance matrix Σ,

Dn = λΣ + (1− λ)Diag(Sn), Sn = F (σ2(x̃n)), (2)

where the subscript n is the sample index, λ ∈ (0, 1) is a trainable ratio used to switch between
batch and instance statistics, F : RC → RC is a transformation conditioned on the current input x̃
and σ2(x̃n) computes instance variance of x̃n within each channel. On the issue of channel disequi-
librium as discussed in sec.3.1, CE block works by decorrelating feature maps after normalization
using D−

1
2

n . We further utilize the Jensen inequality for matrix functions (Pečarić, 1996) to obtain a
relaxed decorrelation operator D−

1
2

n :

D
− 1

2
n = [λΣ + (1− λ)Diag(Sn)]

− 1
2 � λΣ−

1
2 + (1− λ) [Diag(Sn)]

− 1
2 , (3)

where A � B indicates B − A is semi-definite positive. We introduce this relaxation for the
following two reasons. (1) It reduces computation in the training stage, because the relaxed form
only needs to calculate the inverse of square root Σ−

1
2 once, and the other branch Diag(Sn)−

1
2 is

easy to compute. (2) It makes inference fast, since Σ−
1
2 is a moving-average statistic in inference

and can be absorbed into previous layer. Note that Eqn.(3) transforms the combination of covariance
and adaptive instance variance into the combination of their inverse square roots.
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In the following, we refer Σ−
1
2 in Eqn.(3) as batch decorrelation (BD) and refer [Diag(Sn)]

− 1
2 as

adaptive instance inverse (AII). The former decorrelates channels by a batch covariance, while the
latter adjusts the extend of inverse for each channel and instance in an adaptive manner. Integrating
both of them yields the forward representation of CE block:

pnij = D
− 1

2
n (Diag(γ)x̄nij + β) (4)

where pnij ∈ RC denotes the output of CE, as illustrated in Fig.2b. Since CE is performed after
the normalization layer, we take BN as an example to introduce these two branches in the following
sections.

3.2.1 BATCH DECORRELATION (BD)

Although a lot of previous work (Huang et al., 2018; 2019; Pan et al., 2019) has investigated whiten-
ing using covariance matrices, all of them are applied after the convolution layer and thus cannot
prevent filter-level sparsity, as shown in Fig.1. Instead, we apply decorrelation after the normal-
ization layer to address channel collapse. Consider a tensor x̃ after a BN layer, we reshape it to
x̃ ∈ RC×M and M = N ·H ·W . Then the covariance matrix Σ of x̃ can be written as (details are
presented in Sec. B of Apeendix)

Σ = γγT � 1

M
x̄x̄T (5)

where x̄ is a standardized feature with zero mean and unit variance and � indicates elementwise
multiplication. Eqn.(5) implies that the covariance matrix Σ of x̃ can be decomposed into two parts.
The first part depends on normalization parameter γ and the second part becomes correlation matrix
of x̃. We observe that Σij , which represents dependency between i-th channel and j-th channel, is
scaled by γiγj after a BN layer is applied.

The Batch Decorrelation branch requires computing Σ−
1
2 , which is usually related to eigen-

decomposition or SVD and involves heavy computation (Huang et al., 2018). Instead, here we
adopt an efficient approach, i.e., Newton’s Iteration to obtain Σ−

1
2 (Bini et al., 2005; Higham, 1986).

Given covariance matrix Σ, Newton’s Iteration calculates Σ−
1
2 by the following iterations:{

Σ0 = I
Σk = 1

2 (3Σk−1 − Σ3
k−1Σ), k = 1, 2, · · · , T. (6)

where T is the iteration number (T = 3 in our experiments). Note that the convergence of Eqn.(6)
is guaranteed if ‖Σ‖2 < 1 (Bini et al., 2005). To this end, we normalize Σ as Σ/tr(Σ) where tr(·)
is the trace operator (Huang et al., 2019). In this way, the normalized covariance matrix is written
as Σ = γγT

‖γ‖22
� 1

M x̄x̄T. To sum up, the batch decorrelation branch firstly calculates a normalized
covariance matrix and then applies Newton’s Iteration to obtain its inverse square root, reducing
much computational cost compared with SVD decomposition in the training stage. Furthermore,
BD branch can be merged into convolutional layers in the inference stage, which adds no extra
computation.

3.2.2 ADAPTIVE INSTANCE INVERSE (AII)

Channel dependencies are specific to each sample. Consequently, a conditional decorrelation is
desired for each sample. The adaptive instance inverse (AII) branch only uses diagonal entries to
model channel dependencies, as shown in Eqn.(2). Since a diagonal matrix can be inverted easily,
this approach can avoid the computation of Eqn.(3).

To construct the AII branch, we analyze its input (the output of a BN layer), which is formulated as
x̃ncij = γcx̄ncij +βc. The input of AII is the instance variance of each channel (details are provided
in Appendix Sec. B),

σ2
nc =

γ2c (σ2
IN)nc

(σ2
BN)c

(7)

where σ2
IN and σ2

BN represent the variances in IN and BN respectively. The ratio of them measures
the relative fluctuation of how much the instance statistic are deviated from the batch-estimated
statistic. Similar to Eqn.(5), the input of AII is also scaled by γ2c . The AII branch takes σ2

nc as
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Figure 2: Illustrations of SE block (Hu et al., 2018), CE block and CE residual block in ResNet. �
denotes broadcast element-wise multiplication, +© denotes broadcast elementwise addition and ⊗
denotes matrix multiplication. (b) shows CE has two lightweight branches, BN and AII. (c) shows
CE can be easily stacked into many advanced networks such as ResNet with merely small extra
computation.

input and computes an adaptive instance inverse, i.e. [Diag(Sn)]
− 1

2 . Here, a reparameterization
trick is employed to generate adaptive instance inverse such that AII has the same philosophy as
inverse square root of variance or covariance. Let s be an estimate of variance, the AII branch can
be reparameterized as below,

[Diag(Sn)]
− 1

2 = Diag(F̃ (σ2
n)) · s− 1

2 , (8)

F̃ (σ2
n) = δ2(W2δ1(LN(W1σ

2
n))), s = σ2(x̃), (9)

where δ1 and δ2 are ReLU and sigmoid activation function respectively, W1 ∈ RC
r ×C and W2 ∈

RC×C
r and r is reduction ratio, s ∈ R denotes variance of all elements in x̃, which is a batch

statistic in training and is obtained using moving average in inference. F̃ (σ2
n) ∈ (0, 1)C is treated as

a gating mechanism in order to control the strength of instance inverse for each channel. Like (Hu
et al. (2018); Cao et al. (2019)), we also use a bottleneck architecture to limit model complexity. We
add layer normalization (LN) inside the bottleneck transform (before ReLU) to ease optimization. It
is seen from Eqn.(8) that s−

1
2 represents the quantity of inverse square root of variance and F̃ (σ2

n)

regulates the extend of variance inverse. Basically, F̃ maps the instance variance to a set of channel
weights. In this sense, the AII branch intrinsically introduces dynamics conditioned on each input.

3.3 DISCUSSIONS

Instantiations. Our CE block can be integrated into various advanced architectures, such as ResNet,
VGGNet, ShuffleNet or MobileNet, by inserting it between the normalization layer and ReLU non-
linearity. We first describe the basic CE block in Fig.2b. As discussed earlier, CE processes incoming
features after the normalization layer by combining two branches, i.e. batch decorrelation (BD) and
adaptive instance inverse (AII). Compared with SE block in Fig.2a, our proposed CE clock combines
both instance and batch statistics, and it can consequently model dependencies between channels
better.

We can construct a series of CENets by integrating our CE block into various networks. For example,
we consider the residual networks (ResNet). The core unit of the ResNet is the residual block that
consists of ‘1× 1’, ‘3× 3’ and ‘1× 1’ convolution layers, sequentially. The CE unit is employed in
the last ‘1× 1’ convolution layer by plugging the CE module before ReLU non-linearity, as shown
in Fig.2c. As for CE-MobileNet V2, since the last ‘1 × 1’ convolution layer in the bottleneck of
MobileNet V2 is not followed by a ReLU activation, we insert CE after the normalization layer
and before the ReLU6 non-linearity of the ‘3 × 3’ convolution layer. Following similar strategies,
CE is further integrated into ShuffleNet V2 to construct CE-ShuffleNet V2. We provide extensive
experiments evaluating all these CENets in Sec.4 and analysis of computation details in training and
inference in Sec.F of Appendix.
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ResNet18 ResNet50 ResNet101
Baseline SE CE Baseline SE CE Baseline SE CE

Top-1 70.4 71.4 71.9 76.6 77.6 78.3 78.0 78.5 79.0
Top-5 89.4 90.4 90.8 93.0 93.7 94.1 94.1 94.1 94.6

GFLOPs 1.82 1.82 1.83 4.14 4.15 4.16 7.87 7.88 7.89
CPU (s) 3.69 3.69 4.13 8.61 11.08 11.06 15.58 19.34 17.05
GPU (s) 0.003 0.005 0.006 0.005 0.010 0.009 0.011 0.040 0.015

Table 1: Comparisons with baseline and SENet on ResNet-18, -50, and -101 in terms of accuracy,
GFLOPs, CPU and GPU inference time on ImageNet. The top-1,-5 accuracy of our CE-ResNet is
higher than SE-ResNet while the computational cost in terms of GFLOPs, GPU and CPU inference
time remain nearly the same.

Equivalent γ. This section shows how BD and AII benefit from each other through parameter
γ. First, we disclose the mechanism in preventing channel-level sparsity behind the BD branch.
Previous work (He et al., 2017b; Yu et al., 2018; Frankle & Carbin, 2018) revealed that γ in BN
can be used to identify some unimportant channels, implying that the representational power of
feature map largely depends on the magnitude of γ. Note that an equivalent scale parameter in the
BD branch can be expressed as γ̂ = Σ

− 1
2

T γ. The proposition 1 shows that BD explicitly increases
the magnitude of γ̂ in a feed-forward way, improving representational capacity in a channel basis.
We present the proof of proposition 1 in Sec.C of Appendix. Furthermore, the original γ in BN
is also implicitly enlarged. As discussed in Eqn.(5), a sufficient small γi can cause degradation of
the covariance matrix and then the convergence of Newton’s iteration (Bini et al., 2005) cannot be
guaranteed. As a result, once the network converges, γ is not supposed to degrade. This will in
turn bring many benefits to the AII branch. As shown in Eqn.(7), the input of AII is proportional
to γ, meaning that the features fed into the AII branch are enlarged as γ increases. In this way,
a bottleneck architecture in AII can learn more compact global information and model channel
dependencies better.

Proposition 1. Let Σ be covariance matrix of feature maps after batch normalization. Assume that
Σk = Σ−

1
2 , ∀k = 2, 3, · · · , T , then ‖γ̂‖1 > ‖γ‖1. Especially, we have |γ̂i| > |γi|.

Connection with Nash Equilibrium. We show an interesting connection between the proposed
CE block and the well-known Nash Equilibrium in game theory (Leshem & Zehavi, 2009). To be
specific, we bring novel insights on normalization from an optimization perspective. Suppose each
channel computes its output by maximizing capacity available to itself under some constraints. Es-
pecially, we restrict that each channel has a maximum budget and all the outputs are non-negative.
Further, if we consider dependencies between channels, the channels are thought to play a non-
cooperative game, named Gaussian interference game which admits a unique Nash Equilibrium
solution (Laufer et al., 2006). In Sec.D of Appendix, we present the detailed construction of Gaus-
sian interference game in the context of CNNs. It is worth noting that when all the outputs are active
(larger than 0), this Nash Equilibrium solution has an explicit expression. Under some mild approx-
imations, it can be shown that the explicit Nash Equilibrium solution can surprisingly match the
representation of CE in Eqn.(4). It shows that decorrelating features after normalization layer can be
connected with Nash Equilibrium, implying that the proposed CE block performs a mechanism on
channel equalization. We present detailed explanations about the connection between CE and Nash
Equilibrium in Sec.D of Appendix.

4 EXPERIMENTS

We evaluate our methods on two basic vision tasks, image classification on ImageNet and object
detection/segmentation on COCO, where we demonstrate the effectiveness of the CE block.

4.1 IMAGE CLASSIFICATION ON IMAGENET

We first evaluate CE on the ImageNet benchmark. The training details are illustrated in Sec.F of
Appendix.
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MobileNet V2 ShuffleNet V2 0.5× ShuffleNet V2 1×
Top-1 Top-5 GFLOPs Top-1 Top-5 GFLOPs Top-1 Top-5 GFLOPs

Baseline 72.5 90.8 0.33 59.2 82.0 0.05 69.0 88.6 0.15
SE 73.5 91.7 0.33 60.2 82.4 0.05 70.7 89.6 0.15
CE 74.6 91.7 0.33 60.5 82.7 0.05 71.2 89.8 0.16

Table 2: Comparisons with baseline and SE on lightweight networks, MobileNet V2 and ShuffleNet
V2, in terms of accuracy and GFLOPs on ImageNet. Our CENet improves the top-1 accuracy by a
large margin compared with SENet with nearly the same GFLOPs.

BN GN IN LN
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

Baseline 76.6 93.0 75.6 92.8 74.2 91.9 71.6 89.9
Baseline+CE 78.3 94.1 76.2 92.9 76.0 92.7 73.3 91.3

Increase +1.7 +1.1 +0.6 +0.1 +1.8 +0.8 +1.7 +1.4

Table 3: CE improves top-1 and top-5 accuracy of various normalization methods on ImageNet with
ResNet50 as backbone.

Performance comparison on ResNet. We evaluate on representative residual network structures in-
cluding ResNet18, ResNet50 and ResNet101. The CE-ResNet is then compared with baseline (plain
ResNet) and SE-ResNet. For fair comparisons, we use publicly available code and re-implement
baseline models and SE modules with their respective best settings in a unified Pytorch framework.
To save computation, the CE blocks are selectively inserted into the last normalization layer of each
residual block. Specifically, for ResNet18, we plug the CE block into each residual block. For
ResNet50, CE is inserted into all residual blocks except for those layers with 2048 channels. For
ResNet101, the CE blocks are employed in the first seven residual blocks.

As shown in Table 1, our proposed CE outperforms the BN baseline and SE block by a large margin
with little increase of GFLOPs. Concretely, CE-ResNet18, CE-ResNet50 and CE-ResNet101 obtain
top-1 accuracy increase of 1.5%, 1.7% and 1.0% compared with the corresponding plain ResNet
architectures. The CE-ResNet50 even outperforms the plain ResNet101 (78.0). We plot training
and validation loss during the training process for ResNet50, SE-ResNet50 and CE-ResNet50 in
Sec.E of Appendix.

We also analyze the complexity of BN, SE, and CE in terms of GFLOPs, GPU and CPU run-
ning time. We evaluate the inference time2 with a mini-batch of 32. In term of GFLOPs, the CE-
ResNet18, CE-ResNet50, CE-ResNet101 has only 0.242% and 0.241% relative increase in GFLOPs
compared with plain ResNet. Additionally, the CPU and GPU inference time of CENet is nearly the
same with SENet.

Performance comparison on light-weight networks. We further verify the effectiveness of our
proposed CE in two representative light-weight networks, MobileNet V2 and ShuffleNet V2. The
results of comparison are listed in Table 2. It is seen that CE blocks bring conspicuous improvements
in performance at a minimal increase in computational burden on mobile settings. For MobileNet
V2, we see that CE blocks even improves top-1 accuracy of baseline by 2.1%.

Other Normalizers. In addition to BN, CE is also effective for other normalization technologies,
since the channel-wise affine transformation is employed in any well-known normalizers. To prove
this, we conduct experiments using ResNet-50 under different normalizers including batch normal-
ization (BN), group normalization (GN), instance normalization (IN), and layer normalization (LN).
For these experiments, we stack CE block after the above normalizers to see whether CE helps other
normalization methods. As shown in Table 3, our CE generalize well over different normalization
technology, improving the performance by 0.6-1.8 top-1 accuracy.

4.2 ANALYSIS OF CE

In this section, we first demonstrate that CE is able to equalize the importance of all channels and
then analyze the effects of BD and AII branches separately on CIFAR10 and ImageNet datasets.

2The CPU type is Intel Xeon CPU E5-2682 v4, and the GPU is NVIDIA GTX1080TI. The implementation
is based on Pytorch
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Figure 3: (a) and (b) show dropout ratios versus top-1 accuracy for MobileNet V2 and ResNet50
respectively. We randomly drop some channels in the first normalization layers. We can see that
when dropping the same number of channels, the top-1 accuracy of our CE-ResNet50 and CE-
MobileNet V2 is consistently higher than plain networks. For (c) and (d), we train VGGNet in
CIFAR-10 under different weight decays. It is observed that the sparsity ratio is highly linked with
top-1 accuracy. Our CE-VGG can reduce sparsity ratio, and thus reduce accuracy drop.

CE is effective in channel equalization. Here, we verify whether CE can equalize channels
by an ablation approach used in Morcos et al. (2018). Typically, the importance of a single
channel to the network’s computation can be measured by the relative performance drop once
that channel is removed (clamping activity a feature map to zero). In this regard, the more re-
liant a network is on a small set of channels, the more quickly the accuracy will drop if those
channels are ablated. On the contrary, if the importance of channels to the network’s com-
putation are more equal, the accuracy will drop more gently. With this powerful technique,
we see how ResNet50 and MobileNet V2 with CE blocks respond to cumulative random ab-
lation of channels. We plot the ablation ratio versus the top-1 accuracy in Fig.3a and Fig.3b.
As we can see, our CE block is able to resist the cumulative random ablation of channels on
both ResNet50 and MobileNet V2, showing that CE can effectively equalize the importance of
channels. For example, the top-1 accuracy of our CE-ResNet50 is 1.7 higher than the orig-
inal ResNet50 if no channels are ablated, but when 60% channels are ablated, CE-ResNet50
still obtain 40.5 top-1 accuracy, while the original ResNet50 gets only 0.5 top-1 accuracy.

1 2 3 4 5 6
Layer Number

0

1

2

3

4

5

6

7
CE
AII

Figure 4: We do principal component analy-
sis (PCA) on the input of AII sub-network, the
variance of each channel. This figure show the
box chart of principal components. CENet has
lower means and variances than AIINet, indi-
cating the input of AII sub-network in CENet
is more equal and informative.

BD is able to mitigate channel-level sparsity. As
proved in Proposition 1, equivalent γ in the BD
branch is explicitly enlarged, leading to the ex-
pansion of representational power of all channels.
Here we investigate this property experimentally
with a single BD branch. The layer-wise sparsity
ratios are measured by the percentage of γ whose
values are less than 1e-3. Fig.3d shows sparsity
ratio under a wide range of weight decay for BN,
BD and CE. It is observed that the top-1 accu-
racy of VGGNet with BN drops significantly as
the weight decay increases, but BD can reduce ac-
curacy drop. For example, when the weight decay
is 1e-3, the top-1 of BD is only 0.1 higher than
BN, but when the weight decay reaches to 1e-2,
BD is 4.95 higher. Moreover, the sparsity ratio of
CE is even lower than BD while the top-1 accu-
racy is higher, which can demonstrate that CE can
strengthen the effect of sparsity alleviation com-
pared with single BD.

AII helps CE learn preciser feature representation. First, as discussed in Sec.3.3, AII benefits
from BD such that the features fed into AII branch are more informative. To see this, we train
ResNet50 with a single AII or CE branch, termed AII-ResNet50 or CE-ResNet50. We do principal
component analysis (PCA) on the inputs of AII branch in AII-ResNet50 and the counterpart in CE-
ResNet50 and plot the box chart of principal components. As is shown in Fig.4, the input of AII

8
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Method Plain ResNet50 BD-ResNet50 AII-ResNet50 CE-ResNet50
top-1 76.6 77.0 (+0.4) 77.3 (+0.7) 78.3 (+1.7)

Table 4: Results of batch covariance decorrelation, adaptive variance inverse and channel equilib-
rium. We use ResNet-50 as the basic structure. The top-1 accuracy increase (1.7) of CE-ResNet is
higher than combined top-1 accuracy increase (1.1) of BD-ResNet and AII-ResNet, indicating the
effects of BD and AII branch is complementary.

Backbone AP b AP b
.5 AP b

.75 APm APm
.5 APm

.75

ResNet50 38.6 59.5 41.9 34.2 56.2 36.1
CE-ResNet50 40.8 62.7 44.3 36.9 59.2 39.4

SyncCE-ResNet50 42.0 62.6 46.1 37.5 59.5 40.3
ResNet101 40.3 61.5 44.1 36.5 58.1 39.1

CE-ResNet101 41.6 62.8 45.8 37.4 59.4 40.0

Table 5: Detection and segmentation results in COCO using Mask-RCNN We use the pretrained
CE-ResNet50 model (78.3) and CE-ResNet101 (79.0) in ImageNet to train our model. CENet can
consistently improve both box AP and segmentation AP by a large margin.

branch in CE-ResNet50 gets much lower means and variances, meaning that the input feature has
more valid basis and thus more informative. More analysis is provided in Sec.E of Appendix.

BD and AII are complementary. Here, we verify that BD and AII are complementary to each
other. We train plain ResNet50, BD-ResNet50, AII-ResNet50, and CE-ResNet50 for comparison.
The top-1 accuracy is reported in Table 4. It is observed that the BD-ResNet50 and AII-ResNet50
are 0.4 and 0.7 higher than the plain ResNet-50 respectively. However, when they are combined, the
top-1 accuracy improves by 1.7, higher than combined accuracy increase (1.1), which demonstrates
that they benefit from each other.

4.3 OBJECT DETECTION AND INSTANCE SEGMENTATION ON COCO

We assess the generalization of our CE block on detection/segmentation track using the COCO2017
dataset ( Lin et al. (2014)). We train our model on the union of 80k training images and 35k vali-
dation images and report the performance on the mini-val 5k images. Mask-RCNN is used as the
base detection/segmentation framework. The standard COCO metrics of Average Precision (AP) for
bounding box detection (APbb) and instance segmentation (APm) is used to evaluate our methods.
In addition, we adopt two common training settings for our models, (1) freezing the vanilla batch
normalization and channel equilibrium layer and (2) updating parameters with the synchronized
version. For vanilla BN and CE layers, all the gamma, beta parameters, and the tracked running
statistics are frozen. In contrast, for the synchronized version, the running mean and variance for
batch normalization and the covariance for CE layers are computed across multiple GPUs. The
gamma and beta parameters are updated during training while F̃ and λ are frozen to prevent overfit-
ting. We use MMDetection training framework with ResNet50/ResNet101 as basic backbones and
all the hyper-parameters are the same as Chen et al. (2019). Fig.5 shows the detection and segmenta-
tion results. The results show that compared with vanilla BN, our CE block can consistently improve
the performance. For example, our fine-tuned CE-ResNet50 is 2.2 AP higher in detection and 2.7
AP higher in segmentation. For the sync BD version, CE-ResNet50 gets 42.0 AP in detection and
37.5 AP in segmentation, which is the best performance for ResNet50 to the best of our knowledge.
To sum up, these experiments demonstrate the generalization ability of CE blocks in other tasks.

5 CONCLUSION

In this paper, we presented a novel network block, termed as Channel Equilibrium (CE). The CE
block conditionally decorrelates feature maps after normalization layer by switching between batch
decorrelation branch and adaptive instance inverse branch. In both experiment and theory, we show
that CE is able to explicitly enhance the representation capability of a neural network in a feed-
forward way. Specifically, CE can be stacked between the normalization layer and the ReLU func-
tion, making it flexible to be integrated into many advanced CNN architectures. The superiority of
CE blocks has been demonstrated on the task of image classification and instance segmentation. We
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hope that the analysis of channel equalization in CE could bring a new perspective for future work
in architecture design.
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Appendix

A MORE RELATED WORK

Sparsity in ReLU. An attractive property of ReLU (Sun et al., 2015; Nair & Hinton, 2010) is
sparsity, which brings potential advantages such as information disentangling and linear separability.
However, Lu et al. (2019) and Mehta et al. (2019) pointed out that some ReLU neurons may become
inactive and output 0 values for any input. Previous work tackled this issue by designing new
activation functions, such as PReLU (He et al., 2015) and Leaky ReLU (Maas et al., 2013). Recently,
Lu et al. (2019) also tried to solve this problem by modifying initialization scheme. Different from
these work, we focus on filter level sparsity and explicitly prevent it in a feed-forward way by the
proposed CE blocks.

Normalization and decorrelation. There are many practices on normalizer development, such as
Batch Normalization (BN) (Ioffe & Szegedy, 2015), Group normalization (GN) (Wu & He, 2018)
and Switchable Normalization (Luo et al., 2018). A normalization scheme is typically applied after
a convolution layer and contains two stages: standardization and rescaling. Another type of normal-
ization methods not only standardizes but also decorrelates features, like DBN (Huang et al., 2018),
IterNorm (Huang et al., 2019) and switchable whitening (Pan et al., 2019). Despite their success in
performance improvement, little is known about their implicit sparsity. Fig.1 shows that channel-
level sparsity emerges in VGGNet where ‘BN+ReLU’ or ‘IterNorm+ReLU’ are used. Unlike previ-
ous decorrelated normalizations where decorrelation operation is applied after a convolution layer,
our CE explicitly decorrelates features after normalization. As shown in Fig.1, both CE and BD are
effective to alleviate such sparsity.

B COMPUTATION DETAILS IN ’BN-CE-RELU’ BLOCK

As discussed before, CE processes incoming features after normalization layer by combining two
branches, i.e. batch decorrelation and adaptive instance inverse. The former computes a covariance
matrix and the latter calculates instance variance. We now take ’BN-CE-ReLU’ block as an example
to show the computation details of statistics in it. Given a tensor x ∈ RN×C×H×W , the mean and
variance in IN (Ulyanov et al., 2016) are calculated as:

µncIN =
1

HW

H,W∑
i,j

xncij , (σ2
IN)nc =

1

HW

H,W∑
i,j

(xncij − µncIN)2 (10)

Hence, we have µIN, σ
2
IN ∈ RN×C . Then, the statistics in BN can be reformulated as follows:

µcBN =
1

NHW

N,H,W∑
n,i,j

xncij =
1

N

N∑
i

1

HW

H,W∑
i,j

xncij

(σ2
BN)c =

1

NHW

N,H,W∑
n,i,j

(xncij − µcBN)2

=
1

N

N∑
n

1

HW

H,W∑
i,j

(xncij − µncIN + µncIN − µcBN)2

=
1

N

N∑
n

(
1

HW

H,W∑
i,j

(xncij − µncIN)2 + (µncIN − µcBN)2)

=
1

N

N∑
n

(σ2
IN)nc +

1

N

N∑
n

(µncIN − µcBN)2)

(11)

Then, we have µBN = E[µIN] and σ2
BN = E[σ2

IN] + D[µIN], where E[·] and D[·] denote expectation
and variance operators over N samples. Further, the input of AII is instance variance of features
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after BN, which can be calculated as follows:

σ2
nc =

1

HW

H,W∑
i,j

[
(γc

xncij − µcBN

σcBN

+ βc)− (γc
µncIN − µcBN

σcBN

+ βc)

]2

=
γ2c

(σ2
BN)c

1

HW

H,W∑
i,j

(xncij − µncIN)2

=
γ2c (σ2

IN)nc

(σ2
BN)c

(12)

At last, the output of BN is x̃ncij = γcx̄ncij + βc, then the entry in c-th row and d-th column of
covariance matrix Σ of x̃ is calculated as follows:

Σcd =
1

NHW

N,H,W∑
n,i,j

(γcx̄ncij)(γdx̄ndij) = γcγdρcd (13)

where ρcd is the element in c-th row and j-th column of correlation matrix of x̄. Thus, we can write
Σ into vector form: Σ = γγT � 1

M x̄x̄T if we reshape x̃ to x̃ ∈ RC×M and M = N ·H ·W .

C PROOF OF PROPOSITION 1

Proposition 1. Let Σ be covariance matrix of feature maps after batch normalization. Assume that
Σk = Σ−

1
2 , ∀k = 2, 3, · · · , T , then ‖γ̂‖1 > ‖γ‖1. Especially, we have |γ̂i| > |γi|

Proof. Since Σk = Σ−
1
2 , ∀k = 2, 3, · · · , T , we have Σkγ = 1

2Σk−1(3I − Σ2
k−1Σ)γ = Σk−1γ.

Therefore, we only need to show ‖γ̂‖1 = ‖ΣT γ‖1 = · · · = ‖Σ2γ‖1 ≥ ‖γ‖1. Now, we show that
for k = 2 we have

∥∥ 1
2 (3I − Σ)γ

∥∥
1
≥ ‖γ‖1. From Eqn.(5), we know that Σ = γγT

‖γ‖22
� ρ where ρ is

the correlation matrix of x̃ and −1 ≤ ρij ≤ 1, ∀i, j ∈ [C]. Then, we have

1

2
(3I − Σ)γ =

1

2
(3I − γγT

‖γ‖22
� ρ)γ

=
1

2
(3γ − (

γγT

‖γ‖22
� ρ)γ)

=
1

2
(3γ − 1

‖γ‖22

 C∑
j

γ1γjρ1jγj ,

C∑
j

γ2γjρ2jγj , · · · ,
C∑
j

γCγjρCjγj

T

)

=
1

2
(3γ − 1

‖γ‖22

 C∑
j

γ1γjρ1jγj ,

C∑
j

γ2γjρ2jγj , · · · ,
C∑
j

γCγjρCjγj

T

)

=
1

2

(3−
C∑
j

γ2j ρ1j

‖γ‖22
)γ1, (3−

C∑
j

γ2j ρ2j

‖γ‖22
)γ2, · · · , (3−

C∑
j

γ2j ρCj

‖γ‖22
)γC

T

(14)

Note that |3−
∑C
j

γ2
j ρij

‖γ‖22
| ≥ 3− |

∑C
j

γ2
j ρij

‖γ‖22
| ≥ 3−

∑C
j

γ2
j

‖γ‖22
= 2, where the last equality holds iff

ρij = 1, ∀i, j ∈ [C]. However, this is not the case in practice. Hence we have∣∣∣∣[1

2
(3I − Σ)γ

]
i

∣∣∣∣ =

∣∣∣∣∣∣12(3−
C∑
j

γ2j ρij

‖γ‖22
)γi

∣∣∣∣∣∣ > |γi| (15)

Therefore, we have ‖γ̂‖1 > ‖γ‖1. Here completes the proof.
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D CONNECTION BETWEEN CE BLOCK AND NASH EQUILIBRIUM

We first introduce the definition of Gaussian interference game in context of CNN and then build the
connection between a CE block and Nash Equilibrium. For clarity of notation, we omit the subscript
’n’ for a concrete sample.

Let the channels 1, 2, · · · , C operate over H ×W pixels. Assume that the C channels have depen-
dencies G = {gcd(i, j)}C,Cc,d=1. Each pixel is characterized by a power gain hcij ≥ 0 and channel
noise strength σc > 0. In context of normalization, we suppose hcij = x̄cij + δ where x̄cij is stan-
dardized pixel in Eqn.(1) and δ is sufficiently large to guarantee a non-negative power gain. Assume
that c-th channel is allowed to transmit a total power of Pc and we have

∑H,W
i,j=1 pcij = Pc. Besides,

each channel can transmit a power vector pc = (pc11, · · · , pcHW ). Since normalization layer is
often followed by a ReLU activation, we restrict pcij ≥ 0. What we want to maximize the capacity
transmitted over the c-th channel, ∀c ∈ [C], then the maximization problem is given by:

max Cc(p1, p2, · · · , pC) =

h,W∑
i,j=1

ln

(
1 +

gccpcij∑
d 6=c gcdpdij + σc/hcij

)

s.t.

{ ∑H,W
i,j=1 pcij = Pc,

pcij ≥ 0, ∀i ∈ [H], j ∈ [W ]

(16)

where Cc is the capacity available to the c-th channel given power distributions p1, p2, · · · , pC .
In game theory, C channels and solution space of {pcij}C,H,Wc,i,j=1 together with pay-off vector C =

(C1, C2, · · · , CC) form a Gaussian interference game G. Different from basic settings in G, here
we do not restrict dependencies gcd to (0, 1). It is known that G has a unique Nash Equilibrium
point whose definition is given as below,

Definition 1. An C-tuple of strategies (p1, p2, · · · , pC) for channels 1, 2, · · · , C respectively is
called a Nash equilibrium iff for all c and for all p (p a strategy for channel c)

Cc(p1, · · · , pc−1, p, pc+1, · · · , pC) ≤ Cc(p1, p2, · · · , pC) (17)

i.e., given that all other channels d 6= c use strategies pd, channel c best response is pc. Since
C1, C2, · · · , CC are concave in p1, p2, · · · , pC respectively, KKT conditions imply the following
theorem.

Theorem 1. Given pay-off in Eqn.(16), (p∗1, · · · , p∗C) is a Nash equilibrium point if and only if there
exist v0 = (v10 , · · · , vC0 ) (Lagrange multiplier) such that for all i ∈ [H] and j ∈ [W ],

gcc∑
d gcdp

∗
dij + σc/hcij

{
= vc0 for p∗cij > 0
≤ vc0 for p∗cij = 0

(18)

Proof. The Lagrangian corresponding to minimization of −Cc subject to the equality constraint and
non-negative constraints on pcij is given by

Lc = −
h,W∑
i,j=1

ln

(
1 +

gccpcij∑
d6=c gcdpdij + σc/hcij

)
+ vc0(

H,W∑
i,j=1

pcij − Pc) +

H,W∑
i,j=1

vcij1 (−pcij). (19)

Differentiating the Lagrangian with respect to pcij and equating the derivative to zero, we obtain

gcc∑
d gcdpcij + σc/hcij

+ vcij1 = vc0 (20)

Now, using the complementary slackness condition vcij1 pcij = 0 and vcij1 ≥ 0, we obtain condition
(18). This completes the proof.

By Theorem 1, the unique Nash Equilibrium point can be explicitly written as follows when p∗cij >
0,

p∗ij = G−1
(
Diag(v0)−1diag(G)−Diag(hij)

−1σ
)

(21)
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where p∗ij , hij , σ ∈ RC and v0 ∈ RC are Lagrangian multipliers corresponding to equality con-
straints. Note that a approximation can be made using Taylor expansion as follow: − σc

hcij
=

σc(2 + hcij +O((1 + hcij)
2)). Thus, a linear proxy to Eqn.(21) can be written as

p∗ij = G−1
(
Diag(σ)x̄ij + Diag(v0)−1diag(G) + (2 + δ)σ

)
(22)

Let G = [Dn]
1
2 , γ = σ and β = Diag(v0)−1diag(G) + (2 + δ)σ, Eqn.(22) can surprisingly match

CE unit in Eqn.(4), implying that the proposed CE block indeed performs a mechanism on channel
equalization. In Gaussian interference game, σ is known and v0 can be determined when budget
Pc’s are given. However, γ and β are learned by SGD in deep neural networks.

E EXPERIMENTS

Training and validation loss. We plot training and validation loss during the training process for
ResNet50, SE-ResNet50 and CE-ResNet50 in Fig.6. We can observe that CE-ResNet50 consistently
have lower training and validation errors over the whole training period.

Grad-cam visualization. We claim that AII learns adaptive inverse of variance for each channel
in a self-attention manner. Fed into more informative input, AII is expected to make the network
respond to different inputs in a highly class-specific manner. In this way, it helps CE learn preciser
feature representation. To verify this, we employ an off-the-shelf tool to visualize the class activation
map (CAM) Selvaraju et al. (2017). We use ResNet50, BD-ResNet50, and CE-ResNet50 trained on
ImageNet for comparison. As shown in Fig.5, the heat maps extracted from CAM for CE-ResNet50
have more coverage on the object region and less coverage on the background region. It shows that
the AII branch helps CE learn preciser information from the images.

F TRAINING AND INFERENCE

Moving average in inference. Unlike previous methods in manual architecture design that do not
depend on batch estimated statistics, the proposed CE block requires computing the inverse square
root of a batch covariance matrix Σ and a global variance scale s in each training step. To make
the output depend only on the input, deterministically in inference, we use the moving average to
calculate the population estimate of Σ̂−

1
2 and ŝ−

1
2 by following the below updating rules:

Σ̂−
1
2 = (1−m)Σ̂−

1
2 +mΣ−

1
2 , ŝ−

1
2 = (1−m)ŝ−

1
2 +m · s− 1

2 (23)

where s and Σ are the variance scale and covariance calculated within each mini-batch during train-
ing, and m denotes the momentum of moving average. It is worth noting that since Σ̂−

1
2 is fixed

during inference, the BD branch does not introduce extra costs in memory or computation except
for a simple linear transformation ( Σ̂−

1
2 x̃).

Model and computational complexity. The main computation of our CE includes calculating the
covariance and inverse square root of it in the BD branch and computing two FC layers in the AII
branch. We see that there is a lot of space to reduce computational cost of CE. For BD branch, given
an internal feature x ∈ RN×C×H×W , the cost of calculating a covariance matrix is 2NHWC2,
which is comparable to the cost of convolution operation. A pooling operation can be employed
to downsample featuremap for too large H and W . In this way, the complexity can be reduced
to 2NHWC2/k2 + CHW where k is kernel size of the window for pooling. Further, we can
use group-wise whitening to improve efficiency, reducing the cost of computing Σ−

1
2 from TC3 to

TCg2 (g is group size). For AII branch, we focus on the additional parameters introduced by two FC
layers. In fact, the reduction ratio r can be appropriately chosen to balance model complexity and
representational power. Besides, the majority of these parameters come from the final block of the
network. For example, a single AII in the final block of ResNet-50 has 2 ∗ 20482/r parameters. In
practice, the CE blocks in the final stages of networks are removed to reduce additional parameters.
We provide the measurement of computational burden and Flops in Table.1.

ResNet Training Setting. All networks are trained using 8 GPUs with a mini-batch of 32 per GPU.
We train all the architectures from scratch for 100 epochs using stochastic gradient descent (SGD)
with momentum 0.9 and weight decay 1e-4. The base learning rate is set to 0.1 and is multiplied
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(a) Origin (b) ResNet50 (c) BD-ResNet50 (d) CE-ResNet50

Figure 5: Grad-cam visualization results from the final convolutional layer for plain ResNet50,
SE-ResNet50, and CE-ResNet50.
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Figure 6: Training and validation error curves on ImageNet for different methods with ResNet50 as
backbone.

by 0.1 after 30, 60 and 90 epochs. Besides, the covariance matrix in BD branch is calculated within
each GPU. Since the computation of covariance matrix involves heavy computation when the size
of feature map is large, a 2× 2 maximum pooling is adopted to down-sample the feature map after
the first batch normalization layer. Like (Huang et al., 2019), we also use group-wise decorrelation
with group size 16 across the network to improve the efficiency in the BD branch. By default, the
reduction ratio r in AII branch is set to 4.

MobileNet V2 training Setting. All networks are trained using 8 GPUs with a mini-batch of 32 per
GPU for 150 epochs with cosine learning rate. The base learning rate is set to 0.05 and the weight
decay is 4e-5.

ShuffleNet V2 training Setting. All networks are trained using 8 GPUs with a mini-batch of 128
per GPU for 240 epochs with poly learning rate. The base learning rate is set to 0.5 and weight
decay is 4e-5. We also adopt warmup and label smoothing tricks.

VGG networks on CIFAR10 training setting. For CIFAR10, we train VGG networks with a batch
size of 256 on a single GPU for 160 epochs. The initial learning rate is 0.1 and is decreased by 10
times every 60 epochs.

Mask-RCNN training setting in COCO. We fine-tune the ImageNet pretrained model in COCO
for 24 epoch with base learning rate 0.02 and multiply it by 0.1 after 16 and 22 epochs. All the
models are trained using 8 GPUs with a mini-batch of 2 images. The basic backbone structure is
adopted from the ResNet50/ResNet101 trained on ImageNet.
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