
Under review as a conference paper at ICLR 2020

VARIABLE COMPLEXITY IN THE UNIVARIATE AND
MULTIVARIATE STRUCTURAL CAUSAL MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

We show that by comparing the individual complexities of univariante cause and
effect in the Structural Causal Model, one can identify the cause and the effect,
without considering their interaction at all. The entropy of each variable is ineffec-
tive in measuring the complexity, and we propose to capture it by an autoencoder
that operates on the list of sorted samples. Comparing the reconstruction errors
of the two autoencoders, one for each variable, is shown to perform well on the
accepted benchmarks of the field.
In the multivariate case, where one can ensure that the complexities of the cause
and effect are balanced, we propose a new method that mimics the disentangled
structure of the causal model. We extend the results of Zhang & Hyvärinen (2009)
to the multidimensional case, showing that such modeling is only likely in the di-
rection of causality. Furthermore, the learned model is shown theoretically to
perform the separation to the causal component and to the residual (noise) com-
ponent. Our multidimensional method obtains a significantly higher accuracy than
the literature methods.

1 INTRODUCTION

A long standing debate in the causality literature, is whether causality can be inferred without in-
tervention (Pearl, 2009; Spirtes et al., 2000). The Structural Causal Model (SCM) (Spirtes et al.,
2000) is a simple causative model for which many results demonstrate the possibility of such infer-
ence (Stegle et al., 2010; Bloebaum et al., 2018; Goudet et al., 2018; Lopez-Paz et al., 2017; 2015).
In this model, the effect (Y ) is a function of the cause (X) and some independent random noise (E).

In this work, we demonstrate that for the 1D case, which is the dominant case in the existing lit-
erature, the SCM model leads to an effect that has a lower complexity than the cause. Therefore,
one can identify the cause and the effect by measuring their individual complexities, with no need
to make the inference based on both variables simultaneously. Thus, the decision as to which of the
two is the cause and which is the effect may not be based on causality but on complexity.

Since we are dealing with unordered 1D variables, the complexity measure has to be based on
the probability distribution function. As we show empirically, the entropy of the distribution is
ineffective. We, therefore, consider the percentiles, i.e, fixed sized vectors that are obtained as
subsequences of the sorted values of a variable.

In our analysis, we show that the reconstruction error of an autoencoder of a multivariate random
variable is a valid complexity measure. In addition, we link the reconstruction error based complex-
ity, in the case of variational autoencoders, to the differential entropy of the input random variable.

The challenges of measuring causality independently of complexity in the 1D case lead us to con-
sider the multidimensional case, where the complexity can be controlled by, e.g., manipulating the
dimension of the noise signal in the SCM model. Note that unlike Goudet et al. (2018), we consider
pairs of multivariate vectors and not many univariate variables in a graph structure. We demonstrate
that for the multidimensional case, any method that is based on comparing the complexity of the
individual random variables X and Y fails to infer causality of random variables. Furthermore, we
extend the result of Zhang & Hyvärinen (2009) to the multidimensional case and prove that an SCM
is unlikely to hold in both directions X → Y and Y → X for reasonable conditions.

1



Under review as a conference paper at ICLR 2020

Based on our observations, we propose a new causality inference method for multidimensional cause
and effect. The algorithm learns three networks in a way that mimics the parts of the SCM model.
The noise part is unknown and is replaced by a function that is constrained to be independent of the
cause, as captured by an adversarial loss. However, we show analytically and empirically that even
without the explicit constraint, such an independence emerges.

Our empirical results support our analysis and demonstrate that in the 1D case, assigning cause and
effect based on complexity is competitive with the state of the art methods. In the multidimensional
case, we show that the proposed method outperforms existing and new extensions of the literature
methods to the multidimensional case.

1.1 RELATED WORK

In causal inference, the algorithm is provided with a dataset of matched samples (x, y) of two
random variables X and Y and decides whether X causes Y or vice versa. The early wisdom
in this area asserted that this asymmetry of the data generating process (i.e., that Y is computed
fromX and not vice versa) is not apparent from looking at PX,Y alone. That is, in general, provided
with samples from the joint distribution PX,Y of two variables X,Y does tell us whether it has been
induced by an SCM from X to Y or from Y to X .

In publications such as (Pearl, 2009; Spirtes et al., 2000) it is argued that in order to decide whether
X causes Y or vice versa, one needs to observe the influence of interventions on the environment
parameter. To avoid employing interventions, most publications assume prior knowledge on the
generating process and/or independence between the cause and the mechanism.

Various methods for causal inference under the SCM model have been suggested. The
LiNGAM (Shimizu et al., 2006) algorithm assumes that the SCM takes the form Y = βX + E,
where X |= E and β ∈ R and E is non-Gaussian. The ANM approach (Hoyer et al., 2009) extends
LiNGAM’s modelling and assumes that Y = f(X) + E, where X |= E. In their modelling they
employ a Gaussian process for the learned mechanism between the two random variable. The Infor-
mation Geometric Causal Inference algorithm (IGCI) (Daniusis et al., 2012) approach determines
the causal relationship in a deterministic setting Y = f(X) under an independence assumption
between the cause and the mechanism, Cov(log f ′(x), pX) = 0.

The Conditional Distribution Similarity Statistic (CDS) (Fonollosa, 2016) measures the standard
deviation of the values of Y (resp. X) after binning in the X (resp. Y ) direction. The lower the
standard deivation, the more likely the pair to be X → Y . The CURE algorithm Sgouritsa et al.
(2015) compares between X → Y and Y → X directions in the following manner: is given as
follows: if we can estimate pX|Y based on samples from pY more accurately than pY |X based on
samples from pX , then X → Y is inferred.

The BivariateFit method learns a Gaussian process regressor in both directions and decides upon the
side that had the lowest error. The RECI method (Bloebaum et al., 2018) trains a regression model in
both directions, and returns the side that produced a lower MSE loss. The utilized regression models
were: a logistic function, polynomial functions, support vector regression and neural networks. The
CGNN algorithm (Goudet et al., 2018) uses the Maximum Mean Discrepancy (MMD) distance
between the distribution produced by modeling Y as an effect of X , (X, g(X,E)) (and vice versa),
and the ground truth distribution. The algorithm compares the two distances and returns the direction
that led to a smaller distance. The Gaussian Process Inference model (GPI) (Stegle et al., 2010)
builds two generative models, one forX → Y and one for Y → X . The distribution of the candidate
cause variable is modelled as a Gaussian mixture model, and the mechanism f is a Gaussian process.
The causal direction is determined from the generative model that best fits the data.

2 PROBLEM SETUP

We investigate the problem of causal inference. A non-linear structural causal model (SCM for
short) is a generative process of the following form:

X ∼ PX
E ∼ PE
Y ← g(f(X), E)

(1)
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The functions g : Rdf+de → Rn and f : Rn → Rdf are fixed and unknown. In general, g and f are
non-linear. Here, X is the input random variable and E is the environment random variable that is
independent of X . We say that X causes Y if they satisfy a generative process such as Eq. 1.

We present methods for inferring whether X causes Y (denoted by X → Y ) or Y causes X , or
neither. The algorithm is provided with i.i.d samples {(xi, yi)}mi=1 ∼ PmX,Y (the distribution of m
i.i.d samples from the joint distribution PX,Y ) from the generative process of Eq. 1. In general, by
(cf. Prop 4.8, (Peters et al., 2017)), for any joint distribution PX,Y of two random variables X and
Y , there is an SCM, Y = h(X,E), where E is a noise variable, such that, X |= E and h is some
(measurable) function. Therefore, in general, deciding whether X causes Y or vice versa is ill-
posed when only provided with samples from the joint distribution. However, Zhang & Hyvärinen
(2009) showed for the one dimensional case (i.e., X,Y ∈ R) that under reasonable conditions, a
representation Y = g(f(X)+E) holds only in one direction. In Sec. 4.2 we extend this theorem and
show that a representation Y = g(f(X), E) holds only in one direction when g and f are assumed
to be neural networks and X,Y are multidimensional (we call such SCMs neural SCMs).

Throughout the paper, we denote by PU [u] := P[U ≤ u] the cumulative distribution function of a
uni/multi-variate real valued random variableU and P is a standard Lebesgue measure. Additionally,
we denote by pU (u) = d

duPU [u] the probability density function of U (if exists, i.e., PU [u] is
absolutely continuous). We denote by Eu∼U [f(u)] or by EpU [f(u)] the expected value of f(u) for
u that is distributed by PU [u], depending on the context. The identity matrix of dimension n × n
is denoted by In. We recall a few notations from information theory (Shannon, 1948; Cover &
Thomas, 2006). The entropy of a random variable U , is defined as h(U) := −EpU [log(pU (u))],
where U is the domain of U . The mutual information between two random variables U and V
is denoted by I(U ;V ) := Ep(U,V )

[
log
(

pU,V (u,v)
pU (u)pV (v)

)]
. Sometimes, we will denote Ip(U ;V ), to

specify the PDF, p, of the variables (U, V ).

3 THE UNIVARIATE CASE

We start by describing a method for identifying the cause and the effect, which considers each of
the two variables independently. The method is based on the statistics of the quantiles of each of the
two distributions. In Sec. 3.2, we show that the reconstruction error of an autoencoder is directly
linked to the differential entropy of the distribution it models.

3.1 A METHOD FOR INFERRING DIRECTIONALITY IN THE SCM MODEL

We hypothesize that due to the information processing inequality, the entropy of the cause h(X)
in the SCM model is higher than the entropy h(Y ) of the effect. However, estimating the entropy
of each random variable from its samples does not present a consistent difference between the en-
tropies h(X) and h(Y ). Our method, therefore, computes an alternative complexity score for X
and, independently, for Y . It then compares the scores and decides that the cause is the random
variable that has the larger score among them.

Our scoring function has a few stages. As a first step, it converts the random variable at hand
(say, X) into a multivariate random variable. This is done by sorting the samples of the random
variable, and then cutting the obtained list into fixed sized vectors of length k. We discard the
largest measurements in the case where the number of samples is not a multiple of k. We denote the
random variable obtained this way by U .

At the second stage, the method trains an autoencoder A : Rk → Rk on these quantile vectors.
Formally, A is trained to minimize the following objective:

Lrecon(A) := Eu∼U [`(A(u), u)] (2)

where `(a, b) is some loss function. In our implementation, we employ the L2-loss function, defined
as `(a, b) = ‖a−b‖22. Finally, the method uses the value of Lrecon(A), which we refer to as the AEQ
score, as a proxy for the complexity of X (smaller loss means lower complexity). It decides that X
or Y is the cause, based on which side provides a higher AEQ.
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3.2 RECONSTRUCTION ERROR AS AN ESTIMATOR OF THE ENTROPY

Since we use the reconstruction error as a measure of complexity, we next link it to entropy, which is
an acceptable complexity measure. This is done in the context of a learned variational autoencoder
(VAE) (Kingma & Welling, 2014), with a fixed latent space dimension.

We are given a real-valued vector-random-variable U (not necessarily quantiles) with a PDF pU (u).
We recall the setting of VAEs and the analysis of Zhao et al. (2017). The VAE model employs
a d dimensional latent variable z ∼ N (0, Id), and considers the family of the distribution pθ(u|z)
parameterized by θ ∈ Θ. The objective of this framework is to select θ that maximizes the likelihood
of the samples of U within pθ(u|z) · p(z),

Eu∼U [log pθ(u)] = Eu∼U
[∫

Rd
pθ(u|z) · p(z) dz

]
(3)

where p(z) = exp(−‖z‖22/2) · (2π)−k/2 is the PDF of z and pθ(u) = pθ(u|z) · p(z). In typical
situations, we select pθ to be the PDF of a normal distribution N (fθ(z), σ

2
1 · In), where fθ(z) ∈ F

is a learned neural network and σ2
1 is a variance hyperparameter of the framework. We denote by

P = {pθ(u|z)|z ∈ Rd, θ ∈ Θ} the class of density functions over X .

To optimize this objective, it is required to evaluate p−1
θ (u), which involves the computation of a

high dimensional integral. Even though this integral can be approximated by sampling, this is a
costy process that has to be done for every sample u. To solve this problem, we have a second
distribution that is responsible to model the latent codes z that are most probable given u. This PDF
is denoted by qφ(z|u) and corresponds to a normal distribution N (gφ(u), σ2

2 · Id). Here, gφ(u) is a
neural network with parameters φ ∈ Φ.

Suppose we are given a fixed inference distribution qφ(z|u), which maps (probabilistically) inputs
u to features z. We denote by qφ(u, z) := pU (u) · qφ(z|u) the joint distribution of u and z, the
marginal qφ(z) :=

∫
u
qφ(u, z)du and the posterior qφ(u|z) = qφ(z|u) · pU (u)/qφ(z).

The optimization criterion is redefined as follows, where for each z we use a member of a class of
distributions, P , to fit a different qφ(u|z) rather than the entire pU .

L :=Eqφ(u,z) [log pθ(u|z)] (4)

The following lemma links the reconstruction loss and the entropy (all proofs are in the appendix)
Lemma 1. In the setting of Sec. 3.2. Let θ∗ be the global optimum of Eq. 4 for a sufficiently large
F . Assume that P is sufficiently large, such that:

∀z ∈ Z, φ ∈ Φ : qφ(u|z) ∈ P (5)

Then,
h(U) =

1

2σ2
1

· Eu∼U
[
Eε∼N (0,Id)

[
‖fθ∗(gφ(u) + σ2

2 · Id · ε)− u‖22
]]

+
1

2
Eu∼U

[
‖gφ(u)‖22

]
+
d · (σ2

2 − 1− log(σ2
2))

2
+
n

2
log(2πσ2

1)

(6)

Therefore, from this lemma, we observe that if gφ is learned, such that, the expected norm of the
encodings of u, Eu∼U

[
‖gφ(u)‖22

]
is bounded, then, the differential entropy h(U) is proportional

reconstruction error of the learned autoencoder. In particular, for two random variables U1 and U2,
their entropies can be compared, by considering the reconstruction error of their autoencoders with
the same hyperparameters (latent space dimension d, σ2

1 , σ2
2 , etc’).

4 THE MULTIVARIATE CASE

For the univariate case, one can consider the complexity of theX and Y variables of the SCM model
and infer directionality. We propose the AEQ complexity for this case, since more conventional
complexities are ill-defined for unordered 1D data or, in the case of entropy, found to be ineffective.

In the multivariate case, one can consider the complexity of the random variables in various ways.
We focus on the family of complexity measures C(X) that satisfy the assumption that when X and
Y are independent

C(X,Y ) ≥ max(C(X), C(Y )). (7)
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Sample complexity measures that satisfy this condition are the Shannon Entropy and the Kol-
mogorov Complexity. Lem. 3 in Appendix. B.2 shows that the complexity that is based on au-
toencoder modeling is also in this family.

The next result shows that for any complexity measure C in this family, one cannot infer direction-
ality in the multivariate SCM based on C.

Lemma 2. Let C be a complexity measure of multivariate random variables (i.e, non-negative and
satisfies Eq. 7). Then, there are triplets of random variables (X,E, Y ) and (X̂, E, Y ), such that,
Y = g(X,E), Y = g′(X̂, E), C(X) < C(Y ) and C(X̂) > C(Y ). Therefore, C cannot serve as a
score for causal inference.

4.1 A METHOD FOR CAUSAL INFERENCE

The causality inference algorithm trains neural networksG,F,R andD. The success of fitting these
networks serves as the score for the causality test.

The function F models the function f , G models g and R(Y ) aims to model the environment
parameter E. In general, our method aims at solving the following objective:

min
G,F,R

Lerr(G,F,R) :=
1

m

m∑
i=1

‖G(F (ai), R(bi))− bi‖22

s.t: A |= R(B)

(8)

where A is either X or Y and B is the other option, and ai = xi, bi = yi or ai = yi, bi = xi
accordingly. To decide whether X → Y or vice versa, we train a different triplet G,F,R for each
direction and see if we can minimize the translation error subject to independence. We decide upon
a specified direction if the loss can be minimized subject to independence. In general, searching
within the space of functions that satisfy A |= R(B) is an intractable problem. However, we can
replace it with a loss term that is minimized when A |= R(B).

Independence loss We would like R(B) to capture the information encoded in E. Therefore,
restrictR(B) andA to be independent in each other. We propose an adversarial loss for this purpose,
which is a modified version of a loss proposed by Brakel & Bengio (2017) and later analyzed by
(Press et al., 2019).

This loss measures the discrepancy between the joint distribution PA,R(B) and the product of the
marginal distributions PA × PR(B). Let dF (dR) be the dimension of F ’s output (R). To measure
the discrepancy, we make use of a discriminator D : Rn+dR → [0, 1] from a class C that maximizes
the following term:

LD(D;R) :=
1

m

m∑
i=1

`(D(ai, R(bi)), 1) +
1

m

m∑
i=1

`(D(âi, R(b̂i)), 0) (9)

where D is a discriminator network, and l(p, q) = −(q log(p) + (1 − q) log(1 − p)) is the binary
cross entropy loss for p ∈ [0, 1] and q ∈ {0, 1}. In addition, {(âi, b̂i)}mi=1 are i.i.d samples from
PA × PB . To create such samples, we can simply generate samples from âi ∼ PA and b̂i ∼ PB
independently and then arbitrarily match them into couples (âi, b̂i).

To restrict that R(B) and A are independent, we train R to fool the discriminator D and to convince
it that the two sets of samples are from the same distribution,

Lindep(R;D) :=
1

m

m∑
i=1

`(D(ai, R(bi)), 1) +
1

m

m∑
i=1

`(D(âi, R(b̂i)), 1) (10)

Full objective The full objective of our method is then translated into the following program:

min
G,F,R

Lerr(G,F,R) + λ1 · Lindep(R;D)

min
D
LD(D;R)

(11)
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Where λ1 is some positive constant. The discriminator D minimizes the loss LD(D;R) concur-
rently with the other networks. We denote by creal the percentage of samples (ai, bi) that the dis-
criminator classifies as 1 and by cfake the percentage of samples (âi, b̂i) that are classified as 0.
We note that when creal + cfake ≈ 1, the discriminator is unable to discriminate between the two
distributions, i.e., it is wrong in classifying half of the samples.

Our method decides ifX causes Y or vice versa by comparing the scoreLerr(G,F,R). A lower error
means a better fit. The full description of the architecture employed for the encoders, generator and
discriminator is given in Appendix. A.

4.2 ANALYSIS

In this section, we analyze the proposed method. In Thm. 1, we show that if X and Y admit a SCM
in one direction, then it admits a SCM in the opposite direction only if the involved functions satisfy
a specific partial differential equation.

Theorem 1 (Identifiability of neural SCMs). Let PX,Y admit a neural SCM fromX to Y as in Eq. 1,
such that pX , and the activation functions of f and g are three-times differentiable. Then it admits
a neural SCM from Y to X only if pX , f , g satisfy Eq. 34 in the Appendix.

This result generalizes the one-dimensional case presented in (Zhang & Hyvärinen, 2009), where a
one-dimensional version of this differential equation is shown to hold in the analog case.

In the following theorem, we show that minimizing the proposed losses is sufficient to recover the
different components, i.e., F (X) ∝ f(X) and R(Y ) ∝ E, where A ∝ B means that A = f(B) for
some invertible function f .

Theorem 2 (Uniqueness of Representation). Let PX,Y admit a nonlinear model from X to Y as in
Eq. 1, i.e., Y = g(f(X), E) for some random variable E |= X . Assume that f and g are invertible.
Let G, F and R be functions, such that, Lerr := E(x,y)∼(X,Y )[‖G(F (x), R(y)) − y‖22] = 0 and G
and F are invertible functions and X |= R(Y ). Then, F (X) ∝ f(X) and R(Y ) ∝ E.

Here, Lerr := E(x,y)∼(X,Y )[‖G(F (x), R(y)) − y‖22] is the mapping error proposed in Eq. 8. In
addition, the assumptionX |= R(Y ) is sufficed by the independence loss. In Lem. 6 in Appendix. B.3
we extend this lemma to the case where the mapping loss is not necessarily zero and get rid of the
assumption thatG is invertible. In this case, instead of showing thatR(Y ) ∝ E, we provide an upper
bound on the reconstruction of E out of R(Y ) (and vice versa) that improves as Lerr decreases.

We note that when the entropy of R(Y ) is smaller than the entropy of E, then, the independence
X |= R(Y ) follows, even without the discriminator. Typically, when R has a limited capacity (i.e.,
small number of layers or output dimension), then, the entropy of R(Y ) is limited as well.

Theorem 3 (Emergence of independent representations). Let PX,Y admits a nonlinear model
from X to Y as in Eq. 1, i.e., Y = g(f(X), E) for some random variable E |= X . As-
sume that X and Y are discrete random variables. Let G, F and R be functions, such that,
Lerr := E(x,y)∼(X,Y )[‖G(F (x), R(y)) − y‖22] = 0 and G is an invertible function. Assume that
h(R(Y )) ≤ h(E) and that g is invertible. Then, we have: F (X) |= R(Y ), F (X) ∝ f(X) and
R(Y ) ∝ E.

To conclude this section, by Thm. 1, under reasonable assumptions, if X and Y admit a multivariate
SCM in direction X → Y , then, there is no such representation in the other direction. By Thm. 2,
by training our method in both directions, one is able to capture the causal model in the correct
direction. This is something that is impossible to do in the other direction by Thm. 1. By Thm. 3,
we show that in cases where h(R(Y )) ≤ h(E), the independence between F (X) andR(Y ) emerges
implicitly. This is the typical case, when R’s capacity is limited.

5 EXPERIMENTS

This section is divided into two parts. The first, is devoted to showing that causal inference in
the one-dimensional case highly depends on the complexities of the distributions of X and Y . In
the second part of this section, we show that our multivariate causal inference method outperforms
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existing baselines. The baseline implementations were taken from the Causality Discovery Toolbox
of Kalainathan & Goudet (2019).

5.1 ONE-DIMENSIONAL DATA

We compared the autoencoder method on several well-known one dimensional cause-effect pairs
datasets. Each dataset consists of a list of pairs of real valued random variables (X,Y ) with their
direction 1 or 0 depending on X → Y or Y → X (resp.). For each pair, we have a dataset of
samples {(xi, yi)}mi=1.

Five cause-effect inference datasets, covering a wide range of associations, are used. CE-
Net (Goudet et al., 2018) contains 300 artificial cause-effect pairs generated using random distribu-
tions as causes, and neural networks as causal mechanisms. CE-Gauss contains 300 artificial cause-
effect pairs as generated by Mooij et al. (2016), using random mixtures of Gaussians as causes, and
Gaussian process priors as causal mechanisms. CE-Multi (Goudet et al., 2018) contains 300 artifi-
cial cause-effect pairs built with random linear and polynomial causal mechanisms. In this dataset,
simulated additive or multiplicative noise is applied before or after the causal mechanism.

The real-world datasets include the diabetes dataset by Frank & Asuncion (2010), where causality
is from Insulin → Glucose. Glucose curves and Insulin dose were analysed for 69 patients, each
serves as a separate dataset. To match the literature protocols, the pairs are taken in an orderless
manner, ignoring the time series aspect of the problem. Finally, the Tübingen cause-effect pairs
dataset by Mooij et al. (2016) is employed. This dataset is a collection of 100 heterogeneous, hand-
collected, real-world cause-effect samples.

The autoencoder employed in our method is a fully-connected 5-layered neural network with 3 layers
for the encoder and 2 layers for the decoder. The hyperparameters of this algorithm are the sizes of
each layer, the activation function and the input dimension, i.e., length of sorted cuts (denoted by
k in Sec. 3). Throughout the experiments, we noticed that the hyperparameter that has the highest
influence is the input dimension. For all datasets results are stable in the range of 200 ≤ k ≤ 300,
and we therefore use k = 250 throughout the experiments. For all dataset we employed the ReLU
activation function, except the Tübingen dataset, where the sigmoid activation function produced
better results (results are also reasonable with ReLU, but not state of the art).

In addition to our method, we also employ the entropy of each individual variable as a complexity
method. This is done by binning the values of the variables into 50 bins. Other numbers of bins
produce similar results.

Tab. 1 presents the mean AUC for each literature benchmark. As can be seen, the AEQ complexity
measure produces reasonable results in comparison to the state of the art methods, indicating that
the 1D SCM model can be overcome by comparing per-variable scores. On the popular Tübingen
dataset, the one-sided AEQ computation outperforms all literature methods.

Tab. 2 presents accuracy rates for various methods on the Tübingen dataset, where such results are
often reported in the literature. As can be seen, our simple method outperforms almost all other
methods, including methods that employ supervised learning of the cause-effect relation.

5.2 MULTIVARIATE DATA

We compared our method on several synthetic datasets. Each dataset consists of a list of pairs of real
multivariate random variables (X,Y ) with their direction 1 or 0, depending on X → Y or Y → X
(resp.). For each pair, we have a dataset of samples {(xi, yi)}mi=1.

We employ three datasets, covering multiple associations. Each dataset contains 300 artificial cause-
effect pairs. The cause random variable is of the form X = h(z), where h is some function and
z ∼ N (0, σ2

1 · In). The effect is of the form Y = g(u(X,E)), where E ∼ N (0, σ2
2 · In) is

independent of X , u is a fixed function that combined the cause X and the noise term E and g is the
causal mechanism. For each dataset, the functions h and g are taken from the same family of causal
mechanismsH. Each pair is specified by randomly selected functions h and g.

MCE-Poly is generated element-wise polynomials composed on linear transformations as mech-
anisms and u(X,E) = X + E is the sum operator. MCE-Net pairs are generated using neural
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Table 1: Mean AUC rates of various baselines on different one dimensional cause-effect pairs
datasets. Our simple AEQ algorithm achieves competitive results on most datasets.

Dataset

Method CE-Net CE-Gauss CE-Multi Tübingen Diabetes

BivariateFit 77.6 36.3 55.4 58.4 0.0
LiNGAM (Shimizu et al., 2006) 43.7 66.5 59.3 39.7 -
CDS (Fonollosa, 2016) 89.5 84.3 37.2 59.8 12.0
IGCI (Daniusis et al., 2012) 57.2 33.2 80.7 62.2 100.0
ANM (Hoyer et al., 2009) 85.1 88.9 35.5 53.7 22.2
PNL (Zhang & Hyvärinen, 2009) 75.5 83.0 49 68.1 -
GPI (Stegle et al., 2010) 88.4 89.1 65.8 66.4 -
RECI (Bloebaum et al., 2018) 60.0 64.2 85.3 62.6 95.4
CGNN (Goudet et al., 2018) 89.6 82.9 96.6 79.8 34.1
Entropy as a complexity measure 49.6 49.7 50.8 54.5 53.4
Our AEQ comparison 62.5 71.0 96.0 82.8 95.0

Table 2: Accuracy rates of various baselines on the CE-Tüb dataset. Our simple algorithm AEQ
achieves almost SOTA accuracy.

Method Supervised Acc

LiNGAM (Shimizu et al., 2006) - 44.3%
BivariateFit - 44.9%
Entropy as a complexity measure - 52.5%
IGCI (Daniusis et al., 2012) - 62.6%
CDS (Fonollosa, 2016) - 65.5%
ANM (Hoyer et al., 2009) - 59.5%
CURE (Sgouritsa et al., 2015) - 60.0%a

GPI (Stegle et al., 2010) - 62.6%
PNL (Zhang & Hyvärinen, 2009) - 66.2%
CGNN (Goudet et al., 2018) - 74.4%
RECI (Bloebaum et al., 2018) - 77.5%
SLOPE (Marx & Vreeken, 2017) - 81.0%
Our AEQ comparison - 80.0%

Jarfo (Fonollosa, 2016) + 59.5%
RCC (Lopez-Paz et al., 2015) + 75.0%b

NCC (Lopez-Paz et al., 2017) + 79.0%

aThe accuracy of CURE is reported on version 0.8 of the dataset in (Sgouritsa et al., 2015) as 75%. In Bloe-
baum et al. (2018) they reran this algorithm and achieved an accuracy rate around 60%.

bThe accuracy scores reported in (Lopez-Paz et al., 2015) are for version 0.8 of the dataset, in (Lopez-Paz
et al., 2017) they reran RCC (Lopez-Paz et al., 2015) on version 1.0 of the dataset.

networks as causal mechanisms and u is the concatenation operator. The mechanism in MCE-
Sigmoid-Mix consists of linear transformation followed by element wise application of qa,b,c(x) :=
ab(x̃+c)/1+ |b∗(x̃+c)|, where a, b, c are random real valued numbers, which are sampled for each
pair and x̃ = x+ e, where e is the environment random variable. In this case, u(X,E) = X + E.

In order to create each one of the datasets we took the standard synthetic data generators of
Kalainathan & Goudet (2019) and extended them to produce multivariate causal pairs. We noticed
that a-priori, the produced datasets are imbalanced in a way that the reconstruction error of a standard
autoencoder on each random variable can be employed as a score that predicts the cause variable
with a high accuracy. Therefore, in order to create balanced datasets, we varied the amount of noise
dimensions and their intensity until the autoencoder reconstruction error of both X and Y became
similar. Note that for these multivariate variables, we do not use quantiles and use the variables

8
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Table 3: Mean AUC rates of various baselines on different multidimensional dimensional cause-
effect pairs datasets. The datasets are designed and balanced, such that an autoencoder method
would fail. Our method achieves SOTA results.

Method MCE-Poly MCE-Net MCE-Sigmoid-Mix

BivariateFit 54.7 48.4 48.2
ANM (Hoyer et al., 2009) 52.2 51.1 46.4
AutoEncoder reconstruction 57.2 42.4 22.3
Our method 95.3 70.0 98.5

Table 4: Emergence of independence. Ind C (Ind E) is the mean of |creal + cfake− 1| over all pairs of
random variables, epochs and samples, when training the method from X to Y (vice versa).

Dataset MCE-Poly MCE-Net MCE-Sigmoid-Mix

Method AUC Ind C Ind E AUC Ind C Ind E AUC Ind C Ind E

Full method 95.3 0.015 0.014 70.0 0.04 0.05 98.5 0.014 0.015
w/o backprop D → R 95.1 0.026 0.026 65.1 0.137 0.137 98.8 0.04 0.05

themsevles. As the AutoEncoder reconstruction results in Tab. 3 show, in the MCE-Sigmoid-Mix
dataset, balancing was only partly successful.

In Tab. 3 we also compare our method to BivariateFit and ANM (Hoyer et al., 2009) algorithms on
these datasets. Most of the baseline methods are tailor made to the univariate case and, therefore, we
were unable to extend them. The only baseline methods that are extendable to multi dimensions are
CGNN (Goudet et al., 2018) and RECI (Bloebaum et al., 2018). However, their runtime becomes
too long. Specifically, RECI’s runtime is of order O(n3), where n is the input dimension.

Emergence of independence To check the importance of our adversarial loss in identifying the
direction of causality and capturing the implicit independent representation f(X) andE, we applied
our method without training R against the discriminator. Therefore, in this case, the discriminator
only serves as a test whether X and R(Y ) are independent or not. Recall that our analysis shows
that the discriminator is not necessary under reasonable conditions. This is verified in Tab. 4, which
shows similar performance with and without the discriminator.

As mentioned in Sec. 4.1, the distance between creal + cfake to 1 indicates the amount of dependence
between X and R(Y ). We denote by Ind C the mean values of |creal + cfake − 1| over all pairs
of random variables, epochs and samples when training our method in the causal direction. The
same mean score when training in the anti-causal direction is denoted Ind E. As is evident from
Tab. 4, the independence is similar between the two directions, emphasizing the importance of the
reconstruction error in the score.

We noticed that the values of Ind C and Ind E are smaller for the full method. However, in MCE-
Poly and MCE-Sigmoid-Mix they are still very small, and therefore, there is implicit emergence of
independence between X and R(Y ), even without explicitly training R(Y ) to be independent of X .
This can explain the fact that the drop in the AUC is significant but not drastic.

6 SUMMARY

We identify an inbalance in the complexities of cause and effect in the unidimensional SCM model
and suggest a method to exploit it. Since the method does not consider the interactions between the
variables, its success in predicting cause and effect indicates an inherent bias in the unidimensional
datasets. Turning our attention to the multivariate case, where the complexity can be actively bal-
anced, we propose a new method in which the learned networks models the underlying SCM model
itself. Since the noise term E is unknown, we replace it by a function of Y that is enforced to be
independent of X . We also show that under reasonable conditions, the independence emerges even
without explicitly enforcing it.
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A ARCHITECTURE

The functionG, F ,R andD in the multivariate method in Sec. 4 are fully connected neural networks
and their architectures are as follows: F is a 2-layered network with dimensions 100 → 60 → 50,
R is a 3-layered network with dimensions 100 → 50 → 50 → 20, G is a 2-layers neural network
with dimensions 50 + 20 → 80 → 100 (the input has 50 dimensions for F (X) and 20 for R(Y )).
The discriminator is a 3-layers network with dimensions 100 + 20→ 60→ 50→ 2 (the input is X
and R(Y )). The activation function in all networks is the sigmoid function except the discriminator
that applies the leaky ReLU activation. For all networks, the activation is not applied at the output
layer.

B ANALYSIS

B.1 TERMINOLOGY AND NOTATIONS

We recall some relevant notations and terminology. The identity matrix of dimension n is denoted
by In. For a vector x = (x1, . . . , xn) ∈ Rn we denote ‖x‖2 :=

√∑n
i=1 x

2
i the Euclidean norm of

x. For a differentiable function f : Rm → Rn and x ∈ Rm, we denote by

J(f(x)) :=

(
∂fi
∂ζj

(x)

)
i∈[n],j∈[m]

(12)

the Jacobian matrix of f in x. For a twice differentiable function f : Rm → R, we denote by

H(f(x)) :=

(
∂2f

∂ζi∂ζj
(x)

)
i,j∈[m]

(13)

the Hessian matrix of f in x. Additionally, for a twice differentiable function f : Rm → Rn,
f(x) = (f1(x), . . . , fn(x)), we denote the Hessian of f by H(f(x)) := (H(f1(x)), . . . ,H(fn(x))).
For a scalar function f : Rm → R instead of using the Jacobian notation, the gradient notation will
be employed,∇(f(x)) := J(f(x)).

B.2 AUTOENCODER AS A COMPLEXITY MEASURE

Let F = {Hd}∞d=1 be a family of classes of autoencoders A : Rd → Rd. Assume that the family
F is closed to fixations, i.e., for any autoencoder A ∈ Hd1+d2 and any fixed vector y∗ ∈ Rd2
(x∗ ∈ Rd1 ), we have: A(x, y∗)1:d1 ∈ Hd1 (A(x∗, y)d1+1:d2 ∈ Hd2 ). Here, vi:j = (vi, . . . , vj). We
consider that this is the typical situation when considering neural networks with biases.

Let X be a random variable. Let X be a multivariate random variable dimension d. We define the
autoencoding complexity of X as follows:

C(X;F) := min
A∗∈Hd

Ex∼X [`(A∗(x), x)] (14)

Lemma 3. Let {Hd}∞d=1 be a family of classes of autoencoders that is closed to fixations. The
function C(X;F) is a complexity measure according to Sec. 4.

Proof. First, since `(a, b) ≥ 0 for all a, b ∈ Rk, this function is non-negative. Next, we would like
to show that Cα(X,Y ) ≥ max(C(X), C(Y )). Let A∗ be the minimizer of Ex∼X [`(A∗(x), x)]
withinHd1+d2 . We consider that there is a vector y∗, such that,

E(x,y)∼(X,Y ) [`(A(x, y), (x, y))] ≥Ey∼Y Ex∼X [`(A(x, y), (x, y))]

≥Ex∼X [`(A(x, y∗), (x, y∗))]

≥ Ex∼X [`(A(x, y∗)1:d1 , x)]

(15)

We note that A(x, y∗)1:d1 ∈ Hd1 . Therefore,

E(x,y)∼(X,Y ) [`(A(x, y), (x, y))] ≥ min
A∗∈Hd1

Ex∼X [`(A∗(x), x)] = C(X;F) (16)

By similar considerations, C(X,Y ;F).

12
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B.3 PROOFS FOR THE RESULTS

In this section we provide the proofs of the main results in the paper.

Lemma 1. In the setting of Sec. 3.2. Let θ∗ be the global optimum of Eq. 4 for a sufficiently large
F . Assume that P is sufficiently large, such that:

∀z ∈ Z, φ ∈ Φ : qφ(u|z) ∈ P (5)

Then,
h(U) =

1

2σ2
1

· Eu∼U
[
Eε∼N (0,Id)

[
‖fθ∗(gφ(u) + σ2

2 · Id · ε)− u‖22
]]

+
1

2
Eu∼U

[
‖gφ(u)‖22

]
+
d · (σ2

2 − 1− log(σ2
2))

2
+
n

2
log(2πσ2

1)

(6)

Proof. This is a corollary of the analysis of Zhao et al. (2017). By their analysis, we have:

h(U) = Iqφ(z;u)− Eqφ [log pθ∗(u|z)] (17)

Since we selected pθ∗(u|z) to be the PDF of a normal distribution N (fθ∗(z), σ2
1 · In), we have:

log pθ∗(u|z) = −‖fθ
∗(z)− u‖22

2σ2
1

− n

2
log(2πσ2

1) (18)

Therefore, since z distributed by qφ(z|u) can be represented as z|u ∼ gφ(u) + σ2
2 · Id · ε, where

ε ∼ N (0, Id),

−Eqφ(u,z) [log pθ∗(u|z)] =
1

2σ2
1

· Eqφ(u,z)

[
‖fθ∗(z)− u‖22

]
+
n

2
log(2πσ2

1)

=
1

2σ2
1

· Eu∼U
[
Eqφ(z|u)

[
‖fθ∗(z)− u‖22

]]
+
n

2
log(2πσ2

1)

=
1

2σ2
1

· Eu∼U
[
Eε∼N (0,Id)

[
‖fθ∗(gφ(u) + σ2

2 · Id · ε)− u‖22
]]

+
n

2
log(2πσ2

1)

(19)

In addition, we have:

Iqφ(z;u) = Eu∼U [DKL(qφ(z|u)‖p(z))]
= Eu∼U [DKL(N (gφ(u), σ2

2 · Id)‖N (0, Id))]

= Eu∼U
[

1

2

(
d · σ2

2 + ‖gφ(u)‖22 + d log(σ2
2)
)]

=
d · (σ2

2 − 1− log(σ2
2))

2
+

1

2
Eu
[
‖gφ(u)‖22

]
(20)

Therefore, we obtained the desired equation.

Lemma 2. Let C be a complexity measure of multivariate random variables (i.e, non-negative and
satisfies Eq. 7). Then, there are triplets of random variables (X,E, Y ) and (X̂, E, Y ), such that,
Y = g(X,E), Y = g′(X̂, E), C(X) < C(Y ) and C(X̂) > C(Y ). Therefore, C cannot serve as a
score for causal inference.

Proof. Let X be a random variable and E |= X , such that, Y = g(X,E). Assume that C(X) <
C(Y ). Then, let X ′ be a random variable independent of X , such that, C(X ′) > C(Y ). Then, we
have: C(X,X ′) > C(Y ) and we have: Y = g′(X,X ′, E), for g′(a, b, c) = g(a, c).

The following lemma is an extension of Thm. 1 in (Zhang & Hyvärinen, 2009) to real valued random
variables of dimension > 1.
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Lemma 4. Assume that (X,Y ) can be described by both:

Y = g1(f1(X) + E1), s.t: X |= E1 and g1 is invertible (21)

and
X = g2(f2(Y ) + E2), s.t: Y |= E2 and g2 is invertible (22)

Assume that g1 and g2 are invertible and let:

T1 := g−1
1 (Y ) and h1 := f2 ◦ g1

T2 := g−1
2 (X) and h2 := f1 ◦ g2

(23)

Assume that the involved densities pT2
, pE1

and nonlinear functions f1, g1 and f2, g2 are third order
differentiable. We then have the following equations for all (X,Y ) satisfying:

H(η1(t2)) · J(h1(t1))− H(η2(e1)) · J(h2(t2))

+ H(η2(e1)) · J(h2(t2)) · J(h1(t1)) · J(h2(t2))

−∇(η2(e1)) · H(h2(t2)) · J(h1(t1)) = 0

(24)

where η1(t2) := log pT2(t2) and η2(e1) := log pE1(e1).

Proof. The proof is an extension of the proof of Thm. 1 in (Zhang & Hyvärinen, 2009). We define:

T1 := g−1
1 (Y ) and h1 := f2 ◦ g1

T2 := g−1
2 (X) and h2 := f1 ◦ g2

(25)

Since g2 is invertible, the independence between X and E1 is equivalent to the independence be-
tween T2 and E1. Similarly, the independence between Y and E2 is equivalent to the independence
between T1 and E2. Consider the transformation F : (E2, T1) 7→ (E1, T2):

E1 = T1 − f1(X) = T1 − f1(g2(T2))

T2 = f2(Y ) + E2 = f2(g1(T1)) + E2
(26)

The Jacobian matrix of this transformation is given by:

J := J(F (e2, t1)) =

[
−J(h2(t2)) I − J(h2(t2)) · J(h1(t1))

I J(h1(t1))

]
(27)

Since I commutes with any matrix, by Thm. 3 in (Silvester, 1999), we have:∣∣∣det(J(F (E2, T1)))
∣∣∣ =

∣∣∣∣∣ det (−J(h2(T2)) · J(h1(T1))− I · (I − J(h2(T2)) · J(h1(T1))))

∣∣∣∣∣ = 1

(28)
Therefore, we have: pT2(t2) · pE1(e1) = pT1,E2(t1, e2)/|det J| = pT1,E2(t1, e2). Hence,
log(pT1,E2(t1, e2)) = η1(t2) + η2(e1) and we have:

∂ log(pT1,E2
(t1, e2))

∂e2
= ∇η1(t2)−∇η2(e1) · J(h2(t2)) (29)

Therefore,

∂2 log(pT1,E2(t1, e2))

∂e2∂t1
=H(η1(t2)) · J(h1(t1))− H(η2(e1)) · (I − J(h2(t2)) · J(h1(t1))) · J(h2(t2))

−∇(η2(e1)) · H(h2(t2)) · J(h1(t1))

=H(η1(t2)) · J(h1(t1))− H(η2(e1)) · J(h2(t2))

+ H(η2(e1)) · J(h2(t2)) · J(h1(t1)) · J(h2(t2))

−∇(η2(e1)) · H(h2(t2)) · J(h1(t1))
(30)

The independence between T1 and E2 implies that for every possible (t1, e2), we have:
∂2 log pT1,E2

(t1,e2)

∂e2∂t1
= 0.
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Lemma 5 (Reduction to post-linear models). Let f(x) = σ1(Wd . . . σ1(W1x)) and g(u, v) =
σ2(Uk . . . σ2(U1(u, v))) be two neural networks. Then, if Y = g(f(X), E) for some E |= X , we
can represent Y = ĝ(f̂(X) +N) for some N |= X .

Proof. Let f(x) = σ1(Wd . . . σ1(W1x)) and g(u, v) = σ2(Uk . . . σ2(U1(u, v))) be two neural
networks. Here, (u, v) is the concatenation of the vectors u and v. We consider that Uk(f(X), E) =

U1
1 f(X) + U2

1E. We define a noise variable N := U2
1E and have: X |= N . In addition, let f̂(x) :=

U1
1 f(x) and ĝ(z) := σ2(Uk . . . σ2(U2σ2(z))). We consider that: Y = ĝ(f̂(X)+N) as desired.

Theorem 1 (Identifiability of neural SCMs). Let PX,Y admit a neural SCM fromX to Y as in Eq. 1,
such that pX , and the activation functions of f and g are three-times differentiable. Then it admits
a neural SCM from Y to X only if pX , f , g satisfy Eq. 34 in the Appendix.

Proof. Let fi(z) = σ1(Wi,d . . . σ1(Wi,1z)) and gi(u, v) = σ2(Ui,k . . . σ2(Ui,1(u, v))) (where i =
1, 2) be pairs of neural networks, such that, σ1 and σ2 are three-times differentiable. Assume that:

Y = g(f(X), E1) and X = g(f(Y ), E2) (31)

for some E1 |= X and E2 |= Y . By Lem. 5, we can represent

Y = ĝ1(f̂1(X) +N1),

where N1 = U2
1,1E1, f̂1 = U1

1,1f1(X) and ĝ1(z) = σ2(U1,k . . . σ2(U1,2σ2(z)))
(32)

and also,

X = ĝ2(f̂2(Y ) +N2),

where N2 = U2
2,1E2, f̂2 = U1

2,1f2(X) and ĝ2(z) = σ2(U2,k . . . σ2(U2,2σ2(z)))
(33)

From the proof of Lem. 5, it is evident that the constructed ĝ1, f̂1 and ĝ1, f̂2 are three-times differ-
entiable whenever σ1 and σ2 are. Therefore, by Thm. 1, the following differential equation holds:

H(η1(t2)) · J(h1(t1))− H(η2(n1)) · J(h2(t2))

+ H(η2(n1)) · J(h2(t2)) · J(h1(t1)) · J(h2(t2))

−∇(η2(n1)) · H(h2(t2)) · J(h1(t1)) = 0

(34)

where
T1 := ĝ−1

1 (Y ) and h1 := f̂2 ◦ ĝ1

T2 := ĝ−1
2 (X) and h2 := f̂1 ◦ ĝ2

(35)

and η1(t2) := log pT2
(t2) and η2(n1) := log pN1

(n1).

Theorem 2 (Uniqueness of Representation). Let PX,Y admit a nonlinear model from X to Y as in
Eq. 1, i.e., Y = g(f(X), E) for some random variable E |= X . Assume that f and g are invertible.
Let G, F and R be functions, such that, Lerr := E(x,y)∼(X,Y )[‖G(F (x), R(y)) − y‖22] = 0 and G
and F are invertible functions and X |= R(Y ). Then, F (X) ∝ f(X) and R(Y ) ∝ E.

Proof. Since F and f are invertible, one can represent: F (X) = F (f−1(f(X))) and f(X) =
f(F−1(X)). Similarly, since G and g are invertible, we also have: (F (X), R(Y )) ∝ (f(X), E).
Since (F (X), R(Y )) ∝ (f(X), E) and F (X) ∝ f(X), we have: R(Y ) = Q(F (X), E). However,
R(Y ) |= F (X) and therefore, we can represent R(Y ) = P (E) and vice versa.

Theorem 3 (Emergence of independent representations). Let PX,Y admits a nonlinear model
from X to Y as in Eq. 1, i.e., Y = g(f(X), E) for some random variable E |= X . As-
sume that X and Y are discrete random variables. Let G, F and R be functions, such that,
Lerr := E(x,y)∼(X,Y )[‖G(F (x), R(y)) − y‖22] = 0 and G is an invertible function. Assume that
h(R(Y )) ≤ h(E) and that g is invertible. Then, we have: F (X) |= R(Y ), F (X) ∝ f(X) and
R(Y ) ∝ E.

Proof. Since g and f are invertible, we have: h(Y ) = h(f(X)) + h(E) ≤ h(X) + h(E). In
addition, we have: h(R(Y )) ≤ h(E). Therefore, since G is invertible, h(Y ) = h(F (X), R(Y )) ≤
h(F (X)) + h(R(Y )) ≤ h(X) + h(E) = h(Y ). Hence, F (X) and R(Y ) are independent.
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In the following three lemmas we extend Thms. 2 and 3.
Lemma 6. Let PX,Y admit a nonlinear model from X to Y as in Eq. 1, i.e., Y = g(f(X), E),
for some random variable E |= X . Assume that f and g are invertible. Assume that X and Y are
discrete and Y is over a set Y , such that, ∀y1 6= y2 ∈ Y , we have, ‖y1 − y2‖2 > ∆ > 0. Let G,
F and R be functions, such that, Lerr := E(x,y)∼(X,Y )

[
‖y −G(F (x), R(y))‖22

]
< ∆/2 and F is

invertible. Then, F (X) ∝ f(X) and I(R(Y );E) ≥
(
1− Lerr

∆

)
· h(E)−

√
Lerr
∆ .

Proof. First, since both F and f are invertible, F (X) ∝ f(X). By the proof of Lem. 10 in (Press
et al., 2019), there is a function r, such that:

P(x,y)∼(X,Y )[r(F (x), R(y)) = y] ≥
(

1− Lerr

∆

)
≥ 0.5 (36)

Since g is invertible, there is a function u(Y ) = E. In particular,

P(x,y)∼(X,Y )[u(r(F (x), R(y))) = u(y)] ≥
(

1− Lerr

∆

)
≥ 0.5 (37)

Therefore, by Lem. 6 in (Press et al., 2019), we have:

I(F (X), R(Y );E) ≥
(

1− Lerr

∆

)
· h(E)− h

(
1− Lerr

∆

)
(38)

By the analysis in the proof of Lem. 10 in (Press et al., 2019), we derive that:

I(F (X), R(Y );E) ≥
(

1− Lerr

∆

)
· h(E)−

√
Lerr

∆
(39)

Finally, since F (X) is a function of X which is independent of E, we obtain the desired inequality:

I(R(Y );E) ≥
(

1− Lerr

∆

)
· h(E)−

√
Lerr

∆
(40)

We mention that in Lem. 6, the function R(Y ) can hold all of the information present in Y . There-
fore, in order to suffice that R(Y ) holds only the information present in E, one can restrict that
h(R(Y )) ≤ h(E) + ε as will be shown in the next lemma. We note that under the conditions of
Lem. 6, h(R(Y )) ≤ h(E) + ε1 is equivalent to I(F (X);R(Y )) ≤ ε2 for ε1, ε2 that are functions of
each other.
Lemma 7. In the setting of Lem. 6. Assume that h(R(Y )) ≤ h(E) + ε, for some constant ε > 0.

Then, I(F (X);R(Y )) ≤ Lerr
∆ · h(Y ) +

√
Lerr
∆ + ε. In addition, there are functions r1, r2, such that,

P[r1(R(Y )) 6= E] ≤ 1− 2−Lerr·h(E)/∆−
√
Lerr/∆ (41)

and
P[r2(E) 6= R(Y )] ≤ 1− 2−Lerr·h(E)/∆−

√
Lerr/∆−ε (42)

Proof. By Lem. 10 in Press et al. (2019), we have:

h(F (X), R(Y )) ≥ h(F (X), R(Y );Y ) ≥
(

1− Lerr

∆

)
· h(Y )−

√
Lerr

∆
(43)

In addition, by the data processing inequality and the assumption h(R(Y )) ≤ h(E) + ε, we have:
I(F (X);R(Y )) ≤ h(F (X)) + h(R(Y ))− h(F (X), R(Y ))

≤ h(X) + h(Y ) + ε−

((
1− Lerr

∆

)
· h(Y )−

√
Lerr

∆

)

≤ h(Y ) + ε−

((
1− Lerr

∆

)
· h(Y )−

√
Lerr

∆

)

≤ Lerr

∆
· h(Y ) +

√
Lerr

∆
+ ε

(44)
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Finally, by Feder & Merhav (1994), there is a function r1, such that,

P[r1(R(Y )) 6= E] ≤ 1− 2I(R(Y );E)−h(E)

≤ 1− 2−Lerr·h(E)/∆−
√
Lerr/∆

(45)

In addition, there is a function r2, such that,

P[r2(E) 6= R(Y )] ≤ 1− 2I(R(Y );E)−h(R(Y ))

≤ 1− 2I(R(Y );E)−h(E)−ε

≤ 1− 2−Lerr·h(E)/∆−
√
Lerr/∆−ε

(46)

as desired.
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