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ABSTRACT

Skip connections are an essential component of current state-of-the-art deep neu-
ral networks (DNN5s) such as ResNet, WideResNet, DenseNet, and ResNeXt. De-
spite their huge success in building deeper and more powerful DNNs, we iden-
tify a surprising security weakness of skip connections in this paper. Use of skip
connections allows easier generation of highly transferable adversarial examples.
Specifically, in ResNet-like (with skip connections) neural networks, gradients can
backpropagate through either skip connections or residual modules. We find that
using more gradients from the skip connections rather than the residual modules
according to a decay factor, allows one to craft adversarial examples with high
transferability. Our method is termed Skip Gradient Method (SGM). We con-
duct comprehensive transfer attacks against 10 state-of-the-art DNNs including
ResNets, DenseNets, Inceptions, Inception-ResNet, Squeeze-and-Excitation Net-
work (SENet) and robustly trained DNNs. We show that employing SGM on the
gradient flow can greatly improve the transferability of crafted attacks in almost
all cases. Furthermore, SGM can be easily combined with existing black-box at-
tack techniques, and obtain high improvements over state-of-the-art transferability
methods. Our findings not only motivate new research into the architectural vul-
nerability of DNNs, but also open up further challenges for the design of secure
DNN architectures.

1 INTRODUCTION

In deep neural networks (DNNs), a skip connection builds a short-cut from a shallow layer to a deep
layer by connecting the input of a convolutional block (also known as the residual module) directly
to its output. While different layers of a neural network learn different “levels” of features, skip
connections can help preserve low-level features and avoid performance degradation when adding
more layers. This has been shown to be crucial for building very deep and powerful DNNs such
as ResNet (He et al., [2016aib), WideResNet (Zagoruyko & Komodakis, [2016)), DenseNet (Huang
et al., [2017) and ResNeXt (Xie et al., [2017). In the meantime, despite their superior performance,
DNNs have been found extremely vulnerable to adversarial examples (or attacks), which are input
examples slightly perturbed with an intention to fool the network to make a wrong classification
(Szegedy et al., 2013} Goodfellow et al.,2014). Adversarial examples often appear imperceptible to
human observers, and are transferable across different models (Liu et al.| 2017).

Adversarial examples can be crafted following either a white-box setting (the adversary has full
access to the target model) or a black-box setting (the adversary has no information of the target
model). White-box methods such as Fast Gradient Sign Method (FGSM) (Goodfellow et al.||2014),
Basic Iterative Method (BIM) (Kurakin et al.,[2016)), Projected Gradient Decent (PGD) (Madry et al.,
2018)) and Carlini and Wagner (CW) (Carlini & Wagner, 2017) often suffer from low transferability
in a black-box setting, thus posing only limited threats to DNN models which are usually kept secret
in practice (Dong et al., [2018} |Xie et al., 2019). Several techniques have been proposed to improve
the transferability of black-box attacks crafted on a surrogate model, such as momentum boosting
(Dong et al |2018), diverse input (Xie et al.,2019) and translation invariance (Dong et al [2019).
Although these techniques are effective, they (as well as white-box methods) all treat the entire
network (either the target model or the surrogate model) as a single component while ignore its
inner architectural characteristics. The question of whether or not the DNN architecture itself can
expose more security weaknesses to adversarial attacks is an unexplored problem.
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Figure 1: Left: Illustration of the last 3 skip connections (green lines) and residual modules (black
boxes) of a ImageNet-trained ResNet-18. Right: The success rate (in the form of “white-box/black-
box”) of adversarial attacks crafted using gradients flowing through either a skip connection (going
upwards) or a residual module (going leftwards) at each junction point (circle). Three example
backpropagation paths are highlighted in different colors, with the green path skipping over the last
two residual modules is the best while the red path through all 3 residual modules is the worst. The
attacks are crafted by BIM on 5000 ImageNet validation images under maximum L, perturbation
e = 16 (pixel values are in [0, 255]). The black-box success rate is tested against a VGG19 target
model.

In this paper, we identify one such weakness about the skip connections used by many state-of-the-
art DNNs. We first conduct a toy experiment with the BIM attack and ResNet-18 on the ImageNet
validation dataset (Deng et al., 2009) to investigate how skip connections affect the adversarial
strength of attacks crafted on the network. At each of the last 3 skip connections and residual
modules of ResNet-18, we illustrate the success rate of attacks crafted using gradients backpropagate
through either the skip connection or the residual module in Figure As can be observed, the
success rate drops more drastically whenever using gradients from a residual module instead of
the skip connection. This implies that gradients from the skip connections are more vulnerable
(high success rate). In addition, we surprisingly find that skip connections expose more transferable
information. For example, the black-box success rate was even improved from 52.52% to 62.10%
when the attack skips the last two residual modules (following the path in green color).

Motivated by the above observations, in this paper, we propose the Skip Gradient Method (SGM)
to generate adversarial examples using gradients more from the skip connections rather than the
residual modules. In particular, SGM utilizes a decay factor to reduce gradients from the residual
modules. We find that this simple adjustment on the gradient flow can generate highly transferable
adversarial examples, and the more skip connections in a network, the more transferable are the
crafted attacks. This is in sharp contrast to the design principles (eg. “going deeper” with skip
connections) underpinning many modern DNNs. In particular, our main contributions are:

* We identify an important security weakness of skip connections in ResNet-like neural networks,
i.e., they allow an easy generation of highly transferable adversarial examples.

* We propose the Skip Gradient Method (SGM) to craft adversarial examples using gradients more
from the skip connections. Using a single decay factor on gradients, SGM is an appealingly simple
and generic technique that can be used by any existing gradient-based attack methods.

* We provide comprehensive transfer attack experiments, from 8 different source models against
10 state-of-the-art DNNs, showing that SGM can greatly improve the transferability of crafted
adversarial examples. When combined with existing transfer techniques, SGM improves the state-
of-the-art transferability benchmarks by a large margin.

2 RELATED WORK

Existing adversarial attacks can be categorized into two groups: 1) white-box attacks and 2) black-
box attacks. In the white-box setting, the adversary has full access to the parameters of the target
model, while in the black-box setting, the target model is kept secret from the adversary.
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2.1 WHITE-BOX ATTACKS

Given a clean example x with class label y and a target DNN model f, the goal of an adversary is
to find an adversarial example x4, that fools the network into making an incorrect prediction (eg.
f(@adw) # y), while still remaining in the e-ball centered at x (eg. ||Zady — X|/co < €).

Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014). FGSM perturbs clean example x
for one step by the amount of € along the gradient direction:

Tadv =T + € Slgn(vwé(f(w)a Z/)) (1)

The Basic Iterative Method (BIM) (Kurakin et al., 2016) is an iterative version of FGSM that per-
turbs for T steps with step size /7.

Projected Gradient Descent (PGD) (Madry et al., 2018). PGD perturbs normal example x for T’
steps with smaller step size. After each step of perturbation, PGD projects the adversarial example
back onto the e-ball of z, if it goes beyond the e-ball:

@iy = e (ha, + o sign(Vol(f (244,).9))), )
where I (+) is the projection operation. Different to BIM, PGD allows step size o > ¢/T.

There are also other types of white-box attacks including sparsity-based methods such as Jacobian-
based Saliency Map Attack (JSMA) (Papernot et al., 2016), sparse attack (Modas et al.,2019), one-
pixel attack (Su et al., [2019), and optimization-based methods such as Carlini and Wagner (CW)
(Carlini & Wagner, 2017) and elastic-net (EAD) (Chen et al., 2018).

2.2 BLACK-BOX ATTACKS

Black-box attacks can be generated by either attacking a surrogate model or using gradient estima-
tion methods in combination with queries to the target model. Gradient estimation methods estimate
the gradients of the target model using black-box optimization methods such as Finite Differences
(FD) (Chen et al.l 2017; Bhagoji et al., 2018) or Natural Evolution Strategies (NES) (Ilyas et al.,
2018 Jiang et al.l |2019). These methods all require a large number of queries to the target model,
which not only reduces efficiency but also potentially exposes the attack. Alternatively, black-box
adversarial examples can be crafted on a surrogate model then applied to attack the target model.
Although the white-box methods can be directly applied on the surrogate model, they are far less
effective in the black-box setting (Dong et al.| 2018} Xie et al., 2019). Several transfer techniques
have been proposed to improve the transferability of black-box attacks.

Momentum Iterative boosting (MI) (Dong et al., 2018). MI incorporates a momentum term into
the gradient to boost the transferability:

Vmg(f(m(tzdv)a y) (3)
IVal(f(wgq,), )l

where g¢ is the adversarial gradient at the ¢-th step, o = ¢/7T is the step size for a total of T" steps, x
is a decay factor, and || - ||; is the L1 norm.

2L =1, (2, + a - sign(g™t)), g = ju-g' +

adv —

Diverse Input (DI) (Xie et al., 2019). DI proposes to craft adversarial exampels using gradient with
respect to the randomly-transformed input example:

Tod = e (@hay + - sign(Val(F(H (2}, 2)),9))) 4)
where H (!, ; p) is a stochastic transformation function on ! ;, for a given probability p.

Translation Invariant (TI) (Dong et al., 2019). TI targets to evade robustly trained DNNs by
generating adversarial examples that are less sensitive to the discriminative regions of the surrogate
model. More specifically, TI computes the gradients with respect to a set of translated versions of
the original input:

xt+1 = H€ (wELd'u +a- Slgl’l(W * vwé(f(mfnd'u)v y)))7 (5)

adv

where W is a predefined kernel (e.g., uniform, linear, and Gaussian) matrix of size (2k + 1)(2k +
1) (k being the maximal number of pixels to shift). This kernel convolution is equivalent to the
weighted sum of gradients over (2k + 1)2 number of shifted input examples.
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Furthermore, there are other studies focusing on intermediate feature representations. For example,
Activation Attack (Inkawhich et al.,[2019)) drives the activation of a specified layer on a given image
towards the layer of a target image, to yield a highly transferable targeted example. Intermediate
Level Attack (Huang et al.,|2019) attempts to fine-tune an existing adversarial example for greater
black-box transferability by increasing its perturbation on a pre-specified layer of the source model.

Although the above transfer techniques are effective, they (including white-box attacks) either 1)
treat the network (either the surrogate model or the target model) as a single component or 2) only
use the intermediate layer output of the network. In other words, they do not directly consider the
effects of different DNN architectural characteristics. In the following, we exploits an architectural
security weakness about the skip connection.

3 PROPOSED SKIP GRADIENT ATTACK

In this section, we first introduce the gradient decomposition of skip connection and residual mod-
ule. Following that, we propose our Skip Gradient Method (SGM), then demonstrate the security
weakness of skip connection via a case study.

3.1 GRADIENT DECOMPOSITION WITH SKIP CONNECTIONS

In ResNet-like neural networks, a skip connection uses identity mapping to bypass residual layers,
allowing data flow from a shallow layer directly to subsequent deep layers. Thus, we can decompose
the network into a collection of paths of different lengths (Veit et al.l [2016). We denote a skip
connection together with its associated residual module as a building block (residual block) of a
network. Considering three successive building blocks (eg. z;+1 = z; + fi+1(2;)) in a residual
network from input 2, to output zs, the output z3 can be expanded as:

z3 = 2o + f3(22) = [21 + fa(21)] + fa(z1 + fa(21))
= [z0 + fi1(20) + fa(z0 + fi1(20))] + fs((zo + f1(z0)) + fa(2z0 + fl(Zo)))o

According to the chain rule in calculus, the gradient of a loss function ¢ with respect to input 2, can
then be decomposed as,
or Ol Oz3 029 0z1 Ol 1 0fs 0fa

Dm0 9723 025 02, 970 07 T3z, U 55, (L 55.): M

(6)

Extending this toy example to a network with L residual blocks, the gradient can be decomposed
from L-th to the (I + 1)-th (0 < I < L) residual block as,

L-1

or ot dfiin 0z
%_Eg(azi H)aTn‘ (8)

The example illustrated in Figure[T]is a the above decomposition of a ResNet-18 at the last 3 building
blocks (I = L — 3).

3.2 SKIP GRADIENT METHOD (SGM)

In order to use more gradient from the skip connections, here, we introduce a decay parameter
into the decomposed gradient to reduce the gradient from the residual modules. Following the
decomposition in Equation (), the “skipped” gradient is,

L-1

ov Ofit1 0z
Vel = — —— + 1), 9

* 0zr, E) (’Y 0%z, + ) ox ©)
where zo = x is the input of the network, and vy € (0, 1] is the decay parameter. Accordingly, given
a clean example x and a DNN model f, an adversarial example can be crafted iteratively by,

L—-1

. ot 8fz 1 8250
t+1 t . Y +
i | (madv +asign(5 i|:|0 Rl )). (10)

SGM is a generic technique that can be easily implemented on any neural network that has skip
connections. During the backpropagation process, SGM simply multiplies the decay parameter to
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Table 1: The success rates (%) of black-box attacks (untargeted) crafted by FGSM, PGD and their
“skip gradient” (+SGM) versions, against a VGG19 target model. The best results are in bold.

Attack \Source | RN18 RN34 RN50 RNI01 RNI152 | DNI21 DNI169 DN201
FGSM 5492 5220 4528 4212 41.36 51.32 48.24 49.84
FGSM+SGM 56.60 57.54 4990 49.40 47.46 54.96 55.12 56.66
PGD 59.88 5450 5234 4324 45.26 61.04 54.98 57.68
PGD+SGM 64.52 7148 6832 62.44 66.14 81.74 79.28 81.24

the gradient whenever it passes a residual module. Therefore, SGM does not require any computa-
tion overhead, and works efficiently even on densely connected networks such as DenseNets. The
reduction of residual gradients is accumulated along the backpropagation path, that is, the residual
gradients at lower layers will be reduced more times than those at higher layers. This is because,
compared to high-level features, low-level features have already been well preserved by skip con-
nections (see feature decompositions in Equation (6)).

3.3 SECURITY WEAKNESS OF SKIP CONNECTIONS: A CASE STUDY

To demonstrate the security weakness of skip connections, we conduct a case study, on FGSM,
10-step PGD, and their corresponding SGM versions, to investigate the success rates of black-box
attacks crafted with or without manipulating the skip connections. The black-box attacks are gen-
erated on 8 different source (surrogate) models ResNet(RN)-18/34/50/101/152 and DenseNet(DN)-
121/169/201, then applied to attack a VGG19 target model. All models were trained on ImageNet
training set. We randomly select 5000 ImageNet validation images that are correctly classified by
all source models, and craft untargeted attacks under maximum L, perturbation e = 16, which is
a typical black-box setting (Dong et al., 2018} |Xie et al., 2019; Dong et al., 2019). The step size of
PGD was set to a = 2, and the decay parameter of SGM was set to v = 0.6 (results with varying v
can be found in Appendix [C).

The success rates (transferability) of different methods are reported in Table As can be seen,
when the skip connections are manipulated with our SGM, the transferability of FGSM and PGD is
greatly improved across all source models. On some source models such as DN169 and DN201, the
improvements are even more than 23%. Without SGM, the best transferability against the VGG19
target model is 61.04% which is achieved by PGD on DN121, however, this is improved further by
our proposed SGM to 81.74% ( > 20% gain). This not only highlights the security weakness of skip
connections in terms of the generation of highly transferable attacks, but also indicates the severeness
of this weakness, as such a huge boost in transferability only takes a single decay factor. Another
important observation is that when there are more skip connections in a network (e.g., DenseNet >
ResNet), the the crafted attacks become more transferable, especially when the skip connections are
manipulated by our SGM. This raises questions about the design principle behind many state-of-
the-art DNNs: “going deeper” with techniques like skip connection and 1 x 1 convolution.

4 COMPARISON TO EXISTING TRANSFER ATTACKS

In this section, we compare the transferability of adversarial examples crafted by our proposed SGM
and existing methods on ImageNet dataset (Deng et al., [2009) against both unsecured and secured
target models.

Baselines. We compare SGM with FGSM, PGD, and 3 state-of-the-art transfer attacks: (1) Momen-
tum Iterative (MI) (Dong et al., [2018), (2) Diverse Input (DI) (Xie et al.| 2019), and (3) Transition
Invariant (TT) (Dong et al.,[2019). Note that the TT attack was originally proposed to attack secured
models, although here we include TI to attack both unsecured models and secured models. For TI
and our SGM, we test both the one-step and the iterative version, however, the other methods DI and
MI only have an iterative version. The iteration step is set to 10 and 20 for unsecured and secured
target models respectively. For all iterative methods PGD, TI and our SGM, the step size is set to
a = 2. For our proposed SGM, the decay parameter is set to v = 0.2 (0.5) and v = 0.5 (0.7) on
ResNet and DenseNet source models in PGD (FGSM) respectively. Other parameters of existing
methods are configured as in their original papers.

Threat Model. We adopt a black-box threat model in which adversarial examples are generated
by attacking a source model and then applied to attack the target model. The target model is of
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either a different architecture to the source model, or the same architecture but trained separately.
The attacks are crafted on 5000 randomly selected ImageNet validation images that are classified
correctly by all source models. For all attack methods, we follow the standard setting (Dong et al.,
2018 [Xie et al) 2019)) to craft untargeted attacks under maximum L, perturbation ¢ = 16 with
respect to pixel values in [0, 255].

Target Models. We consider two types of target models: 1) unsecured models that are trained on
ImageNet training set using traditional training; and 2) secured models trained using adversarial
training. For unsecured target model, we choose 7 state-of-the-art DNNs: VGG19 (with batch
normalization) (Simonyan & Zisserman, 2015)), ResNet-152 (RN152) (He et al., 2016a)), DenseNet-
201 (DN152), 154 layer Squeeze-and-Excitation network (SE154) (Hu et al., 2018)), Inception V3
(IncV3) (Szegedy et al.| |2016)), Inception V4 (IncV3) (Szegedy et al.,2017) and Inception-ResNet
V2 (IncResV2) (Szegedy et al.l [2017). For secured target models, we consider 3 robustly trained
DNNs using ensemble adversarial training (Tramer et al.l 2018): IncV3,,,s3 (ensemble of 3 IncV3
networks), IncV3,,,54 (ensemble of 4 IncV3 networks) and IncResV2.,,53 (ensemble of 3 IncResV?2
networks).

Source Models. We choose 8 different source models from the ResNet family: ResNet(RN)-
18/34/50/101/152 and DenseNet(DN)-121/169/201. Whenever the input size of the source model
does not match the target model, we resize the crafted adversarial images to the input size of the tar-
get model. For VGG19, ResNet and DenseNet models, images are cropped and resized to 224 x 224,
while for Inception/Inception-ResNet models, images are cropped and resized to 299 x 299.

4.1 TRANSFERABILITY AGAINST UNSECURED MODELS

We first investigate the transferability of all attack methods against the 7 unsecured models. The
goal is to find the best method that can generate the most transferable attacks on one source model
against all target models.

One-step Transferability. The one-step transferability is measured by the success rate of one-step
attacks, as reported in Table E} Here, we only show the results on two source models: 1) RN152
which is the best ResNet source model with the highest success rate on average against all target
models, and 2) DN201 which is the best DenseNet source model. Also note that, when the source
and target models are the same, the result represents the white-box success rate. Overall, adversarial
examples crafted on DN201 have significantly better transferability than those crafted on RN152,
especially for our SGM method. This is because there are ~ 30X more skip connections that can
be manipulated by our SGM in DN201 compared to RN152. In comparison to to both FGSM
and TI, transferability is improved considerably by SGM in almost all test scenarios, except when
transferring from RN152 to VGG19/IncV3/IncV4 where SGM is outperformed by TI. This implies
that, when transfereing across different architectures (eg. ResNet — VGG/Inception), translation
adaptation may help increase the transferability of one-step perturbations. However, this advantage
of TI disappears when there are more skip connections, as is the case for the DN201 source model.

Table 2: One-step transferability: the success rates (%) of black-box attacks crafted by different
methods on 2 source models against 7 unsecured target models. The best results are in bold.

Source | Attack | VGG19 RN152 DN201 SE154 1IncV3 1IncV4 IncResV2
FGSM 41.36 71.84 37.40 30.00 25.74  21.62 20.46
RN152 TI 49.52 49.66 36.54 30.18 33.86 29.06 20.64
SGM 47.70 77.54 43.56 31.16 29.18  25.00 22.80
FGSM 49.84 39.10 81.44 35.46 31.74  26.82 24.10
DN201 TI 54.00 33.62 57.72 34.02 3458  30.12 20.74
SGM 56.70 47.38 87.72 42.84 38.36 32.56 29.92

Multi-step Transferability. First we provide a detailed study about the transferability of all attack
methods from the 8 source models to the 7 unsecured target models. We then compare different
attack methods on two best source models: the best ResNet source model and the best DenseNet
source model. The multi-step (e.g., 10 step) transferability from all source models to three rep-
resentative target models (VGG19, SE154 and IncV3) is illustrated in Figure [2] (see Appendix [B]
for more results). In all transfer scenarios, our proposed SGM outperforms existing methods con-
sistently on almost all source models except RN18. Adversarial attacks crafted by SGM become
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Figure 2: The attack success rates of black-box attacks crafted by different attack methods on 8
source models against 3 unsecured target models: VGG19 (left), SE154 (middle) and IncV3 (right).

Table 3: Multi-step transferability: the success rates (%) of black-box attacks crafted by different
methods on 2 source models against 7 unsecured target models. The best results are in bold.

Source | Attack | VGG19 RN152 DN201 SE154 IncV3 IncV4 IncRes
PGD 45.26 99.92 50.90 29.90 26.16  20.84 18.78
TI 54.78 99.62 62.94 41.54 37.66 34.94 28.30
RN152 MI 65.52 99.78 75.36 53.26 50.26  43.04 41.58
DI 74.32 99.90 78.04 58.26 54.34  47.16 43.26
SGM 80.68 99.90 81.70 61.90 56.66 48.50 45.86
PGD 57.68 59.40 99.86 40.32 3548 31.82 26.04
TI 54.72 49.46 99.56 40.46 38.58  36.06 28.40
DN201 MI 75.14 76.58 99.80 64.92 59.96  54.28 49.78
DI 77.68 77.14 99.76 61.30 59.18  55.80 48.08
SGM 82.82 86.16 99.58 71.72 65.38 59.12 55.24

more transferable when there are more skip connections in the source model (e.g., from RN18 to
DN201). An interesting observation is that, when the target model is shallow such as VGG19 (left
figure in Figure [2), shallow source models transfer better, however, when the target model is deep
such as SE154 and IncV3 (middle and right figures in Figure [2), deeper source models tend to have
better transferability. We suspect this is due to the architectural similarities shared by the target and
source models. Note that against the VGG19 target model, the success rate of baseline methods all
drop significantly when the ResNet source models become more complex (from RN18 to RN152).
The small variations at RN50 and DN 121 source models may be caused by the architectural differ-
ence between RN18/34 which consist of normal residual blocks, RN50/101/152 which consist of
“bottleneck” residual blocks and DN121/169/201 which has dense skip connections.

Results for the best source models RN152 and DN201 against all target models are reported in Table
[l The proposed SGM attack outperforms existing methods by a large margin consistently against
all target models. Particularly, for transfer DN201 — SE154 (a recent state-of-the-art DNN with
only 2.251% top-5 error on ImageNet), SGM achieves a success rate of 71.4%, which is > 6% and
> 10% higher than MI and DI respectively.

Combining with Existing Methods. We further demonstrate that the weakness of skip connec-
tions can be exploited in combination with existing techniques. The experiments are conducted on
DN201 (the best source model in the above multi-step experiments), and TI attack is excluded as it
was originally proposed against secured models and demonstrates limited improvement over PGD
against unsecured models. The results are reported in Table [d] The transferability of MI and DI is
improved remarkably of 11.98% ~ 21.98% by SGM. When combined with both MI and DI, SGM
improves the state-of-the-art (MI+DI) transferability by a huge margin consistently against all target
models. In particular, SGM pushes the new state-of-the-art to at least 80.52% which previously was
only 71%. This illustrates that the security weakness of skip connections can be easily manipulated
to craft highly transferable attacks against many state-of-the-art DNN models.

4.2 TRANSFERABILITY AGAINST ROBUSTLY TRAINED MODELS

The success rates of our SGM and other baseline methods against the 3 secured target models are
reported in Table[5] Overall, with translation adaptation specifically designed for evading adversar-
ially trained models, TI achieves the best standalone transferability, while SGM is the second best
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Table 4: Combined with existing methods: the success rates (%) of attacks crafted on source model
DN201 against 7 unsecured target models. The best results are in bold and + indicates improvement.

Attack \Target | VGG19 RNI52 DN201 SEI54 IncV3 IncV4  IncRes
MI 75.14 76.58 99.80 64.92  59.96 54.28 49.78
MI+SGM +11.98  +13.24 9952  +17.26 42198 +15.62 +18.38
DI 77.68 77.14 99.76 6130  59.18 5580  48.08
DI+SGM +12.38  +13.86  99.52  +20.82 +17.76 +15.78 +20.20
MI+DI 87.06 87.30 99.76 79.90  76.68 75.18 71.00

MI+DI+SGM [ 93.02 93.90 99.52 89.66 85.68 81.22 80.52

Table 5: Transferability against secured models: the success rates of multi-step attacks crafted on
RN152 and DN201 source models against 3 secured models. The best results are in bold.

Source Attack IncV3enss IncVensa  IncResenss
PGD 11.24 9.22 6.21
TI 44.28 44.80 37.42
MI 22.84 20.98 15.55
RN152 DI 27.29 22.88 16.78
SGM 31.18 27.44 19.56
TI+SGM 52.62 52.80 43.96
PGD 17.64 14.69 10.18
TI 41.75 41.10 33.72
MI 31.07 28.04 20.73
DN201 DI 33.29 28.46 21.02
SGM 41.25 37.87 29.42
TI+SGM 44.70 46.35 38.41

with higher success rates than either PGD, MI or DI. When combined with TI, SGM also improves
the TI attack by a considerable margin across all transfer scenarios. This indicates that, although
manipulating the skip connections alone may not sufficient to attack secured models, it still can
make existing attacks more powerful. One interesting observation is that attacks crafted here on
RN152 are more transferable than those crafted on DN201, which is quite the opposite to attacking
unsecured models.

4.3 A CLOSER LOOK AT SGM

In this part, we conduct more experiments to investigate the gradient decay factor of our proposed
SGM, and explore the potential use of SGM for white-box attacks.

Effect of Residual Gradient Decay. We test the transferability of our proposed SGM with varying
decay parameter v € [0.1,1.0], where v = 1.0 means no decay on the residual gradients. The at-
tacks are crafted by 10-step SGM on 5000 random ImageNet validation images. The results against
3 target models (VGG19, SE154 and IncV3) are illustrated in Figure [3] (See Appendix [C]|for more
results). As can be observed, the trends are very consistent against different target models. On
DenseNet source models, decreasing decay parameter (increasing decay strength) tends to improve
transferability until it exceeds a certain threshold, e.g., v = 0.5. This is because the decay en-
courages the attack to focus on more transferable low-level information, however, it becomes less
sufficient if all high-level class-relevant information is ignored. On ResNet source models, decreas-
ing decay parameter can constantly improve transferability for v > 0.2. Compared to DenseNet
source models, ResNets require more decay on the residual gradients. Recalling that skip con-
nections reveal more transferable information of the source model, ResNets require more penalty
on the residual gradients to increase the importance of skip gradients that reveal more transferable
information of the source model.

Improving Weak White-box Attacks. In addition to the black-box transferability, we next show
that SGM can also improve the weak (one-step) white-box attack FGSM. Note that the one-step
version of SGM is equivalent to FGSM plus residual gradient decay. Our experiments are conducted
on the 8 source models, and the white-box success rates under maximum L, perturbation ¢ = 8
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(a typical white-box setting) are shown in Figure fa] As can be observed, using SGM can help
improve the adversarial strength (i.e., higher success rate). We then vary the maximum perturbation
e € [1,64], and show the results on ResNet and DenseNet models separately in Figure 4b| and
Figure Compared to FGSM, SGM can always give better adversarial strength, except when e is
extremely small (¢ < 2). When the perturbation space becomes infinitely small, the loss landscape
within the space becomes flat and the gradient points to the optimal perturbation direction. However,
when the perturbation space expands, one-step gradient becomes less accurate due to changes in
the loss landscape (success rate decreases as € increases from 4 to 16), and in this case, the skip
gradient which contains more low-level information is more reliable than the residual gradient (the
improvement is more significant for € € [4, 16] ). Another interesting observation is that adversarial
strength decreases when the model becomes more complex from RN18 to RN152, or DN121 to
DN201. This is likely because the loss landscape of complex models is steeper than shallow models,
making one-step gradient less reliable.

5 CONCLUSION

In this paper, we have identified a surprising security weakness of the skip connections used by
many state-of-the-art ResNet-like neural networks, that is, they can be easily used to generate highly
transferable adversarial examples. To demonstrate this architectural weakness, we proposed the
Skip Gradient Method (SGM) to craft adversarial examples using more gradients from the skip
connections rather than the residual ones, via a decay factor on gradients. We conducted a series of
transfer attack experiments with 8 source models and 10 target models including 7 unsecured and
3 secured models, and showed that attacks crafted by SGM have significantly better transferability
than those crafted by existing methods. When combined with existing techniques, SGM can also
boost state-of-the-art transferability by a huge margin. We believe this security weakness of skip
connections is due to the fact that they expose extra low-level information which is more transferable
across different DNNs. Our findings in this paper not only reminds researcher to pay attention to
the architectural vulnerability of DNNs, but also raises new challenges for secure DNN architecture
design.
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A VISUALIZATION OF ADVERSARIAL EXAMPLES CRAFTED BY SGM

In this section, we visualize 6 clean images and their corresponding adversarial examples crafted
using our SGM on either a ResNet-152 or a DenseNet201 in Figure[5] These visualization results
show that the generated adversarial perturbations are human imperceptible.

Figure 5: Visualization of 6 clean images and their corresponding adversarial examples. The clean
images are shown in the top row, adversarial images crafted on ResNet-152 are shown in the middle
row, while those crafted on DenseNet-201 are shown at the bottom. All adversarial images are
crafted using our proposed SGM (10-step) under maximum perturbation € = 16.

12
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B MORE RESULTS FOR MULTI-STEP TRANSFERABILITY

In addition to Figure 2] and Table [3] here, we show more multi-step transferability results for the
remaining 5 source models (against all 7 target models) in Figure [§] and Table [] respectively. The
proposed SGM attack outperforms existing methods by a large margin consistently in all transfer
scenarios except ResNet-18. We believe this is because there are only 5 “standard” residual blocks
in ResNet-18, which might limit the performance of the proposed SGM. For comparison, there are
13 “standard” residual blocks in ResNet-34.
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Figure 6: The attack success rates (%) of black-box attacks crafted by different attack methods on 8
source models against all 7 unsecured target models.
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Table 6: Multi-step transferability: the success rates (%) of black-box attacks crafted by different
methods on total 8 source models against 7 unsecured target models. The best results are in bold.

Attack | VGG19 RNI152 DN201 SNI154 IncV3 IncV4 IncRes
PGD 59.88 44.90 50.90 22.34 2324  18.30 14.00
TI 63.06 37.88 52.56 25.18 2840 24.84 16.50
RNI18 MI 78.58 67.38 75.92 46.68 47.22 4044 33.96
DI 82.88 66.94 71.80 42.68 4496  38.10 29.80
SGM 69.84 60.94 63.42 32.82 3440 26.54 22.50
PGD 54.50 50.70 52.00 24.98 24.48 19.76 16.02
TI 59.50 43.86 57.46 30.76 30.76  27.56 18.84
RN34 MI 75.50 72.22 78.28 51.54 51.60 44.08 39.92
DI 79.28 72.92 75.48 46.16 48.84  39.00 32.56
SGM 85.72 84.94 84.50 58.30 59.14 49.32 45.80
PGD 52.34 64.98 52.38 26.78 22.80 18.62 16.04
TI 61.56 60.18 62.82 36.60 3246  29.72 23.08
RN50 MI 72.36 81.76 79.10 53.42 4798 4148 39.36
DI 81.90 84.76 78.70 54.72 47.62 41.74 37.90
SGM 83.34 88.26 80.30 59.54 52.00 43.44 40.56
PGD 43.24 77.92 49.18 26.10 2296 18.10 15.40
TI 51.80 70.58 59.12 35.42 3240 29.76 22.02
RN101 MI 64.96 89.24 74.84 49.06 45.18  39.66 35.84
DI 73.14 91.30 76.86 52.96 47.64  40.46 36.30
SGM 80.26 95.00 82.16 57.18 55.82 46.42 42.76
PGD 45.26 99.92 50.90 29.90 26.16  20.84 18.78
TI 54.78 99.62 62.94 41.54 37.66 3494 28.30
RN152 MI 65.52 99.78 75.36 53.26 50.26  43.04 41.58
DI 74.32 99.90 78.04 58.26 5434  47.16 43.26
SGM 80.68 99.90 81.70 61.90 56.66  48.50 45.86
PGD 61.04 51.98 76.42 33.22 30.74 27.84 21.90
TI 59.36 44.10 73.32 34.50 3556 33.94 24.30
DNI121 MI 78.44 71.96 90.14 58.02 5526  50.52 44.24
DI 80.98 71.78 88.90 58.02 53.42  51.08 41.36
SGM 81.00 80.72 92.54 64.92 5794 51.24 45.36
PGD 54.98 50.92 79.28 34.16 3090 27.48 22.70
TI 55.12 45.54 75.50 37.70 36.24  34.10 26.34
DN169 MI 71.38 69.58 90.32 57.46 5536  48.50 43.84
DI 77.38 72.28 90.20 57.46 5542 5124 44.16
SGM 82.66 81.56 94.60 67.48 60.88 53.36 50.28
PGD 57.68 59.40 99.86 40.32 3548 31.82 26.04
TI 54.72 49.46 99.56 40.46 38.58  36.06 28.40
DN201 MI 75.14 76.58 99.80 64.92 5996 54.28 49.78
DI 77.68 77.14 99.76 61.30 59.18  55.80 48.08
SGM 82.74 86.32 99.58 71.42 6594 58.78 55.42

C MORE RESULTS FOR PARAMETER TUNING

In this section, we demonstrate the results in black-box attacks with varying decay parameter v in
Figure [7] (PGD) and Figure [§] (FGSM). The numerical results against different target models are
shown in Table[7]-[I3](PGD) and Table[14]- 20| (FGSM). It is noteworthy tha the performance curve
with varying 7y has startling similarity within DenseNet or ResNet.
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Table 7: Multi-step (10-step) SGM with different decay parameter -, against VGG19.

Target VGG19
v \Source | RN18 RN34 RN50 RNIOI RNI52 | DN121 DNI169 DN201
1.00 59.88 5450 5234 4324 45.26 61.04 54.98 57.68
0.90 61.04 5848 56.16 4852 49.84 68.34 62.28 64.76
0.80 62.24 6240 60.68  52.36 56.16 73.90 69.06 72.32
0.70 6390 6680 64.44  56.78 61.06 79.00 74.82 78.00
0.60 64.52 7148 6832 6244 66.14 81.74 79.28 81.24
0.50 66.08 7678 7250  68.22 70.18 82.86 80.82 82.82
0.40 66.88 80.32 7626  72.86 75.18 79.72 79.46 80.86
0.30 68.10 8532 80.50 77.74 79.46 73.50 73.12 75.90
0.20 69.82 85.72 8340  80.02 80.54 58.98 60.14 64.26
0.10 71.74 83.04 83.82  80.10 78.56 35.78 38.58 43.76

Table 8: Multi-step (10-step) SGM with different decay parameter v, against ResNet-152.

Target RN152
~\Source | RNI8§ RN34 RN50 RNIOI RNI52 [ DNI2I DNI69 DN201I
1.00 4490 50.70 6498 7792 99.92 51.98 50.92 59.40
0.90 46.40 5522 6848  82.24 99.90 60.58 58.44 67.78
0.80 4920 60.32 7236  85.64 99.90 68.60 67.42 75.18
0.70 50.54 65.12 7572  88.54 99.88 74.56 75.12 81.18
0.60 52.64 70.88 7836  91.10 99.88 79.02 80.24 85.82
0.50 5424 7592 8178  93.02 99.82 80.22 81.44 86.16
0.40 5646 8098 8458  94.28 99.82 78.28 80.38 84.90
0.30 59.00 8496 87.06 95.20 99.88 71.58 74.02 78.88
0.20 60.78 8494 8830  95.04 99.90 56.22 57.90 65.24
0.10 63.30 8138 86.54  93.34 99.90 29.66 31.52 38.46

Table 9: Multi-step (10-step) SGM with different decay parameter v, against DenseNet-201.

Target DN201
~\Source | RNI8§ RN34 RN50 RNIOI RNI52 [ DNI2I DNI169 DN20I
1.00 50.90 52.00 5238  49.18 50.90 76.42 79.28 99.86
0.90 5240 56.62 5722  54.12 56.86 83.26 84.90 99.78
0.80 5398 6222 6086  59.32 62.76 88.02 89.92 99.78
0.70 55.84 6638 6356  64.20 67.52 91.24 92.80 99.72
0.60 56.68 71.38 6828  68.80 72.10 92.66 94.72 99.60
0.50 59.12  76.58 7144 7278 75.84 92.50 94.84 99.56
0.40 60.14 8134 7572  77.62 79.56 90.52 92.98 99.54
0.30 61.24 84.66 7858  81.38 81.62 84.30 88.04 99.50
0.20 63.32 8554 8042  82.18 81.58 68.44 73.42 99.48
0.10 65.80 7936 7950  80.98 77.02 37.50 42.50 94.74

Table 10: Multi-step (10-step) SGM with different decay parameter vy, against SENet-154.

Target SE154
v \Source | RN18 RN34 RN50 RNIO1I RNI52 | DN121 DNI169 DN201
1.00 2234 2498 26778  26.10 29.90 33.22 34.16 40.32
0.90 23.18 2824 2990  28.50 34.10 40.64 41.22 47.40
0.80 24.16  31.14 3398  32.04 38.24 48.90 49.08 55.54
0.70 25772 3504 37.06 3552 41.50 55.96 56.56 62.66
0.60 27.00 39.14 40.56  39.10 46.02 62.38 63.88 68.74
0.50 28.56 44.10 4520  43.78 51.82 64.78 67.88 71.72
0.40 29.84 51.16 4990 4842 56.40 63.68 66.50 71.12
0.30 31.76 5654 5538 5424 60.54 58.80 61.78 66.12
0.20 3325 5838 59.28  57.28 61.84 45.76 48.84 55.34
0.10 36.12 56.18 60.82 56.72 58.18 26.00 28.88 33.90
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Table 11: Multi-step (10-step) SGM with different decay parameter -y, against InceptionV3.

Target IncV3
~v\Source | RNI8§ RN34 RN50 RNIOI RNI52 [ DNI2I DNI69 DN201
1.00 2324 2448 2280 22.96 26.16 30.74 30.90 35.48
0.90 24.10 2738 25.14 2528 29.08 37.44 36.76 41.94
0.80 25.64 3054 28.16  27.96 32.38 43.74 43.82 49.52
0.70 26.74 3384 30.76  31.14 35.52 50.20 50.74 56.02
0.60 27.84 37.60 33.18  35.08 39.76 55.66 57.08 62.78
0.50 2892 4344 36.78 3848 44.84 57.58 60.40 65.38
0.40 3044 4938 4136  45.00 49.82 56.30 59.30 64.68
0.30 3260 56.08 4696  51.26 53.80 49.38 53.30 57.98
0.20 33.66 59.18 51.84 5552 56.50 35.76 39.84 44.54
0.10 3734 56.76 5396 57.04 55.02 18.32 20.44 24.74

Table 12: Multi-step (10-step) SGM with different decay parameter -y, against InceptionV4.

Target IncV3
v \Source | RNI8 RN34 RN50 RNIOI RNI52 | DNI2I DNI69 DN20I
1.00 1830 19.76 18.62  18.10 20.84 27.84 27.48 31.82
0.90 19.14 21.74 2034  20.88 23.90 33.46 31.64 37.14
0.80 19.58 24.14 2294 2274 27.28 38.76 37.60 43.86
0.70 21.02 26776 2488  25.64 29.74 44.50 43.74 49.96
0.60 2192 3070 27.08  28.82 33.54 49.02 49.28 55.76
0.50 22774 3538 30.10  32.16 37.26 51.04 53.30 59.12
0.40 24.16 41.00 34.62  37.06 41.58 48.98 52.58 57.86
0.30 2540 46.48 3882 42.84 46.08 42.40 46.04 51.12
0.20 2690 4942 4332  46.32 48.54 28.56 32.38 36.70
0.10 29.38 47774 4480  47.64 47.26 14.00 15.26 19.70

Table 13: Multi-step SGM with different decay parameter -, against InceptionResnet-V2.

Target IncV3
v \Source | RN18 RN34 RN50 RNIO1 RNI52 | DN121 DNI169 DN201
1.00 1400 16.02 16.04 1540 18.78 21.90 22.70 26.04
0.90 15.10 17.88 1834  17.68 21.32 27.52 27.38 32.00
0.80 15.80 2050 2024  19.66 24.28 32.46 33.00 38.14
0.70 16.74 23.18 22.14 2248 26.88 38.10 39.88 44.88
0.60 17.86  26.00 2492 2494 30.74 43.14 45.94 51.46
0.50 18.82 3036 27.76  28.40 34.58 45.10 49.54 55.24
0.40 2026 3638 31.70  33.52 38.80 44.10 49.28 54.38
0.30 2036 4320 36.18  38.90 43.56 36.82 42.98 47.30
0.20 22.08 4578 4038  42.84 45.90 26.34 29.96 34.98
0.10 2472 4422 41.74 4448 43.24 12.20 14.26 17.28

Table 14: Single-step SGM with different decay parameter -y, against VGG19.

Target VGG19
~v\Source | RNI8 RN34 RN50 RNIOI RNI52 [ DNI2I DNI69 DN201
1.0 5492 5220 4528 4212 41.36 51.32 48.24 49.84
0.9 55.62 5444 46770 4448 42.86 53.54 51.06 52.58
0.8 55.68 55.60 4824  45.86 44.86 55.16 53.26 54.84
0.7 56.50 5650 4934  47.82 45.70 55.80 54.06 56.70
0.6 56.60 57.54 4990 49.40 47.46 54.96 55.12 56.66
0.5 56.62 5822 50.70  50.26 47.66 52.78 53.56 55.86
0.4 56.66 5724 50.60  50.64 48.20 48.68 50.40 53.30
0.3 5632 56.84 50.12  51.12 47.16 42.26 45.46 46.90
0.2 5546 5438 4872  51.36 45.60 34.90 37.10 40.22
0.1 53.60 5052 47770  49.94 43.48 25.56 27.04 29.50
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Table 15: Single-step SGM with different decay parameter -y, against ResNet-152.

Target RN152
v \Source | RN18 RN34 RN50 RNIOI RNI52 | DN121 DNI169 DN201
1.00 37.62 4038 3844 4228 71.84 37.30 35.84 39.10
0.90 38.10 4232 4024  44.62 74.80 40.28 38.92 42.78
0.80 38.84 4394 4172 4644 76.82 41.66 41.78 45.82
0.70 39.64 4580 42.10 47.88 77.46 42.54 43.16 47.38
0.60 40.18 46.14 4258  48.30 77.98 41.78 43.06 47.02
0.50 4042 4648 42.72  48.98 77.54 39.44 41.56 45.42
0.40 40.82 4586 41.70  49.14 76.06 35.68 37.74 41.96
0.30 3990 4438 4030 4822 72.60 29.44 32.70 35.22
0.20 39.02 4092 37.84 4584 67.48 21.52 24.26 26.14
0.10 37.64 3550 3430 4236 59.24 13.40 15.40 17.32

Table 16: Single-step SGM with different decay parameter ~, against DenseNet-201.

Target DN201
~\Source | RNI8§ RN34 RN50 RNIOI RNI52 [ DNI2I DNI69 DN201I
1.00 4520 4436 4034  39.14 37.40 48.80 48.54 81.44
0.90 46.32  46.88 4244  41.02 39.72 52.20 52.40 84.78
0.80 46.24 48.66 4392 4292 41.60 54.52 55.38 86.80
0.70 4722 50.84 4524  44.66 42.82 54.84 57.48 87.72
0.60 4774 5222 45.68  45.34 43.62 53.94 57.34 87.06
0.50 4796 5226 4556  45.58 43.54 51.56 55.92 85.28
0.40 47.86 51.58 44.84  46.06 42.76 47.50 51.22 81.10
0.30 4712 4994 4362  45.28 40.76 39.06 42.94 72.90
0.20 46.00 4594 40.52 4290 37.46 28.10 30.34 56.90
0.10 4390 40.80 36.74  40.38 33.66 15.56 17.88 32.78

Table 17: Single-step SGM with different decay parameter ~y, against SENet-154.

Target SE154
~\Source | RNI8§ RN34 RN50 RNIOI RNI52 [ DNI2I DNI169 DN20I
1.00 2822 29.80 2690 25.72 26.74 31.00 31.16 35.46
0.90 2898 3138 2854  27.08 28.30 32.82 34.34 38.42
0.80 29.50 33.08 29.04  28.98 29.84 35.02 37.46 40.98
0.70 29.24 3462 30.02  29.98 30.74 36.20 38.04 42.84
0.60 29.60 3530 3056 @ 30.74 31.00 35.38 38.72 42.48
0.50 30.06 35.12 30.82  30.58 31.12 33.46 37.28 40.18
0.40 29.74  34.18 30.66  30.58 29.78 30.04 34.14 37.10
0.30 29.34 3236 2934 2942 28.00 24.78 28.48 31.14
0.20 2844 2974 27.68  28.14 25.78 17.40 20.86 23.38
0.10 2694 2626 2488  26.02 22.40 10.30 12.90 14.54

Table 18: Single-step SGM with different decay parameter -y, against Inception-V3.

Target IncV3

v \Source | RN18 RN34 RN50 RNI101 RNI152 | DN121 DN169 DN201

1.00 29.22 3022 2640 2434 25.74 28.50 29.32 31.74
0.90 30.06 31.80 27.58  25.90 27.46 31.04 32.00 34.70
0.80 30.82  33.80 28.18 2794 28.58 33.16 33.98 37.10
0.70 31.02 3474 29.12  28.94 29.30 33.26 35.34 38.36
0.60 3152 3542 2932  29.60 29.70 32.34 35.70 37.80
0.50 32.16 3548 29.16  30.46 29.18 30.70 33.38 36.14
0.40 3208 3490 29.00 3030 28.56 27.66 30.24 32.06
0.30 3146 3362 2816  29.80 27.48 22.88 24.84 27.26
0.20 30.70 31.14 2690 27.90 25.06 15.74 18.16 19.80
0.10 29.50 2736 2446  26.08 22.14 10.16 11.86 12.90
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Table 19: Single-step SGM with different decay parameter -y, against Inception-V4.

Target Inc4

~v\Source | RNI8 RN34 RN50 RNIOI RNI52 [ DNI2I DNI69 DN201
1.00 2386 2554 21.72  20.82 21.62 24.68 25.16 26.82
0.90 2458 27.52 2286 2228 23.46 27.24 28.04 29.12
0.80 2526 2858 23770  23.44 24.40 28.10 29.48 31.44
0.70 25.66 29.62 2434  24.06 24.90 28.34 30.00 32.56
0.60 2592  30.04 2454  24.80 25.44 27.58 29.16 31.94
0.50 26.08 30.16 24.86 24.94 25.02 25.50 27.28 30.24
0.40 2626 2894 23.66  24.50 23.92 22.18 24.08 26.30
0.30 25.58 2732 2240 2348 22.32 17.60 19.44 21.22
0.20 25.06 2458 20.78  22.76 20.18 11.98 13.28 15.08
0.10 23.14 2128 18.18  20.64 17.38 7.72 8.36 9.34

Table 20: Single-step SGM with different decay parameter -y, against InceptionResnet-V2.

Target IncRes

~v\Source | RNI8§ RN34 RN50 RNIOI RNI52 [ DNI2I DNI69 DN201
1.00 2024 2230 20.32 18.66 20.46 21.46 22.94 24.10
0.90 21.18 2354 2094 2022 21.84 23.28 24.42 26.12
0.80 21.68 2472 2222 2122 23.12 24.80 26.16 28.04
0.70 2198 2536 2236  22.30 23.44 24.98 26.96 28.92
0.60 2230 2592 23.08  22.88 23.50 24.40 26.70 29.34
0.50 2298 2652 2268  22.84 22.84 22.32 24.64 27.26
0.40 22.62 2582 21.64 2296 22.34 19.16 21.72 24.24
0.30 22.84 2482 21.00 21.68 21.14 15.16 17.40 19.04
0.20 22.02 22,62 1920  20.56 18.60 10.48 11.98 12.82
0.10 2046  19.60 16.46 18.76 15.90 6.18 7.28 7.86
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