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ABSTRACT

Asynchronous distributed methods are a popular way to reduce the communication
and synchronization costs of large-scale optimization. Yet, for all their success,
little is known about their convergence guarantees in the challenging case of
general non-smooth, non-convex objectives, beyond cases where closed-form
proximal operator solutions are available. This is all the more surprising since
these objectives are the ones appearing in the training of deep neural networks.

In this paper, we introduce the first convergence analysis covering asynchronous
methods in the case of general non-smooth, non-convex objectives. Our analysis
applies to stochastic sub-gradient descent methods both with and without block vari-
able partitioning, and both with and without momentum. It is phrased in the context
of a general probabilistic model of asynchronous scheduling accurately adapted to
modern hardware properties. We validate our analysis experimentally in the context
of training deep neural network architectures. We show their overall successful
asymptotic convergence as well as exploring how momentum, synchronization,
and partitioning all affect performance.

1 INTRODUCTION

Training parameters arising in Deep Neural Net architectures is a difficult problem in several
ways (Goodfellow et al., 2016). First, with multiple layers and nonlinear activation functions such as
sigmoid and softmax functions, the ultimate optimization problem is nonconvex. Second, with ReLU
activation functions and max-pooling in convolutional structures, the problem is nonsmooth, i.e., it
is not differentiable everywhere, although typically the set of non-differentiable points is a set of
measure zero in the space of the parameters. Finally, in many applications it is unreasonable to load
the whole sample size in memory to evaluate the objective function or (sub)gradient, thus samples
must be taken, necessitating analysis in a probabilistic framework.

The analysis of parallel optimization algorithms using shared memory architectures, motivated by
applications in machine learning, was ushered in by the seminal work of Recht et al. (2011) (although
precursors exist, see the references therein). Further work refined this analysis, e.g. (Liu & Wright,
2015) and expanded it to nonconvex problems, e.g. (Lian et al., 2015). However, in all of these
results, a very simplistic model of asynchronous computation is presented to analyze the problem.
Notably, it is assumed that every block of the parameter, among the set of blocks of iterates being
optimized, has a fixed, equal probability of being chosen at every iteration, with a certain vector of
delays that determine how old each block is that is stored in the cache relative to the shared memory.
As one can surmise, this implies complete symmetry with regards to cores reading and computing the
different blocks. This does not correspond to asynchronous computation in practice. In particular, in
the common Non-Uniform Memory Access (NUMA) setting, practical experience has shown that it
can be effective for each core to control a set of blocks. Thus, the choice of blocks will depend on
previous iterates, which core was last to update, creating probabilistic dependence between the delay
vector and the choice of block. This exact model is formalized in Cannelli et al., which introduced
a new probabilistic model of asynchronous parallel optimization and presented a coordinate-wise
updating successive convex approximation algorithm.
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In this paper, we are interested in studying parallel asynchronous stochastic subgradient descent for
general nonconvex nonsmooth objectives, such as the ones arising in the training of deep neural
network architectures. Currently, there is no work in the literature specifically addressing this
problem. The closest related work is given by Zhu et al. (2018) and Li & Li (2018), which consider
asynchronous proximal gradient methods for solving problems of the form f(x) + g(x), where
f is smooth and nonconvex, and g(x) is nonsmooth, with an easily computable closed form prox
expression. This restriction applies to the case of training a neural network which has no ReLUs
or max pooling in the architecture itself, i.e., every activation is a smooth function, and there is an
additional regularization term, such as an `1. These papers derive expected rates of convergence.
In the general case, where the activations themselves are nonsmooth—for instance in the presence
of ReLUs—there is no such additive structure, and no proximal operator exists to handle away the
non-smoothness and remove the necessity of computing and using subgradients explicitly in the
optimization procedure.

This general problem of nonsmooth nonconvex optimization is already difficult (see, e.g., Bagirov et al.
(2014)), and the introduction of stochastically uncertain iterate updates creates an additional challenge.
Classically, the framework of stochastic approximation, with stochastic estimates of the subgradient
approximating elements in a differential inclusion that defines a flow towards minimization of the
objective function, is a standard, effective approach to analyzing algorithms for this class of problems.
Some texts on the framework include Kushner & Yin (2003), which we shall reference extensively
in the paper, and Borkar (2008). See also Ermol’ev & Norkin (1998) and Ruszczyński (1987) for
some classical results in convergence of stochastic algorithms for nonconvex nonsmooth optimization.
Interest in stochastic approximation has resurfaced recently sparked by the popularity of Deep Neural
Network architectures. For instance, see the analysis of nonconvex nonsmooth stochastic optimization
with an eye towards such models in Davis et al. (2018) and Majewski et al. (2018).

In this paper, we provide the first analysis for nonsmooth nonconvex stochastic subgradient methods
in a parallel asynchronous setting, in the stochastic approximation framework. For this, we employ
the state of the art model of parallel computation introduced in Cannelli et al., which we map onto the
analysis framework of Kushner & Yin (2003). We prove show that the generic asynchronous stochastic
subgradient methods considered are convergent, with probability 1, for nonconvex nonsmooth
functions. This is the first result for this class of algorithms, and it combines the state of the art in
these two areas, while extending the scope of the results therein. Furthermore, given the success
of momentum methods (see, e.g., Zhang et al. (2017)), we consider the momentum variant of
the classical subgradient method, again presenting the first convergence analysis for this class of
algorithms.

We validate our analysis numerically by demonstrating the performance of asynchronous stochastic
subgradient methods of different forms on the problem of ResNet deep network training. We shall
consider variants of asynchronous updating with and without write locks and with and without block
variable partitioning, showing the nuances in terms of convergence behavior as depending on these
strategies and properties of the computational hardware.

2 PROBLEM FORMULATION
Consider the minimization problem

min
x
f(x), (1)

where f : Rn → R is locally Lipschitz continuous (but could be nonconvex and nonsmooth)
and furthermore, it is computationally infeasible to evaluate f(x) or an element of the Clarke
subdifferential ∂f(x).

The problem (1) has many applications in machine learning, including the training of parameters in
deep neural networks. In this setting, f(x) is loss function evaluated on some model with x as its
parameters, and is dependant on input data A ∈ Rn×m and target values y ∈ Rm of high dimension,
i.e., f(x) = f(x; (A, y)), with x a parameter to optimize with respect to the loss function. In cases
of practical interest, f is decomposable in finite-sum form,

f(x) =
1

M

M∑
i=1

l(m(x;Ai); yi)

where l : Rm × Rm → R represents the training loss and {(Ai, yi)} is a partition of (A, y).
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We are concerned with algorithms that solve (1) in a distributed fashion, i.e., using multiple processing
cores. In particular, we are analyzing the following inconsistent read scenario: before computation
begins, each core c is allocated a block of variables Ic, for which it is responsible to update. At
each iteration the core modifies a block of variables ik, chosen randomly among Ic. Immediately
after core c completes its k-th iteration, it updates the shared memory. A lock is only placed on the
shared memory when a core writes to it, thus the process of reading may result in computations of
the function evaluated at variable values that never existed in memory, e.g., block 1 is read by core 1,
then core 3 updates block 2, then core 1 reads block 2, and now block 1 is operating on a vector with
the values in blocks 1 and 2 not simultaneously at their present local values at any point in time in
shared memory. We shall index iterations to indicate when a core writes a new set of values for the
variable into memory.

We let dk = {dkc1 , ..., dkcn } be the vector of delays for each component of the variable used to evaluate
the subgradient estimate, thus the j-th component of x that is used in the computation of the update

at k is actually not xkcj but x
dkcj
j .

In this paper, we are interested in applying stochastic approximation methods, of which the classic
stochastic gradient descent forms a special case. Since f in (1) is in general nonsmooth, we will
exploit subgradient methods. Denote by ξk the set of mini-batches used to compute an element of

the subgradient g((x
dkc1
1 , ..., x

dkcn
n ); ξkc). The set of minibatches ξkc is chosen uniformly at random

from (A, y), independently at each iteration. By the central limit theorem, the error is asymptotically
Gaussian as the total size of the data as well as the size of the mini-batches increases.

2.1 ALGORITHM DESCRIPTION

We now recall the stochastic subgradient algorithm under asynchronous updating in Algorithm 1,
from the perspective of the individual cores. The update of the iterate performed by

uikc = muikc + gkc
ikc

; xkc+1
ikc

= xkc
ikc
− (1−m)γkcuikc

where m is the momentum constant, required to satisfy 0 < m < 1

Algorithm 1 Asynchronous Stochastic Subgradient Method for an Individual Core
Input: x0, core c.

1: while Not converged do
2: Sample i from the variables Ic corresponding to c. Sample ξ.
3: Read xkc and from the shared memory
4: Compute a subgradient estimate gkc

5: Write, with a lock, uikc = muikc + gkc
ikc

6: Update, with a lock, xi = xi − (1−m)γkcuikc
7: kc = kc + 1
8: end while

3 ANALYSIS

For the discrete time probabilistic model of computation introduced in Cannelli et al., we must
present the basic requirements that must hold across cores. In particular, it is reasonable to expect
that if some core is entirely faulty, or exponentially deccelerates in its computation, convergence
should not be expected to be attained. Otherwise we wish to make the probabilistic assumption
governing the asynchronous update scheduling as general as possible in allowing for a variety of
possible architectures.

The details of the probabilistic assumptions are technical and left to the Supplementary Material. It
can be verified that the stochastic approxmation framework discussed in the next section detailing the
convergence satisfies these assumptions.

We have the standard assumption about the stochastic sub-gradient estimates. These assumptions hold
under the standard stochastic gradient approach wherein one samples some subset ξ ⊆ {1, ...,M} of
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mini-batches uniformly from the set of size |ξ| subsets of {1, ...,M}, done independently at each
iteration. This results in independent noise at each iteration being applied to the stochastic subgradient
term. From these mini-batches ξ, a subgradient is taken for each j ∈ ξ and averaged.
Assumption 3.1. The stochastic subgradient estimates g(x, ξ) satisfy,

1. Eξ [g(x; ξ)] ∈ ∂f(x)

2. Eξ
[
dist(g(x; ξ), ∂f(x))2

]
≤ σ2

3. ‖g(x; ξ)‖ ≤ Bg w.p. 1.

We provide some more details on the “global” model of asynchronous stochastic updating in the
Supplementary material.

3.1 CONTINUOUS TIME MODEL AND STOCHASTIC PROCESS

In this section, we shall redefine the algorithm and its associated model presented in the previous
section in a framework appropriate for analysis from the stochastic approximation perspective.

Consider the Algorithm described as such, for data block i with respective iteration k,

xk+1,i = xk,i + (1−m)γk,i
k∑
j=1

mk−jYj,i (2)

where Yj,i is the estimate of the partial subgradient with respect to block variables indexed by i at
local iteration j.

In the context of Algorithm 1, the step size is defined to be the subsequence {γk,i} = {γν(c(i),l) : i =
il} where l is the iteration index for the core corresponding to block i. Thus it takes the subsequence
of γk for which ik = i is the block of variables being modified.

The step Yk,i corresponding to g(xk, ξ) satisfies,
Yk,i = gi((xk−[dki ]1,1, ..., xk−[dki ]j ,j , ..., xk−[dki ]n,n)) + δMk,i.

We denote gi(x) to denote a selection of some element of the subgradient, with respect to block
i, of f(x). The quantity δMk,i represents a Martingale difference, satisfying δMk,i = Mk+1,i −
Mk,i for some Martingale Mk, a sequence of random variables which satisfies E[Mk,i] < ∞ and
E[Mk+1,i|Mj,i, j ≤ k] = Mk,i with probability 1 for all k. It holds that E[|Mk,i|2] < ∞ and
E[Mk+1,i −Mk,i][Mj+1,i −Mj,i]

′ = 0. Finally, it holds that Ek,i[δMk,i] = 0. These are standard
conditions implied by the sampling procedure in stochastic gradient methods, introduced by the
original Robbins-Monro method (Robbins & Monro, 1985).

In Stochastic Approximation, the standard approach is to formulate a dynamic system or differential
inclusion that the sequence of iterates approaches asymptotically. For this reason, we introduce
real time into the model of asynchronous computation, looking at the actual time elapsed between
iterations for each block i.

Define δτk,i to be the real elapsed time between the k-th and k + 1-st iteration for block i. We let
Tk,i =

∑k−1
j=0 δτj,i and define for σ ≥ 0, pl(σ) = min{j : Tj,i ≥ σ} the first iteration at or after σ.

We assume now that the step-size sequence comes from an underlying real function, i.e.,

γk,i =
1

δτk,i

∫ Tk,i+δτk,i

Tk,i

γ(s)ds

satisfying∫∞
0
γ(s)ds =∞, where 0 < γ(s)→ 0 as s→∞,

There are T (s)→∞ as s→∞ such that lims→∞ sup0≤t≤T (s)

∣∣∣ γ(s)
γ(s+t) − 1

∣∣∣ = 0
(3)

We now define new σ-algebras Fk,i and F+
k,i defined to measure the random variables

{{x0}, {Yj−1,i : j, i with Tj,i < Tk+1,i}, {Tj,i : j, i with Tj,i ≤ Tk+1,i}} , and,
{{x0}, {Yj−1,i : j, i with Tj,i ≤ Tk+1,i}, {Tj,i : j, i with Tj,i ≤ Tk+1,i}} ,
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indicating the set of events up to, and up to and including the computed noisy update at k, respectively.

Note that each of these constructions is still consistent with a core updating different blocks at random,
with δτk,i arising from an underlying distribution for δτk,c(i).

Let us relate these σ-algebras to those in the previous section. Note that this takes subsets of random
variables (ik, dk, ξk) for which k is such that ik is i (in the original notation of k). The form of Yk,i
defined above incorporates the random variable dk and ik, as in which components are updated and
the age of the information used by where the subgradient is evaluated, as well as ξk by the presence
of the Martingale difference noise.

For any sequence Zk,i we write Zσk,i = Zpi(σ)+k,i, where pi(σ) is the least integer greater than or
equal to σ. Thus, let δτσk,i denote the inter-update times for block i starting at the first update at or
after σ, and γσk,i the associated step sizes.

Now let xσ0,i = xpi(σ),i and for k ≥ 0, xσk+1,i = xσk,i + (1−m)γσk,i
∑k
j=1m

k−jY σj,i.

We consider tσk,i =
∑k−1
j=0 γ

σ
j,i and τσk,i =

∑k−1
j=0 γ

σ
j,iδτ

σ
j,i.

We introduce piecewise constant interpolations of the vectors in real-time given by,

xσi (t) = xσk,i, x̂σi (t) = x̂σk,i, Nσ
i (t) = tσk,i, t ∈ [τσk,i, τ

σ
k+1,i)

and τσi (t) = τσk,i for t ∈ [tσk,i, t
σ
k+1,i]. We also have,

Nσ
i (τσi (t)) = tσk,i, t ∈ [tσk,i, t

σ
k+1,i], x

σ
i (t) = x̂σi (τσi (t)), x̂σi (t) = xσi (Nσ

i (t))

Now we detail the assumptions on the real delay times. These ensure that the real-time delays do not
grow without bound, either on average, or on relevantly substantial probability mass. Intuitively, this
means that it is highly unlikely that any core deccelerates exponentially in its computation speed.
Assumption 3.2. It holds that {δτσk,i; k, i} is uniformly integrable.

Assumption 3.3. There exists a function uσk+1,i and random variables ∆σ,+
k+1,i and a random se-

quence {ψσk+1,i} such that

E+
k,i[δτ

σ
k+1,i] = uσk+1,i(x̂

σ
i (τσk+1,i −∆σ,+

k+1,i), ψ
σ
k+1,i)

and there is a ū such that for any compact set A,

lim
m,k,σ

1

m

k+m−1∑
j=k

Eσk,i[u
σ
j,i(x, ψ

σ
k+1,i)− ūi(x)]I{ψσk+1,i∈A} = 0

3.2 CONVERGENCE

As mentioned earlier, the primary goal of the previous section is to define a stochastic process that
approximates some real-time process asymptotically, with this real-time process defined by dynamics
for which at the limit the path converges to a stationary point. In particular, we shall see that the
process defined for the iterate time scale approximates the path of a differential inclusion,

ẋi(t) ∈ ∂if(x(t)) (4)

and we shall see that this path defines stationary points of f(·).

We must define the notion of an invariant set for a differential inclusion (DI).
Definition 3.1. A set Λ ⊂ Rn is an invariant set for a DI ẋ ∈ g(x) if for all x0 ∈ Λ, there is a
solution x(t), −∞ < t <∞ that lies entirely in Λ and satisfies x(0) = x0.

Now we state our main result. Its complete proof can be found in the Supplementary Material.
Theorem 3.1. Let all the stated Assumptions hold.

Then, the following system of differential inclusions,

τi(t) =

∫ t

0

ūi(x̂(τi(s)))ds, ẋi(t) ∈ ∂if(x̂(τi(t))), ˙̂xi(t)ūi(x̂) ∈ ∂if(x̂(t)) (5)
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holds for any u satisfying 3.3. On large intervals [0, T ], x̂σ(·) spends nearly all of its time, with the
fraction going to one as T →∞ and σ →∞ in a small neighborhood of a bounded invariant set
of (4).

This Theorem shows weak convergence. The extension to convergence with probability one is
straightforward and described in the Supplementary material.

3.2.1 PROPERTIES OF THE LIMIT POINT

Finally, we wish to characterize the properties of this invariant set. From Corollary 5.11 (Davis
et al., 2018), we can conclude that problems arising in training of deep neural network architectures,
wherein f(x) = l(yj , aL) with l(·) one of several standard loss functions, including logistic or Hinge
loss, and ai = ρi(Vi(x)ai−1) or i = 1, ..., L layers, are activation functions, which are piece-wise
defined to be log x, ex, max(0, x) or log(1 + ex), are such that their set of invariants {x∗} for its
associated differential inclusion satisfies 0 ∈ ∂f(x∗), and furthermore the values f(xk) for any
iterative algorithm generating {xk} such that xk → x∗, an invariant of f(x), converge.

Note that the differential inclusions defined above ensure asymptotic convergence to block-wise
stationarity, i.e., 0 ∈ ∂if(x) for all i. It is clear, however, that every stationary point is also block-
wise stationary, i.e., that 0 ∈ ∂f(x) implies 0 ∈ ∂if(x) for all i. In practice, the set of block-wise
stationary points which are not stationary is not large. One can alternatively consider a variant of the
algorithm wherein every core updates the entire vector (thus there is no block partitioning) but locks
the shared memory whenever it either reads of writes from it. The same analysis applies to such a
procedure. In particular, this amounts to ik = {1, ..., n} for all k and every limit of xσ(t) as either
σ →∞ or t→∞ is a critical point of f(x) and, with probability one, asymptotically the algorithm
converges to a critical point of f(x) (i.e., x such that 0 ∈ ∂f(x)).

4 NUMERICAL RESULTS
Methods. We describe an experimental evaluation comparing the following algorithms:

WIASSM: Write Inconsistent Asynchronous Stochastic Subgradient Method with lock-free read
and updates of xk,i. This procedure applied to smooth strongly-convex and smooth nonconvex f(x)
is known as HogWild! in Recht et al. (2011) and AsySG-incon in Lian et al. (2015), respectively, in
the literature. Convergence analysis of HogWild! and AsySG-incon additionally required sparsity of
x. They have no provable convergence guarantee for nonsmooth nonconvex models.
WCASSM: Write Consistent Asynchronous stochastic subgradient method. WCASSM differs from
WIASSM in its use of locks to update xk,i to make consistent writes. AsySG-con in Lian et al. (2015)
is its counterpart for smooth nonconvex f(x) and sparse x.
PASSM: The presented Partitioned Asynchronous Stochastic Subgradient Method. We read as well
as update xk,i lock-free asynchronously.
SGD: Sequential Stochastic Gradient Descent method.

For each of the methods, we adopt a decreasing step size strategy γk,i = (αj × γ)/
√
k, where

αj > 0 is a constant for the jth processing core. γ is fixed initially. In each of the methods we use an
L2 penalty in form of the weight-decay of 0.0005. Further, we use a constant momentum of 0.9 in
each of them. In all of the above methods we load the datasets in mini-batches of size 64.

Dataset and Networks. We used CIFAR10/100 data sets of RGB images Krizhevsky (2009). It
contains 50000 labeled images for training and 10000 labeled images for testing. We trained three
different well known neural network models: VGG19 Simonyan & Zisserman (2015), ResNet34, and
Resnet50 He et al. (2016). VGG19 is a stack of 19 convolution layers out of which 5 are followed
by max-pooling. All hidden layers contain ReLU non-linearity. ResNets have blocked architecture
that build on VGG and thereby contain enough max-pooling and ReLU. Evidently, training of these
neural networks offer general nonsmooth nonconvex optimization problems.

Asynchronous Implementation. We implemented the asynchronous methods using the open-source
Pytorch library Paszke et al. (2017) and the multi-processing framework of Python. We replicate an
instance of the neural network to multiple processes, spawned by a parent process, thereby each of the
processes, including the parent process has its own local copy to compute the stochastic subgradients
on. The processes synchronize over the copy which the parent process owns by way of reading the
model and adding to it the computed stochastic subgradients. We used the nn.DataParallel()
module of Pytorch library to implement the sequential SGD.
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System Specification. We benchmarked the implementations on two different system settings: (a)
M1: A workstation with a single Intel(R) Xeon(R) CPU E5-1650 v4 containing 6 hardware cores (12
logical cores with hyperthreading) running at 3.60 GHz and two Nvidia GeForce RTX 2080 Ti GPUs,
and (b) M2: A VM on Google Cloud with a single CPU Intel(R) Xeon(R) containing 8 cores (16
logical cores with HT) running at 2.0 GHz and four Nvidia Tesla P4 GPUs. On M1, we spawned 6
processes, including the main process, distributed 3 processes each on the two GPUs. On M2, we
spawned 4 processes, including the main one, leading to exclusive utilization of each of the GPUs by
the individual process. For a fair evaluation of scalability with cores, we bind the processes restricting
their computations to individual CPU cores. Each process on M1 uses two logical CPU cores to load
the training and testing images whereas on M2 they use four logical cores each. Both systems are
based on Ubuntu 18.04. Thus, we have fairly diverse asynchronous system settings.

Model Partitioning. Unlike, PASSM, the methods WIASSM, WCASSM and SGD do not partition the
model and compute the stochastic subgradients over the entire computation graph of a neural network
via backpropagation provided by the autograd module of Pytorch. PASSM partitions the leaves of
the computation graph into blocks. While computing the stochastic subgradients with respect to a
block, we switch off the requires_grad flag of the leaves corresponding to other blocks during
backpropagation thereby obtaining some savings. Notice that, this is not model parallelization and the
stochastic subgradient computation with respect to a leaf depends on the computation path leading to
the output. The multi-GPU-based implementation of SGD has model replication and data partitioning
over GPUs. Thus, the computation of stochastic subgradients happen over each GPU and they are
summed and added to the main copy of the neural network.

Experimental Observations. The experimental results are presented in Figures 1, 2, and 3.
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Figure 1: VGG19 Results on CIFAR10: This one is a relatively smaller model implemented on M1.
The training loss minimization trajectory of PASSM almost overlaps that of SGD, fig. 1(a), marginally
outperforming it initially. Whereas, those of WIASSM and WCASSM mutually compare at par and
outperform the previous two. Similar behavior is observed in the trajectory of training accuracy. It
shows that the communication cost across GPUs does not dominate the computation cost. In terms of
generalization test error optimization, SGD has clear edge over the other methods, whereas PASSM
underperforms others. This can be explained as the asynchronous inconsistency added to the variance
in training samples accentuates the error in testing the unlearned samples.

Summary. The block partitioning design of PASSM has its efficiency in the following: 1) it reduces
the cost of optimization per node, since the parameter variables are partitioned; note that, in case of
neural networks, where backpropagation requires computation of stochastic subgradients over almost
the entire model notwithstanding the block partitioning, we have only marginal observable benefit,
however it can be significantly better if the subgradients with respect to blocks can be computed
independently; and 2) reduces memory traffic and potential write conflicts between processors. We
observe this in terms of better convergence per unit time when compared to the asynchronous SGD
variant (WIASSM) for a large model. And finally, it is pertinent to mention that we also observed that
momentum correction improves the convergence per epoch of the block partitioning approach whose
performance was way lower if we did not use it.

5 DISCUSSION AND CONCLUSION

In this paper we analyzed the convergence theory of asynchronous stochastic subgradient descent.
We found that the state of the art probabilistic model on asynchronous parallel architecture applied
to the stochastic subgradient method, with and without the use of momentum, is consistent with
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Figure 2: ResNet34 Results on CIFAR100: A comparatively larger model implemented on the
system M2. In terms of training loss/accuracy trajectory and the generalization test error minimization,
the methods behave almost similar to the previous case. However, now SGD marginally outperforms
PASSM throughout the experiment. In terms of computation and communication cost, the latter starts
dominating the former, add to it the asynchronous inconsistency, we can have an explanation of the
behavior.
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Figure 3: ResNet50 Results on CIFAR100: A fairly large model implemented on M2. In terms of
the generalization test error minimization, the methods behave almost similar to the previous cases.
We have left out WCASSM, which has its performance trajectory almost always overlapping that of
WIASSM showing that the cost of locking synchronization for a consistent write is way lower than the
computation and communication costs. However, now SGD outperforms each of the asynchronous
methods showing that the communication cost dominates the computation cost. The communication
cost in multiprocessing based methods is not only across the devices but also across the memory space
of the processes, on which SGD implementation has advantage. Furthermore, PASSM performs at par
with WIASSM in terms of optimization whereas it offers a saving in terms of the time spent per epoch.
This observation infers that the partitioning method in case of larger models can be competitively
attractive.

standard theory in stochastic approximation and asymptotic convergence with probability one holds
for the method under the most general setting of asynchrony.

We presented numerical results that indicate some possible performance variabilities in three types of
asynchrony: block partitioning inconsistent read (for which the above convergence theory applies),
full-variable-update consistent write (for which the above convergence theory also applies), and
full-variable-update inconsistent read/write (for which no convergence theory exists).

REFERENCES

Adil Bagirov, Napsu Karmitsa, and Marko M Mäkelä. Introduction to Nonsmooth Optimization:
theory, practice and software. Springer, 2014.

P. Billingsley. Convergence of probability measures. Wiley, 1968.

Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.

Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint. Baptism’s 91 Witnesses,
2008.

8



Under review as a conference paper at ICLR 2020

Loris Cannelli, Francisco Facchinei, Vyacheslav Kungurtsev, and Gesualdo Scutari. Asynchronous
parallel algorithms for nonconvex optimization. Mathematical Programming, pp. 1–34.

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient method
converges on tame functions. arXiv preprint arXiv:1804.07795, 2018.

Paul Dupuis and Harold J Kushner. Stochastic approximation and large deviations: Upper bounds
and wp 1 convergence. SIAM Journal on Control and Optimization, 27(5):1108–1135, 1989.

Yu M Ermol’ev and VI Norkin. Stochastic generalized gradient method for nonconvex nonsmooth
stochastic optimization. Cybernetics and Systems Analysis, 34(2):196–215, 1998.

Stewart N Ethier and Thomas G Kurtz. Markov processes: characterization and convergence, volume
282. John Wiley & Sons, 2009.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.

Harold Kushner and G George Yin. Stochastic approximation and recursive algorithms and applica-
tions, volume 35. Springer Science & Business Media, 2003.

Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. In Advances in Neural Information Processing Systems, pp. 5564–5574, 2018.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. In Advances in Neural Information Processing Systems, pp. 2737–2745,
2015.

Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent: Parallelism and conver-
gence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.
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6 APPENDIX A: GLOBAL SHARED MEMORY ASYNCHRONOUS STOCHASTIC
SUBGRADIENT MODEL

Here we give a few more details describing the relation of the probabilistic model of asynchrony to
the underlying hardware properties, as modeled in Cannelli et al..

In this section, we present k as a global counter, indicating sequential updates of any block among
the variables.

In iteration k, the updated iterate xk+1
ik

depends on a random vector ζk , (ik, dk, ξk). The distribution
of ζk depends on the underlying scheduling or message passing protocol. We use the following
formulation, which applies to a variety of architectures.

Let ζ0:t , (ζ0, ζ1, ..., ζt) be the stochastic process representing the evolution of the blocks and
minibatches used, as well as the iterate delays. The σ-algebra F is obtained as follows. Let the
cylinder Ck(ζ0:t) , {ω ∈ Ω : ω0:k = ζ0:t} and define Fk , σ(Ck) and F , σ(∪∞t=0C

t) the
cylinder σ-algebra on Ω.

Consider the conditional distribution of ζk+1 given ζ0:k,

P(ζk+1|ζ0:k) =
P(Ck+1(ζ0:k+1)

P(Ck(ζ0:k))
,

we have the following assumptions on the probabilities of block selection and the delays,

Assumption 6.1. The random variables ζk satisfy,

1. There exists a δ such that dkj ≤ δ for all j and k. Thus each dkj ∈ D , {0, ..., δ}n.

2. For all i and ζ0:k−1 such that pζ0:k−1(ζ0:k−1) > 0, it holds that,∑
d∈D

P((i, d, ξ)|ζ0:k−1) ≥ pmin

for some pmin > 0.

3. It holds that,

P
({

ζ ∈ Ω : lim inf
k→∞

P(ζ|ζ0:k−1) > 0

})
= 1

The first condition indicates that there is some maximum possible delay in the vectors, that each
element of x used in the computation of xk+1

ik
is not too old. The second is an irreducibility condition

that there is a positive probability for any block or minibatch to be chosen, given any state of previous
realizations of {ζk}. The last assumption indicates that the set of events in Ω that asymptotically go
to zero in conditional probability are of measure zero.

In order to enforce global convergence, we wish to use a diminishing step-size. However, at the same
time, as synchronization is to be avoided, there must not be a global counter indicating the rate of
decrease of the step-size. In particular, each core will have its own local step size γν(c

k,k) where
ck is the core, and, defining the random variable Zk as the component of {1, ..., c̄} that is active at
iteration k, the random variable denoting the number of updates performed by core ck, denoted by
ν(k) is given by ν(k) ,

∑k
j=0 I(Zj = ck).

In addition, noting that it has been observed that in practice, partitioning variable blocks across cores
is more efficient than allowing every processor to have the ability to choose across every variable
block (Liu & Wright, 2015). Thus we partition the blocks of variables across cores. We can thus
denote ck as being defined uniquely by ik, the block variable index updated at iteration k.

Note that lim infk→∞
γν(c

k,k)

k = 0 in probability is implied by∑
i∈ck,d∈D,ξ⊆{1,...,M}

Pr((i, d, ξ)|ζ0:k−1))→ 0

10
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for some subsequence, which is antithetical to Assumption 3.1, Part 2. Thus, note that the stepsizes
γν(c

k,k) satisfy, where the limit of the sequence is taken in probability,

lim inf
k→∞

γν(c
k,k)

k
> 0, (6)

which is an assumption for the analysis of asynchronous parallel algorithms in Borkar (2008).

We are now ready to present Algorithm 2. This is presented from the "global" iteration counter
perspective.

Algorithm 2 Asynchronous Stochastic Subgradient Method
Input: x0.

1: while Not converged and k < kmax do
2: Having realized ζ0:k−1, sample {ζk = (ik, dk, ξk)}|ζ0:k−1}.
3: Update uik = muik + g((x

dk1
1 , x

dk2
2 , ..., x

dkn
n ), ξk)

4: Update xk+1
ik

= xkik − (1−m)γν(k)uik
5: Set k = k + 1
6: end while

7 APPENDIX B: PRELIMINARY ASSUMPTIONS AND LEMMAS

Lemma 7.1. It holds that {Yk,i, Y σk,i; k, i} is uniformly integrable. Thus, so is{∑k
j=1m

k−jYj,i,
∑k
j=1m

k−jY σj,i; k, i
}

Proof. Uniform integrability of {Yk,i, Y σk,i; k, i} follows from Assumption 3.2, part 3. The uniform

integrability of
{∑k

j=1m
k−jYj,i,

∑k
j=1m

k−jY σj,i; k, i
}

follows from 0 < m < 1 and the fact that
a geometric sum of a uniformly integrable sequence is uniformly integrable.

Lemma 7.2. It holds that, for any K > 0, and all l,

sup
k<K

k∑
j=k−[dki ]l

γσj,i → 0

in probability as σ →∞.

Proof. As σ →∞, by the definition of γσk,i, γ
σ
k,i → 0 and since by Assumption 3.1 max dki ≤ δ, for

all k < K,
∑k
j=k−[dki ]l

γσj,i ≤ δγσk−δ,i → 0.

Now we define some terminology arising in the theory of weak convergence. We present a result
indicating sufficient conditions for a property called tightness.

Theorem 7.1. (Kushner & Yin, 2003, Theorem 7.3.3) Consider a sequence of processes {Ak(·)}
with paths in D(−∞,∞) such that for all δ > 0 and each t in a dense set of (−∞,∞) there is a
compact set Kδ,t such that,

inf
n

P [An(t)| ∈ Kδ,t] ≥ 1− δ,

and for any T > 0,

lim
δ→0

lim sup
n

sup
|τ |≤T

sup
s≤δ

E [min [|An(τ + s)−An(τ)|, 1]] = 0

then {An(·)} is tight in D(−∞,∞).

11
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If a sequence is tight then every weak sense limit process is also a continuous time process. We say
that Ak(t) converges weakly to A if,

E [F (Ak(t))]→ E [F (A(t))]

for any bounded and continuous real-valued function F (·) on Rn.

Weak convergence is defined in terms of the Skorohod topology, a technical topology weaker than the
topology of uniform convergence on bounded intervals, defined in Billingsley (1968). Convergence
of a function fn(·) to f(·) in the Skorohod topology is equivalent to uniform convergence on each
bounded time interval. We denote by Dj [0,∞) the j-fold product space of real-valued functions on
the interval [0,∞) that are right continuous with left-hand limits, with the Skorohod topology. It is a
complete and separable metric space.

Much of the proof of the main Theorem can be taken from the analagous result in Chapter 12 of Kush-
ner & Yin (2003), which considers a particular model of asynchronous stochastic approximation.
As we introduced a slightly different model from the literature, some of the details of the procedure
are now different, and furthermore we introduced momentum to the algorithm, and thus in the next
section we indicate how to treat the distinctions in the proof and show that the result still holds.

8 APPENDIX C: PROOF OF THEOREM 1

By Theorem 8.6, Chapter 3 in Ethier & Kurtz (2009) a sufficient condition for tightness of
a sequence {An(·)} is that for each δ > 0 and each t in a dense set in (−∞,∞), there
is a compact set Kδ,t such that infn P[An(t) ∈ Kδ,t] ≥ 1 − δ and for each positive T ,
limδ→0 lim supn sup|τ |≤T, s≤δ E [|An(τ + s)−An(τ)|] = 0.

Now since Yk,i is uniformly bounded, and Y σk,i(·) is its interpolation with jumps only at t being equal
to some Tk,i, it holds that for all i,

lim
δ→0

lim sup
σ

P

[
sup

t≤T, s≤δ
|Y σk,i(t+ s)− Y σk,i(t)| ≥ η

]
= 0

and so by the definition of the algorithm,

lim
δ→0

lim sup
σ

P

[
sup

t≤T, s≤δ
|xσk,i(t+ s)− xσk,i(t)| ≥ η

]
= 0

which implies,

lim
δ→0

lim sup
σ

E

[
sup

t≤T, s≤δ
|xσk,i(t+ s)− xσk,i(t)|

]
= 0

and the same argument implies tightness for {τσi (·), Nσ
i (·)} by the uniform boundedness of {δτσi,k}

and bounded, decreasing γσk,i and positive uσk,i(x, ψ
σ
k+1,i), along with Assumption 3.4. Lipschitz

continuity follows from the properties of the interpolation functions. Specifically, the Lipschitz
constant of xσi (·) is Bg .

All of these together imply tightness of x̂σi (·) as well. Thus,

{xσi (·), τσi (·), x̂σi (·), Nσ
i (·);σ}

is tight in D4n[0,∞). This implies the Lipschitz continuity of the subsequence limits with probability
one, which exist in the weak sense by Prohorov’s Theorem, Theorems 6.1 and 6.2 (Billingsley, 2013).

As σ →∞ we denote the weakly convergent subsequence’s weak sense limits by,

(xi(·), τi(·), x̂i(·), Ni(·))

Note that,
xi(t) = x̂i(τi(t)),
x̂i(t) = xi(Ni(t)),
Ni(τi(t)) = t.

12
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For more details, see the proof of Kushner & Yin (2003, Theorem 8.2.1).

Let,
Mσ
i (t) =

∑k=p(σ)
k=0 (1−m)δτk,i

(∑k
j=0m

jδMσ
k−j,i

)
G̃σi (t) =

∑k=p(σ)
k=0 δτk,i

[
(1−m)

∑k
j=0m

jgi((x
σ
k−j−[dk−ji ]1,1

(t), ...,

xσ
k−j−[dk−ji ]j ,j

(t), ..., xk−j−[dk−ji ]N ,N
))(t)− gi(x̂σi (t))

]
Ḡσi (t) =

∑k=p(σ)
k=0 δτk,igi(x̂

σ(t))

Wσ
i (t) = x̂σi (τσi (t))− xσi,0 − Ḡσi (t) = G̃σi (t) +Mσ

i (t)

Now for any bounded continuous and real-alued function h(·), an arbitrary integer p, and t and τ ,
and sj ≥ t real, we have

E [h(τσi (sj), x̂
σ(τσi (sj)) (Wσ

i (t+ τ)−Wσ
i (t))]

−E
[
h(τσi (sj), x̂

σ(τσi (sj))
(
G̃σi (t+ τ)− G̃σi (t)

)]
−E [h(τσi (sj), x̂

σ(τσi (sj)) (Mσ
i (t+ τ)−Mσ

i (t))] = 0,

Now the term involving Mσ equals zero from the Martingale property.

We now claim that the term involving G̃σi goes to zero as well. Since xσk,i → xσi it holds that,
by Lemma 7.2, (xσ

k−[dki ]1,1
(t), ..., xσ

k−[dki ]j ,j
(t), ..., xσ

k−[dki ]N ,N
) → x̂σ(t) as well. By the upper

semicontinuity of the subgradient, it holds that there exists a gi(x̂σi (t)) ∈ ∂if(x̂σi (t)) such that

gi((x
σ
k−[dki ]1,1

(t), ..., xσ
k−[dki ]j ,j

(t), ..., xk−[dki ]N ,N ))(t)

→ gi(x̂
σ
k(t))

as σ → ∞. Thus each term in the sum converges to gi(x̂σk−j(t)). Now, given j, as k → ∞, the
boundedness assumptions and stepsize rules imply that gi(x̂σk−j(t))→ gi(x̂

σ
k(t)). On the other hand

as k → ∞ and j → ∞, mjgi(x̂
σ
k−j(t)) → 0. Thus

∑k
j=0m

jgi(x̂
σ
k−j(t)) → 1−mk

1−m gi(x̂
σ
k(t)) →

1
1−mgi(x̂

σ
k(t)), and the claim has been shown.

Thus the weak sense limit of limσ→∞Wσ
i (·) = Wi(·) satisfies

E [h(τi(sj), x̂(τi(sj)) (Wi(t+ τ)−Wi(t))]

and thus by Kushner & Yin (2003, Theorem 7.4.1) is a martingale and is furthermore a constant with
probability one by the Lipschitz continuity of x by Kushner & Yin (2003, Theorem 4.1.1). Thus,

W (t) = x̂(t)− x̂(0)−
∫ t

0

g(x̂(s))ds = 0,

where g(x̂(s)) ∈ ∂f(x̂(s)), and the conclusion holds.

9 CONVERGENCE WITH PROBABILITY ONE

The previous Theorem showed that under the conditions described for the algorithm, there is a weakly
convergent subsequence to an invariant set. We can now use the results in Dupuis & Kushner (1989)
to infer from weak convergence, probability one convergence of the sequence of iterates.

For this, we shall use the machinery developed in Dupuis & Kushner (1989), which establishes
conditions for which a weakly convergent stochastic approximation algorithm approximating a
continuous ODE converges with probability one, under certain conditions. One can study the proof
structure to quickly reveal that with minor modifications the results carry through. In particular, when
ḃ appears in the proof, one can replace it with an element of the differential inclusion, and the limit
point is replaced by the invariant set. Assumption 2.1 in Dupuis & Kushner (1989) is now associated
with a set-valued map S(x, T, φ), and by the noise structure of the assumptions, it can easily be seen
that L̄ exists for all possible values of x, T and φ in the notation of the paper. One can see that the
uniqueness appears once in the beginning of the proof of Theorem 3.1 with the existence of this T1
such that the trajectory lies in a specific ball around the limit point for t ≥ T1. This can be replaced
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by the trajectory lying in this ball around the invariant set, for T1 defined as the supremum of such
T̂1 associated with every possible subgradient, i.e., element of the DI. Since the subgradient is a
compact set and is upper semicontinuous, this supremum exists. Finally, note that Assumption 3.2 is
as Assumption 4.1 in Dupuis & Kushner (1989) and thus similarly implies Theorem 4.1 and Theorem
5.3. This proves that as σ →∞, w.p.1 xσ(·) converges to an invariant set of the differential inclusion.
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