
Under review as a conference paper at ICLR 2020

ON THE INVERTIBILITY OF INVERTIBLE NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Guarantees in deep learning are hard to achieve due to the interplay of flexible
modeling schemes and complex tasks. Invertible neural networks (INNs), how-
ever, provide several mathematical guarantees by design, such as the ability to
approximate non-linear diffeomorphisms. One less studied advantage of INNs is
that they enable the design of bi-Lipschitz functions. This property has been used
implicitly by various works to design generative models, memory-saving gradient
computation, regularize classifiers, and solve inverse problems.
In this work, we study Lipschitz constants of invertible architectures in order to in-
vestigate guarantees on stability of their inverse and forward mapping. Our analysis
reveals that commonly-used INN building blocks can easily become non-invertible,
leading to questionable “exact” log likelihood computations and training difficul-
ties. We introduce a set of numerical analysis tools to diagnose non-invertibility
in practice. Finally, based on our theoretical analysis, we show how to guarantee
numerical invertibility for one of the most common INN architectures.

1 INTRODUCTION

Invertible neural networks (INNs) have become a standard building block in the deep learning toolkit.
Invertibility is useful for training generative models with exact likelihoods (Dinh et al., 2014; 2017;
Kingma & Dhariwal, 2018; Kingma et al., 2016; Behrmann et al., 2019; Chen et al., 2019), increasing
posterior flexibility in VAEs (Rezende & Mohamed, 2015; Tomczak & Welling, 2016; Papamakarios
et al., 2017), learning transition operators in MCMC samplers (Song et al., 2017; Levy et al., 2017),
computing memory-efficient gradients (Gomez et al., 2017; Donahue & Simonyan, 2019), allowing
for bi-directional training (Grover et al., 2018), solving inverse problems (Ardizzone et al., 2019) and
analysing adversarial robustness (Jacobsen et al., 2019).

The application space of INNs is rapidly growing and many approaches for constructing invertible
architectures have been proposed. A common way to construct invertible networks is to use triangular
coupling layers (Dinh et al., 2014; 2017; Kingma & Dhariwal, 2018), where dimension partitioning
is interleaved with ResNet-type computation. Another approach is to use various forms of masked
convolutions, generalizing the dimension partitioning approach of coupling layers (Song et al., 2019;
Hoogeboom et al., 2019). To avoid dimension partitioning altogether, multiple approaches based
on efficiently estimating the log-determinant of the Jacobian, necessary for applying the change of
variable formula, have been proposed to allow for free-form Jacobian structure (Grathwohl et al.,
2019; Behrmann et al., 2019; Chen et al., 2019).

From a mathematical perspective, invertible architectures enable several unique guarantees like:

• Enabling flexible approximation of non-linear diffeomorphisms (Rezende & Mohamed,
2015; Dinh et al., 2017; Kingma & Dhariwal, 2018; Chen et al., 2019)
• Memory-saving gradient computation (Gomez et al., 2017; Donahue & Simonyan, 2019)
• Fast analytical invertibility (Dinh et al., 2014)
• Guaranteed preservation of mutual information and exact access to invariants of deep

networks (Jacobsen et al., 2018; 2019).

Despite the increased interest in invertible neural networks, little attention has been paid to guarantees
on their numerical invertibility. Specifically, this means analyzing their ability to learn bi-Lipschitz
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neural networks, i.e. Lipschitz continuous neural networks with a bound on the Lipschitz constant of
the forward and inverse mapping.

While the stability analysis of neural networks has received significant attention e.g. due to adversarial
examples (Szegedy et al., 2013), the focus here is only on bounding Lipschitz constants of the forward
mapping. However, bounding the Lipschitz constant of the inverse mapping is of major interest,
e.g. when reconstructing inputs from noisy or imprecise features. In fact, analytical invertibility
as provided by some invertible architectures does not necessarily imply numerical invertibility in
practice.

In this paper, we first discuss the relevance of controlling the bi-Lipschitz bounds of invertible
networks. Afterwards we analyze Lipschitz bounds of commonly used invertible neural network
building blocks. Our contributions are:

• We argue for forward and inverse stability analysis as a unified viewpoint on invertible
network (non-)invertibility. To this end, we derive Lipschitz bounds of commonly-used
invertible building blocks for their forward and inverse maps.
• We show how to numerically monitor and detect (non-)invertibility in practice and show

how various common INN architectures are prone to becoming non-invertible in practice.
• We show how this overlooked issue with non-invertibility can lead to questionable claims

when computing exact likelihoods with the change-of-variable formula.
• Finally, we propose ways to control stability in practice for one of the most commonly-used

family of INN architectures.

2 BACKGROUND AND MOTIVATION

Invertible neural networks are bijective functions with a parametrized forward mappingFθ : Rd → Rd
with Fθ : x 7→ z, where θ ∈ Rp defines the parameter vector. Additionally, they define an inverse
mapping F−1θ : Rd → Rd with F−1θ : z 7→ x. This inverse can be given in closed-form (analytical
inverse, e.g. Dinh et al. (2017); Kingma & Dhariwal (2018)) or approximated numerically (numerical
inverse, e.g. Behrmann et al. (2019); Song et al. (2019)).

Before we discuss building blocks of invertible networks, we provide some background and motivation
for studying forward and inverse stability.
Definition 1 (Lipschitz and bi-Lipschitz continuity). A function F : (Rd1 , ‖ · ‖) → (Rd2 , ‖ · ‖) is
called Lipschitz continuous if there exists a constant L =: Lip(F ) such that

‖F (x1)− F (x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ Rd1 .

If an inverse F−1 : (Rd2 , ‖ · ‖)→ (Rd1 , ‖ · ‖) and a constant L∗ =: Lip(F−1) exists such that

‖F−1(y1)− F−1(y2)‖ ≤ L∗‖y1 − y2‖, ∀y1, y2 ∈ Rd2 ,
then F is called bi-Lipschitz continuous.
Remark 2. We focus on invertible functions F : (Rd, ‖ · ‖2)→ (Rd, ‖ · ‖2), i.e. functions where the
domain and co-domain are of the same dimensionality d and the underlying norm is given by the
euclidian norm ‖ · ‖2.
Lemma 3. (Rademacher (Federer, 1969, Theorem 3.1.6))
If F : Rd → Rd is a locally Lipschitz continuous function (i.e. functions whose restriction to a
neighborhood around any point is Lipschitz), then F is differentiable almost everywhere. Moreover,
if F is Lipschitz continuous, then

Lip(F ) = sup
x∈Rd

‖JF (x)‖2,

where JF (x) is the Jacobian matrix of F at x and ‖JF (x)‖2 denotes its spectral norm.

Lipschitz bounds on the forward mapping are of crucial importance in several areas, including in
adversarial example research (Szegedy et al., 2013), to avoid exploding gradients, or the training of
Wasserstein GANs (Anil et al., 2019). The stability of the inverse, however, can have a similar impact.
For instance, having a Lipschitz bound on the inverse may avoid vanishing gradients during training.
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Given that deep-learning computations are carried out with limited precision, imprecision is always
introduced in both the forward and backward passes, i.e., zδ = F (x) + δ and x̂δ = F−1(zδ).
Instability in either pass will aggravate this problem, and essentially make the invertible network
numerically non-invertible. To summarize, this problems occurs in the following situations:

• Numerical reconstruction of x, where features zδ are inexact due to limited precision (e.g.
when computations are executed in single precision as common on modern hardware).
• Reconstruction based on imprecise measurements from physical devices (e.g. when using

invertible networks for inverse problems (Ardizzone et al., 2019)).
• Numerical re-computation of intermediate activations of the neural network to allow for

memory-efficient backpropagation. (Gomez et al., 2017)

Furthermore, some computations are performed via numerical approximation, which in turn adds
another source of imprecision that might be aggravated via instability. Examples include:

• Numerical forward computation, as in Neural ODEs (Chen et al., 2018) (numerical solver is
used to approximate dynamic of ODE).
• Numerical inverse computation, e.g. via fixed-point iterations as in i-ResNets (Behrmann

et al., 2019) or MintNet (Song et al., 2019) or via ODE-solvers for the backward dynamics
as in Neural ODEs (Chen et al., 2018).

As an example of why bi-Lipschitz continuity is critical for numerical stability in invertible functions,
let’s consider the simple mappings F1(x) = log(x), F−11 (z) = exp(z), and F2(x) = x, F−12 (z) =
z. Though both functions tend to infinity when x → ∞ , F1 is much less stable. Consider the
introduction of numerical imprecision as zδ = F1(x)+ δ where δ denotes the introduced imprecision.
Then this imprecision is magnified in the inverse pass as:

||F−11 (z)− F−11 (zδ)||22 ≈ ||δ
∂F−11 (zδ)

∂zδ
||22 = ||δ exp

(
zδ
)
||22. (1)

A similar example can be constructed for both the forward and backward passes, which speaks to the
importance of bi-Lipschitz continuity. For an additional discussion on the connection of Lipschitz
constants and numerical errors, we refer to Appendix B.

3 STABILITY OF INVERTIBLE NEURAL NETWORKS

3.1 LIPSCHITZ BOUNDS FOR BUILDING BLOCKS OF INVERTIBLE NETWORKS

Research on invertible networks has produced a large variety of architectural building blocks. Yet, the
focus of prior work was on obtaining flexible architectures while maintaining invertibility guarantees.
Here, we build on the work in (Behrmann et al., 2019), where bi-Lipschitz bounds were proven for
invertible ResNets, by deriving Lipschitz bounds on the forward and inverse mapping of common
building blocks. Together with an overview of common invertible building blocks, we provide our
main results in Table 1. We chose these particular model classes in order to cover both coupling-based
approaches and free-form approaches like Neural ODE (Chen et al., 2018) and i-ResNets (Behrmann
et al., 2019). The derivations of the bounds are given in Appendix A. Note that the bounds provide the
worst-case stability and serve mainly as a guideline for future designs of invertible building blocks.

3.2 CONTROLLING STABILITY OF BUILDING BLOCKS

As shown in Table 1, there are many factors that influence the stability of INNs. Of particular
importance are the Lipschitz constants Lip(g) of the sub-network g for i-ResNets (Behrmann et al.,
2019) and affine coupling blocks (Dinh et al., 2014), and Lip(s), Lip(t) for additive coupling blocks
(Dinh et al., 2017). Whereas computing the Lipschitz constants of neural networks is NP-hard
(Virmaux & Scaman, 2018), there is a simple data-independent upper bound:

Lip(g) ≤
L∏
i=1

‖Ai‖2, for g(x) = AL ◦ φ ◦AL−1 ◦ · · · ◦A2 ◦ φ ◦A1, (2)
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Building Block Forward Operation Lipschitz Forward Lipschitz Inverse
Additive F (x)I1 = xI1 ≤ 1 + Lip(g) ≤ 1 + Lip(g)

Coupling Block F (x)I2 = xI2 + g(xI1)
(Dinh et al., 2014)

Affine F (x)I1 = xI1 ≤ max(1, cg) +M ≤ max(1, cg) +M
Coupling Block F (x)I2 = xI2 � g(s(xI1)) + t(xI1) local for x ∈ [a, b]d local for y ∈ [a∗, b∗]d

(Dinh et al., 2017) g(·) 6= 0 g(x) ≤ cg, g′(x) ≤ cg′ g(y) ≤ cg, g′(y) ≤ cg′

Invertible F (x) = x+ g(x) ≤ 1 + Lip(g) ≤ 1
1−Lip(g)

Residual Layer Lip(g) < 1
(Behrmann et al., 2019)

Neural ODE dx(t)
dt = F (x(t), t) ≤ eLip(F )·t ≤ eLip(F )·t

(Chen et al., 2018) t ∈ [0, T ]

Invertible F (x) = Px = 1 = 1
Downsampling / Squeeze P permutation

(Dinh et al., 2017)

Diagonal Scaling F (x) = Dx = maxi |Dii| = 1
mini |Dii|

(Dinh et al., 2014) D diagonal
ActNorm Dii 6= 0

(Kingma & Dhariwal, 2018)

Invertible 1× 1 F (x) = PL(U + diag(s)) =:W
Convolution P permutation, L lower-triangular ≤ ‖W‖2 ≤ ‖W−1‖2

(Kingma & Dhariwal, 2018) U upper-triangular, s ∈ Rd

Table 1: Lipschitz bounds on building blocks of invertible neural networks. The second column
shows the operations of the forward mapping and the last two columns bounds on the Lipschitz
constant of the forward and inverse mapping. Note that M in the row for the affine coupling block is
defined as M = max(|a|, |b|) · cg′ · Lip(s) + Lip(t). Furthermore, all building blocks are globally
Lipschitz continuous, whereas the Lipschitz constant of the affine coupling block holds only on a
bounded domain. The derivations of the provided bounds are given in Appendix A.

where Ai are linear layers, ‖ · ‖2 is the spectral norm and φ a contractive activation function
(Lip(φ) ≤ 1). The above bound was used by (Behrmann et al., 2019) in conjunction with spectral
normalization (Miyato et al., 2018; Gouk et al., 2018) to ensure a contractive residual block g. In
particular, this employs a normalization via:

Ã = κ
A

σ̂1
, with σ̂1 ≈ σ1 = ‖A‖2 (approx. via power-method),

where κ > 0 is a coefficient that sets the approximate upper bound on the spectral norm of each linear
layer Ai. Thus, by setting an appropriate coefficient κ depending on the targeted Lipschitz bound of
the building block, this approach enables one to control both forward and inverse stability. Note that
the above discussion can be generalized to other `p-norms, see (Chen et al., 2019).

However, this is not sufficient when using affine coupling blocks because their bound on the Lipschitz
constant holds only locally. In particular, it depends on the regions of the inputs x to the coupling
block. While inputs to the first layer are usually bounded by the nature of the data, obtaining bounds
for intermediate activations is less straightforward. Normalization of activations between blocks
or bounding activations could be a step towards controlling the stability. However, controlling
all effects is certainly less straightforward compared to simpler building blocks. Lastly, we use
ActNorm (Kingma & Dhariwal, 2018) in several architectures and avoid small diagonal terms which
would yield large Lipschitz constants in the inverse (see Table 1) by adding a positive constant term.
Additional stabilization could be achieved via constraining the scaling to be within a bounded range.

4 NUMERICAL EXPERIMENTS

In this section, we: 1) show that non-invertibility can be exposed in pre-trained models via gradient-
based optimization to find inputs that induce large reconstruction error; 2) propose a simple decor-
relation task to benchmark the stability of invertible models; 3) discuss measures that are useful to
diagnose instability; 4) illustrate how invertible architectures can become numerically non-invertible;
5) demonstrate that spectral normalization is effective at stabilizing additive-coupling based flows.
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4.1 EXPOSING NON-INVERTIBILITY VIA CRAFTED INPUTS

x xδ x̂δ x xδ x̂δ x xδ x̂δ

Figure 1: Crafting non-invertible inputs for a CIFAR-10 Glow model. For three different images,
we show: 1) the original datapoint x from which we start running PGD; 2) the crafted input xδ that
results from PGD; and 3) the reconstruction x̂δ = F−1(F (xδ)) of the crafted input. In all cases, the
reconstructions of adversarial inputs are heavily corrupted, indicating that the attacks were successful,
and exposing non-invertibility in this Glow model.

We can expose non-invertibility in models that otherwise appear stable by optimizing in input
space to find examples that are poorly reconstructed by the model. Here, we take a pre-trained
Glow model (Kingma & Dhariwal, 2018)1 and optimize the input using Projected Gradient Descent
(PGD) (Madry et al., 2018). Our goal is to find a point xδ in the domain of the invertible model such
that the reconstruction F−1(F (xδ)) differs from xδ. In particular, we start with a datapoint x and
use PGD to find a perturbed example xδ that has high reconstruction error via:

argmax
||xδ−x||∞≤ε

||xδ − F−1(F (xδ))||2. (3)

As shown in Figure 1, this attack is effective for finding examples that are perceptually identical
to test examples, yet induce large reconstruction errors. This attack can be understood as a worst-
case invertibility diagnosis; however, we note that unsuccessful attacks can be due to algorithmic
issues and thus do not necessarily imply stable invertible models. Also, it is not always clear how
to get gradients that are able to exploit numerical instabilities, leaving room for improvement via
gradient-free methods (e.g., the boundary attack from Brendel et al. (2018)).

We present in Appendix C additional experiments using the PGD attack on the additive Glow model
from (Kingma & Dhariwal, 2018) trained on CelebA, where we show that the model becomes
non-invertible outside the valid input range of images.

4.2 DECORRELATION

In this section, we use a simple decorrelation task to benchmark the stability of invertible models. In
particular, we compute the correlation matrix C ∈ Rd×d via

Cθj,l =
1

N

N∑
i=1

(
Fθ(x

(i))j − µ̂j
) (
Fθ(x

(i))l − µ̂l
)

σ̂j σ̂l
, (4)

where µ̂j is the estimated mean over output samples Fθ(x(i)) and σ̂j the estimated standard deviation.
Then, we optimize the parameters θ to minimize the off-diagonal correlation, i.e.

min
θ
‖Cθ − diag(Cθ)‖F , (5)

where ‖ · ‖F is the Frobenius-norm 2. Decorrelation objectives have been used in (Cogswell et al.,
2015) to reduce overfitting and in (Cheung et al., 2014) to disentangle hidden activations.

This objective serves as a good task for our purposes for two reasons: 1) decorrelation is a simpler
objective than optimizing outputs z = Fθ(x) to follow a factorized Gaussian as in Normalizing Flows
(Rezende & Mohamed, 2015); and 2) it allows multiple solutions using invertible mappings, where
both stable and unstable transforms are valid solutions. See Appendix D for a motivation based on a
simple 2D toy example. In summary, this decorrelation objective offers a controlled environment to
study which INN components steer the mapping towards stable or unstable solutions, that are equally
plausible for the given task.

1We used the PyTorch implementation from https://github.com/y0ast/Glow-PyTorch. This
pre-trained model achieves a likelihood of 3.39 bits-per-dimension.

2We provide example PyTorch code for the decorrelation objective in Appendix E.
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In our experiments, we focus on coupling-based invertible models like Glow (Kingma & Dhariwal,
2018), which are analytically invertible and thus allow to a simpler analysis compared to models
relying on numerical inversion like i-ResNets (Behrmann et al., 2019). We evaluate the effects of
different architectural choices on numerical stability, including additive vs. affine coupling layers,
ActNorm, and architecture depth. For ActNorm we study two settings: 1) between coupling blocks,
2) inside blocks, i.e. as part of the function g in additive blocks or s and t in affine blocks. Details on
the architectures and training schemes are provided in Appendix F.

Diagnosing Numerical Instability. We propose to diagnose the numerical instability of invertible
models by measuring:

1. Reconstruction error. We measure the `2-distance between the input x and its reconstruc-
tion, i.e. ||x(i) − F−1θ (Fθ(x

(i)))||2.

2. Conditioning of the Jacobian and max/min singular values. For forward stability, we
are interested in the behavior of the Jacobian JF (x), while for inverse stability we are
interested in the Jacobian of the inverse mapping JF−1(x). We compute the singular values
of the Jacobians using the SVD, which allows us to compute the condition number of the
Jacobian. 3

While the reconstruction error allows us to quantitatively monitor non-invertibility even before
reconstruction artifacts are perceptible, the linear approximation JF (x) and its singular values
provide insights into unstable directions of the forward (very large singular values of JF (x)) and
inverse (very small singular values of JF (x)) mapping.

4.2.1 DECORRELATION EXPERIMENTS

In the following, we show empirically that when training with the decorrelation objective: 1) models
based on affine coupling become severely numerically unstable; 2) additive coupling models both
with and without ActNorm eventually become unstable; and 3) we can control stability in additive
models without ActNorm by using spectral normalization.

In Figure 2, we visualize the stability of coupling-based invertible models trained with the decorre-
lation objective. For each experimental setting (e..g, additive coupling, with ActNorm), we show
snapshots of the reconstruction error at three points during training (for the same three images to allow
for qualitative comparison of the error across settings/training time). At the top of Figure 2, we show
the original images x; in each training snapshot we show the reconstructions x̂ = F−1(F (x)) and
the reconstruction errors R = |x− x̂|. To illustrate the connection between reconstruction error and
stability, beneath each figure we show the condition number of the Jacobian, c, and the minimum and
maximum singular values, denoted σmin and σmax, respectively. All models achieved the objective,
and decreased the loss enough for the correlation matrices to be diagonal (see Appendix F for example
loss plots).

Affine Coupling Models. As shown in Figure 2, both affine models with and without ActNorm
rapidly become numerically unstable, with severe reconstruction errors visible within the first 8000
iterations of training (corresponding to ∼ 10 epochs of training on CIFAR-10). Furthermore, the
smallest singular values become < 1e−10, which indicates a highly unstable inverse mapping.

Additive Coupling Models. Next, we investigated the stability of additive models (Figure 2).
When using ActNorm, additive models become highly unstable, with visible reconstruction errors.
As ActNorm introduces a scaling of the activations (Table 1), its influence on the stability is to
be expected. Additive models without ActNorm are significantly more stable, with imperceptible
reconstruction error until later in training. However, even without ActNorm, the model eventually
becomes unstable. In contrast to affine coupling, the largest singular values become < 1e6 which
renders the forward mapping less stable. Finally, we use spectral normalization to control the stability
of the additive model without ActNorm, as described in section 3.2. The model with spectral norm
remains stable throughout training, with nearly constant reconstruction error ∼1e-5 and condition
number orders of magnitude smaller than the unstable models.

3 Using the SVD is feasible for CIFAR-10, but becomes prohibitively expensive for ImageNet (with images
of size 3× 256× 256); for such larger images, one could instead use the Lanczos algorithm (Lanczos, 1950) to
find the largest and smallest singular values, to compute the condition number.
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Original Images
x

Affine: ActNorm Inside and Between Blocks
x̂

R

c = 2.6e4
σmax = 6.1
σmin = 2.3e-4

c = 5e10
σmax = 8.1

σmin = 1.7e-10

c = 1.4e12
σmax = 1.7e2
σmin = 1.3e-10

Affine: No ActNorm
x̂

R

c = 4e2
σmax = 2e-1
σmin = 5e-4

c = 1e7
σmax = 2e-1
σmin = 2e-8

c = 3e11
σmax = 2e-1
σmin = 8e-13

Additive: ActNorm Inside and Between Blocks
x̂

R

c = 3e4
σmax = 121
σmin = 4e-3

c = 3e10
σmax = 2e5
σmin = 9e-6

c = 4e12
σmax = 2e6
σmin = 6e-7

Additive: No ActNorm
x̂

R

c = 8e4
σmax = 4
σmin = 5e-4

c = 2e13
σmax = 9e5
σmin = 5e-8

c = 3e13
σmax = 5e7
σmin = 2e-6

Additive: No ActNorm + Spectral Norm
x̂

R

c = 16
σmax = 1.9
σmin = 0.1

c = 33
σmax = 4.6
σmin = 0.1

c = 30
σmax = 4.4
σmin = 0.2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Training

Figure 2: Instability in affine and additive models. On the right, we track the reconstruction errors
for a fixed minibatch over the course of training: in each iteration (vertical slice) we plot the errors
of each minibatch element. Thus, we can observe the distribution of errors. Orange points in the
affine plots denote inf and nan values. c denotes the condition number of the Jacobian, σmax
and σmin denote the minimum and maximum singular values, respectively. At the top, we show
the original images x and in each snapshot, the reconstructions x̂ = F−1(F (x)) and reconstruction
errors R = |x− x̂|. Note that the x- and y-axes differ for different settings, as the models become
unstable at different points during training.
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Comparing Empirical Condition Number to Theoretical Bounds. For the additive-coupling
model stabilized with spectral normalization, we compare the condition number of the Jacobian
to the bounds given in Section 3. We used a spectral norm coefficient κ of 0.5 to stabilize a 3-
level model with 16 blocks per level, thus the theoretical bound on both forward and inverse is
3 · 16 · (1 + 0.53) = 54. Since the condition number is the product of the Lipschitz constants, we
have an upper bound of 2916. However, in practice the condition number is always ≤ 35. Thus, we
find that the bounds are very conservative in practice.

Additional decorrelation experiments and plots tracking the increase of the condition number and the
min/max singular values during training are shown in Appendix F.

5 NON-INVERTIBILITY IN FLOW-GANS & CONSEQUENCES FOR LIKELIHOOD

Generative models based on invertible networks have been predominantly trained using maximum
likelihood (ML). Another viable approach is to train them adversarially, i.e. as done in Flow-GAN
(Danihelka et al., 2017; Grover et al., 2018). Flow-GAN is appealing as it can result in a generator
capable of producing high-quality samples (as in GANs), while also giving access to exact density
estimates, which GANs lack. Prior work (Danihelka et al., 2017; Grover et al., 2018) has compared
these two techniques for training flows (ML vs ADV); the main conclusion of these studies was that
training with MLE yields good likelihoods but relatively poor samples, while training with a GAN
loss yields good samples but likelihoods orders of magnitude worse than MLE training.

Figure 3: Reconstructions of images through multiple forward/inverse passes. First row in the
‘Recons’ subfigures are real-data, and each row after is one forward/inverse pass.

Model Max-SV Min-SV Cond-Num Analytic
LDJ (Test) BPD

ADV (Stable) 1.99e3 0.6129 3.253e3 4734 709
ADV (Unstable) 3.83e8 0.0309 1.239e10 9874 3.87e12*

Table 2: Stability analysis on two architectures trained adversarially (ADV), and with maximum
likelihood (ML). *denotes this number is meaningless as the network is visibly non-invertible. LDJ
denotes the log-determinant of the Jacobian, BPD denotes bits-per-dimension and SV singular value.
To compare above BPD to SOTA-results, e.g. Chen et al. (2019) report a BPD on MNIST of 0.97
using maximum likelihood training .

Details. We use networks with repeated additive coupling layers, and ActNorm between blocks.
We examine 2 architectures, where both networks have 3 levels, i.e., ‘squeeze’ between levels:

• Stable: having a depth of 4 (i.e., 4 blocks per level) and spectral normalization applied to
all the convolution layers, see section 3.2 for details.
• Unstable: having a depth of 16, ActNorm within coupling layer, and no spectral normaliza-

tion applied to the convolutional layers.

Broken Flow-GAN. In Figure 3, we show that an invertible network trained only with adversarial
loss can become non-invertible, depending on the architecture. We perform forward and inverse passes
repeatedly on the same batch of input. The unstable model starts to show visible reconstruction
errors quickly. In contrast, networks trained with maximum likelihood do not suffer from this issue.
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Flow-GAN “Likelihood”. Typically likelihood is computed by a change of variables, which
assumes invertibility. When a network is numerically non-invertible, the assumption breaks, and
the computed value becomes some numerical approximation to the density. In the model used in
Figure 3, the model consists of additive coupling blocks, ActNorm, and squeezing operations. All
these operations have data independent log-determinant Jacobian. Thus, obtaining a numerical value
via the change of variable formula is straightforward. However, it is unclear what this numerical
value represents, likely it cannot be trusted as true likelihood due to the lack of invertibility. In this
case, we advocate for ensuring invertibility using the remedies discussed here to make sure BPD/NLL
values are trustworthy.

Lastly, one can adjust for the likelihood by adjusting the prior (see Appendix G). In summary, in
this section we point out that Flow-GAN can become non-invertible, in which case the computed
likelihood cannot be taken as ground truth likelihood (Grover et al., 2018).

6 RELATED WORK

Invertibility and stability of deep networks. The inversion from activations in standard neural
networks to inputs has been studied in various works, e.g. via optimization in input space (Mahendran
& Vedaldi, 2014). Linking invertibility and inverse stability for relu-networks was e.g. done in
Behrmann et al. (2018). However, few works study the stability of INNs: Gomez et al. (2017) study
the numerical errors in the gradient computation when using their memory-efficient backpropagation
variant. Similarly to our empirical analysis, (Jacobsen et al., 2018) computed the SVD of the
Jacobian of a trained i-RevNet and observed an ill-conditioned Jacobian. Lastly, the i-ResNet
architecture (Behrmann et al., 2019) yields bi-Lipschitz bounds by design.
On the other hand, the stability of neural networks has been of major interest due to the problem of
exploding and vanishing gradients, and more recently due to adversarial examples (Szegedy et al.,
2013) and training of Wasserstein GANs (Arjovsky et al., 2017). See e.g. (Anil et al., 2019) for a
promising approach to learn flexible Lipschitz neural networks.

Invertible building blocks. Besides the invertible building blocks we studied in Table 1, several
other approaches were proposed. Most prominently, autogressive models like MAF (Papamakarios
et al., 2017) or IAF (Kingma et al., 2016) provide invertible models that are not studied in our
analysis. Furthermore, several newer coupling layers that require numerical inversion have been
introduced (Jaini et al., 2019; Durkan et al., 2019). Besides the coupling-based approaches, multiple
approaches (Chen et al., 2018; Behrmann et al., 2019; Chen et al., 2019; Song et al., 2019) use
numerical inversion schemes, where the interplay of numerical errors due to stability and errors due
to the numerical approximation of the inverse adds another dimension to the study of invertibility.

Fixed-Point arithmetic and limited precision. Maclaurin et al. (2015); MacKay et al. (2018)
implement invertible computation using fixed-point numbers, with specially-designed schemes to
store information that is “lost” when bits are shifted due to multiplication/division, enabling exact
invertibility at the cost of additional memory usage. As Gomez et al. (2017) point out, this approach
allows exact numerical inversion when using additive coupling blocks independent of stability issues.
However, our stability analysis aims for a broadly applicable methodology beyond the special case of
additive coupling. Lastly, there may be connections to deep learning using limited precision, see e.g.
(Gupta et al., 2015), which could provide more insights into our observed numerical errors.

7 CONCLUSION

Numerical instability is an important concern for the practical application of invertible models. If
for instance analytical invertibility does not carry through to the numerical computation due to
instabilities or numerical errors, the consequences can be arbitrarily severe. Flow-GAN illustrates
one application where non-invertibility poses a serious threat, as instabilities can strongly influence
or even break likelihood-computation. In this paper, we shed light on the underlying causes of
instability by deriving Lipschitz bounds on many of the atomic building blocks commonly used
to construct INNs. From a practical standpoint, we proposed diagnostics to measure stability and
provided an empirical framework to benchmark stability. Further, we have shown how to guarantee
stability for one of the most common INN architectures. We hope that this will inspire future work to
view numerical stability as a crucial axis in the design of new building blocks and architectures for
invertible neural networks, and to use the tools presented here to test for stability.
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A DERIVATIONS OF LIPSCHITZ BOUNDS

The bounds for invertible ResNets are taken from (Behrmann et al., 2019). For Neural ODEs (Chen
et al., 2018), one needs to consider a Lipschitz constant Lip(F ) that holds for all t ∈ [0, T ], i.e.

‖F (t, x1)− F (t, x2)‖2 ≤ Lip(F )‖x1 − x2‖2, for all t ∈ [0, T ].

Then, the claimed bound is a standard result, see e.g. (Ascher, 2008, Theorem 2.3). Note that the
inverse is given by dy(t)

dt = −F (y(t), t), hence the same bound holds.

In the subsequent subsections, we derive the bounds for coupling layers.

A.1 DERIVATION OF LIPSCHITZ BOUND FOR ADDITIVE COUPLING LAYERS

Consider an additive coupling block defined as

F (x)I1 = xI1
F (x)I2 = xI2 + g(xI1),

where I1, I2 is a disjoint partition of indices {1, ..., d} of the same cardinality, i.e. |I1| = |I2| = d
2 .

Further, xI1 , xI2 correpsonds to the corresponding dimension of x ∈ Rd and g : R d
2 → R d

2 . By
Lemma 3, it is

Lip(F ) = sup
x∈Rd

‖JF (x)‖2.

Thus, in order to obtain a bound on the Lipschitz constant, it is helpful to look into the structure of
the Jacobian. If the partitions I1 and I2 correspond to the first and last d2 indices, the Jacobian has a
lower-block structure with an identity diagonal, i.e.

JF (x) =

(
I 0

Jg(x) I

)
.

12
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By using this structure, we can derive the following upper bound:

Lip(F )2 = sup
x∈Rd

‖JF (x)‖22

= sup
x∈Rd

sup
‖x∗‖2=1

‖JF (x)x∗‖22

= sup
x∈Rd

sup
‖x∗‖2=1

‖(JF (x)x∗)I1‖22 + ‖(JF (x)x∗)I2‖22

= sup
x∈Rd

sup
‖x∗‖2=1

‖x∗I1‖
2
2 + ‖x∗I2 + Jg(x)x

∗
I1‖

2
2

≤ sup
x∈Rd

sup
‖x∗‖2=1

‖x∗I1‖
2
2 + (‖x∗I2‖2 + ‖Jg(x)x

∗
I1‖2)

2 (6)

= sup
x∈Rd

sup
‖x∗‖2=1

‖x∗I1‖
2
2 + ‖x∗I2‖

2
2 + 2‖x∗I2‖2‖Jg(x)x

∗
I1‖2 + ‖Jg(x)x

∗
I1‖

2
2

= sup
x∈Rd

sup
‖x∗‖2=1

‖x∗‖22 + 2‖x∗I2‖2‖Jg(x)x
∗
I1‖2 + ‖Jg(x)x

∗
I1‖

2
2

= sup
x∈Rd

sup
‖x∗‖2=1

1 + 2‖x∗I2‖2‖Jg(x)x
∗
I1‖2 + ‖Jg(x)x

∗
I1‖

2
2

= sup
x∈Rd

sup
‖x∗‖2=1

1 + 2‖Jg(x)x∗I1‖2 + ‖Jg(x)x
∗
I1‖

2
2

= sup
x∈Rd

sup
‖x∗‖2=1

(
1 + ‖Jg(x)x∗I1‖2

)2
= sup
x∈Rd

(1 + ‖Jg(x)‖2)2

⇒ Lip(F ) ≤ 1 + Lip(g).

Furthermore, the inverse of F can be obtained via the simple algebraic transformation (y := F (x))

F−1(y)I1 = yI1

F−1(y)I2 = yI2 − g(yI1).

Since the only difference to the forward mapping is the minus sign, the Lipschitz bound for the
inverse is the same as for the forward mapping.

A.1.1 DERIVATION OF LIPSCHITZ BOUND FOR AFFINE COUPLING LAYERS

Consider an additive coupling block defined as

F (x)I1 = xI1
F (x)I2 = xI2 � g(s(xI1)) + t(xI2),

where g(·) 6= 0 for all XI2 and I1, I2 as before. The Jacobian for this operation has the structure

JF (x) =

(
I 0

DI(xI2)Dg′(xI1)Js(xI1) + Jt(xI1) Dg(s(xI1))

)
,

where D are following diagonal matrices

DI(xI2) = diag
(
(xI2)1, . . . , (xI2)|I2|

)
,

Dg′(xI1) = diag
(
g′(s(xI2)1, . . . , g

′(s(xI2)|I2|)
)

Dg(s(xI1)) = diag
(
g(s(xI2)1, . . . , g(s(xI2)|I2|)

)
.

Denote

M(x) := DI(xI2)Dg′(xI1)Js(xI1) + Jt(xI1).
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By using an analogous derivation as in equation 6 (up to the inequality sign), we get

Lip(F )2 ≤ sup
x∈Rd

sup
‖x∗‖2=1

‖x∗I1‖
2
2 +

(
‖Dg(s(xI1))x

∗
I2‖2 + ‖M(x)x∗I1‖2

)2
= sup
x∈Rd

max
i∈[|I1|]

(1, Dg(s(xI1)i))
2 + 2 max

i∈[|I1|]
(Dg(s(xI1)i))‖M(x)‖2 + ‖M(x)‖22

≤ sup
x∈Rd

max
i∈[|I1|]

(1, Dg(s(xI1)i))
2 + 2 max

i∈[|I1|]
(1, Dg(s(xI1)i))‖M(x)‖2 + ‖M(x)‖22

= sup
x∈Rd

(
max
i∈[|I1|]

(1, Dg(s(xI1)i)) + ‖M(x)‖2
)2

⇐⇒ Lip(F ) ≤ max
i∈[|I1|]

(1, Dg(s(xI1)i)) + sup
x∈Rd

‖M(x)‖2.

Next, we will look into the structure of M(x) to derive a more precise bound. Since inputs x are
assumed to be bounded as x ∈ [a, b]d, it holds

‖DI(xI2)‖2 ≤ max(|a|, |b|).

Furthermore, let the derivative g′ of the element-wise function g be globally bounded by c, i.e.
supx∈R g

′(x) ≤ cg′ . Then, it is

‖Dg′(xI1)‖2 ≤ cg′ .

In a similar manner as in section A.1, the spectral norm of the Jacobian of the scale-function s and
translation-function t can be bounded by their Lipschitz constant, i.e.

‖Js(xI1)‖2 ≤ Lip(s)

‖Jt(xI1)‖2 ≤ Lip(t).

By using above bounds, we obtain

sup
x∈Rd

‖M(x)‖22 ≤ max(|a|, |b|) · c · Lip(s) + Lip(t).

If we further assume, that the elementwise-function g is globally upper bounded by cg and we insert
above bounds, we obtain

Lip(F ) ≤ max(1, cg) + max(|a|, |b|) · cg′ · Lip(s) + Lip(t).

Since the inverse is given again by a simple algebraic transformation (division instead of multiplication
and subtraction instead of addition), the Lipschitz bound for the inverse follows in a straighforward
manner.

B NUMERICAL ERRORS AND LIPSCHITZ CONSTANTS

In a general setting, connecting numerical errors e.g. due to floating point operations to Lipschitz
constants of the underlying mapping in a quantitative manner is not straightforward. For example,
numerical errors due to limited precision occurs when summing to floating point numbers. As
discussed in (Gomez et al., 2017), this occurs in additive coupling layers and is one source of
numerical errors we observe in our experiments.

To formalize the connection to the Lipschitz constant, consider the following two mappings:

F (x) = z, (analytical exact computation)
Fδ(x) = z + δ =: zδ, (floating point inexact computation)

In order to bound the error in the reconstruction due to the imprecision in the forward mapping, let
xδ1 = F−1(zδ). Now consider

‖x− xδ1‖2 ≤ Lip(F−1)‖z − zδ‖2 = Lip(F−1)‖δ‖2,
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where the Lipschitz constant of the inverse is used to bound the influence of the numerical error in
the forward mapping. However, similarly to the forward mapping, the inverse mapping can also be
imprecise. Thus, we introduce

F−1δ (zδ) = xδ1 + δ2 := xδ2

to formalize the numerical error in the inverse mapping. Hence, we obtain the bound

‖x− (xδ1 + δ2)‖2 ≤ ‖x− xδ1‖2 + ‖δ2‖2
≤ Lip(F−1)‖z − zδ‖2 + ‖δ2‖2
= Lip(F−1)‖δ‖2 + ‖δ2‖2,

where the numerical errors of the mapping are denoted via δ (forward) and δ2 (inverse). While
obtaining quantitative values for δ and δ2 for a model as complex as deep neural networks is
hard, above formalization still provides insights into a potential role of the inverse stability when
reconstructing inputs.

C INSTABILITY OUTSIDE THE RANGE OF TRAINING INPUTS

Original Original Recons. Adversarial Adversarial Recons.

Figure 4: Glow becomes non-invertible for inputs outside the training distribution. We use a
SOTA Glow model trained on images normalized to [−0.5, 0.5], and use PGD to find an adversarial
input constrained to the larger range [−0.7, 0.7]. This attack succeeds in finding examples that induce
dramatic reconstruction error.

Here, we applied a PGD attack (as described in Section 4.1) to a Glow model pre-trained on Celeb-
A (Liu et al., 2015).4 This model was trained on images normalized to the range [−0.5, 0.5]. While
the PGD attack was not successful at finding adversarial inputs in [−0.5, 0.5], it succeeded when the
range was increased to [−0.7, 0.7], yielding the example shown in Figure 4. Thus, we found that
invertible models can become numerically non-invertible on out-of-distribution data.

D MOTIVATING THE DECORRELATION TASK
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Figure 5: Toy example to motivate the decorrelation task. Left: standard normal data, 2. left: scaled
by D and rotated data by R, 2. right: scaling and rotation backwards, low correlation but higher
condition number, right: rotation backwards, low correlation and low condition number.

4We use the model from https://github.com/openai/glow.
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To motivate the decorrelation task as simple study environment for stability of invertible models
consider the following task (and its visualization in Figure 5):

• Consider input data x that is distributed via a standard normal distribution, i.e. x ∼ N (0, I)
(Figure 5 (left)).

• Assume the data is transformed by a rotation matrix R and a diagonal matrix D, i.e.
y = RDx (Figure 5 (2. from left)).

• Goal: decorrelate transformed data y using an invertible mapping.

Since correlation is independent of scale (scaling by standard deviation of the data), at least the two
solutions A2 = D−1RT (Figure 5 (2. from right)) and A1 = RT (Figure 5 (right)) are equally valid
for the given decorrelation task. However, the conditioning of the mappings A1 and A2 can be largely
different if the scaling matrix D has a high condition number. Hence, this task both offers a stable
solution, namely A1, and a (potentially) unstable solution A2.

To conclude, decorrelation can allow multiple solutions with different stability. Hence, decorrelation
is a natural simple task to study which solution the INN picks. Furthermore, guiding the network to a
stable solution is a justified strategy for this task and it is not expected to harm performance.

E DECORRELATION EXAMPLE CODE

Here we provide an example implementation of the decorrelation objective used in Section 4.2, that
minimizes the norm of the off-diagonal entries in the correlation matrix.

Listing 1: Example PyTorch code to implement the decorrelation loss used in our experiments.
z = model(img)
z_flat = z.view(z.size(0), -1)
z_flat = z_flat - z_flat.mean(dim=0) # Subtract mean
z_flat = z_flat / (z_flat.std(dim=0) + 1e-8) # Standardize
correlation = (torch.mm(z_flat.t(), z_flat) / (z_flat.size(0)-1))
loss = torch.norm(correlation - torch.diag(torch.diagonal(correlation)))
optimizer.zero_grad()
loss.backward()
optimizer.step()

F EXTENDED RESULTS FOR DECORRELATION

Decorrelation Experiment Details Here we provide additional details on the model architectures
and training schemes we used in our numerical experiments.

For all the decorrelation experiments, we used a 3-level model with blocks of depth 16. We used
Adam (Kingma & Ba, 2015) with fixed learning rate 1e-4 and no weight decay, and trained on
mini-batches of size 64. The CIFAR-10 images were normalized to the range [-0.5, 0.5], and were
dequantized with uniform noise in [0, 1e-6].

Effect of Model Depth. Furthermore, we investigated the effect of network depth on stability since
its an additional influence factor besides the selection of each invertible building block. Starting with
a 3-level additive model with ActNorm, we vary the depth of the blocks between {4, 16, 32} and
train with the decorrelation objective. The quantitative reconstruction errors and condition numbers
of the Jacobians are shown in Figure 6. As expected, deeper architectures become unstable faster
than shallow ones.
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Figure 6: Comparing stability of additive flows of different depths. These models all have
ActNorm both between and inside the additive blocks.
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Figure 7: Additional settings for additive coupling, where: 1) ActNorm was applied only between
blocks; and 2) ActNorm was applied only inside blocks. Both models become unstable and exhibit
severe reconstruction artifacts.

Loss Plots. Here we show that all the model variants investigated in the decorrelation experiments
achieve their objective, i.e., the loss decreased enough for the correlation matrices to be diagonal.

Evolution of Condition Numbers, Max & Min Singular Values for Decorrelation. Here we plot
the condition numbers, maximum and minimum singular values during training for the decorrelation
task. We include plots for all settings discussed in the main paper as well as the appendix.
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Figure 8: Additional setting for affine coupling, where ActNorm was applied only between blocks.
Similarly to the other affine settings described in Section 4.2, this model becomes highly unstable
rapidly during training.
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Figure 9: Decorrelation loss plots. These plots track the norm of the off-diagonal entries in the
correlation matrix while training with the decorrelation objective.
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Figure 10: Additive: ActNorm Between Blocks
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Figure 11: Additive: ActNorm Both Inside and Between Blocks

18



Under review as a conference paper at ICLR 2020

0k 40k 80k 120k
Iteration

105
107
109

1011
1013
1015
1017

Co
nd

iti
on

 N
um

(a) Condition number

0k 40k 80k 120k
Iteration

103
105
107
109

1011
1013
1015

M
ax

im
um

 S
V

(b) Max singular values

0k 40k 80k 120k
Iteration

10 6

10 5

10 4

10 3

10 2

M
in

im
um

 S
V

(c) Min singular values

Figure 12: Additive: ActNorm Inside Blocks
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Figure 13: Additive: No ActNorm
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Figure 14: Affine: No ActNorm
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Figure 15: Affine: ActNorm Both Inside and Between Blocks
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Figure 16: Affine: ActNorm Between Blocks
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G REFITTING PRIOR IN FLOW-GAN

In general, if the model is not optimized with forward KL, DKL(Pdata||Pθ), as in the case when
optimizing with maximum likelihood, we cannot be sure F (x), x ∼ Pdata is best fitted with a
standard Normal. Hence, a reasonable strategy, without changing anything in the learned network, is
to refit the prior parameters. Here we simply optimize for maximum likelihood (as typically done for
flow models) while only fitting a diagonal variance in prior. This can be interpreted as increasing the
entropy of our model. In Kingma & Dhariwal (2018), they observed the opposite phenomenon that a
model trained with maximum likelihood generates better samples after decreasing the entropy in the
prior. See Figure 17 for samples after refitting the prior.

ADV (Stable) ADV (Unstable)

Figure 17: The row number corresponds to the number of epochs after refitting the prior variance.
The unstable model fails to generate samples (i.e., outside of valid pixel values) after the prior is
refitted, whereas even though the stable model degrades in sample quality, it is able to generate valid
images.
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