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ABSTRACT

Recent advances in deep learning theory have evoked the study of generalizabil-
ity across different local minima of deep neural networks (DNNs). While current
work focused on either discovering properties of good local minima or developing
regularization techniques to induce good local minima, no approach exists that
can tackle both problems. We achieve these two goals successfully in a unified
manner. Specifically, based on the Fisher information we propose a metric both
strongly indicative of generalizability of local minima and effectively applied as
a practical regularizer. We provide theoretical analysis including a generalization
bound and empirically demonstrate the success of our approach in both captur-
ing and improving the generalizability of DNNs. Experiments are performed on
CIFAR-10 and CIFAR-100 for various network architectures.

1 INTRODUCTION

Recently, there has been a surge in the interest of acquiring a theoretical understanding over deep
neural network’s behavior. Breakthroughs have been made in characterizing the optimization pro-
cess, showing that learning algorithms such as stochastic gradient descent (SGD) tend to end up in
one of the many local minima which have close-to-zero training loss (Choromanska et al., 2015;
Dauphin et al., 2014; Kawaguchi, 2016; Nguyen & Hein, 2018; Du et al., 2018). However, these
numerically similar local minima typically exhibit very different behaviors in terms of generaliz-
ability. It is, therefore, natural to ask two closely related questions: (a) What kind of local minima
can generalize better? (b) How to find those better local minima?

To our knowledge, existing work focused only on one of the two questions. For the “what” question,
various definitions of “flatness/sharpness” have been introduced and analyzed (Keskar et al., 2017;
Neyshabur et al., 2018; 2017; Wu et al., 2017; Liang et al., 2017). However, they suffer from one or
more of the problems: (1) being mostly theoretical with no or poor empirical evaluations on modern
neural networks, (2) lack of theoretical analysis and understanding, (3) in practice not applicable
to finding better local minima. Regarding the “how” question, existing approaches (Hochreiter &
Schmidhuber, 1997; Sokolić et al., 2017; Chaudhari et al., 2017; Hoffer et al., 2017; Neyshabur
et al., 2015a; Izmailov et al., 2018) share some of the common drawbacks: (1) derived only from
intuitions but no specific metrics provided to characterize local minima, (2) no or weak analysis of
such metrics, (3) not applicable or no consistent generalization improvement for modern DNNs.

In this paper, we tackle both the “what” and the “how” questions in a unified manner. Our an-
swer provides both the theory and applications for the generalization problems across different local
minima. Based on the determinant of Fisher information estimated from the training set, we pro-
pose a metric that solves all the aforementioned issues. The metric can well capture properties that
characterize local minima of different generalization ability. We provide its theoretical analysis,
primarily a generalization bound based on PAC-Bayes (McAllester, 1999b;a). For modern DNNs in
practice, it is necessary to provide a tractable approximation of our metric. We propose an intuitive
and efficient approximation to compare it across different local minima. Our empirical evaluations
fully illustrate the effectiveness of the metric as a strong indicator of local minima’s generalizability.
Moreover, from the metric we further derive and design a practical regularization technique that
guides the optimization process in finding better generalizable local minima. The experiments on
image classification datasets demonstrate that our approach gives consistent generalization boost for
a range of DNN architectures.
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2 RELATED WORK

It has been empirically shown that larger batch sizes lead to worse generalization (Keskar et al.,
2017). Hoffer et al. (2017) analyzed how the training dynamics is affected by different batch sizes
and presented a perturbed batch normalization technique for better generalization. While it effec-
tively improves generalization for large-batch training, a specific metric that indicates the general-
izability is missing. Similarly, Elsayed et al. (2018) employed a structured margin loss to improve
performance of DNNs w.r.t. noise and adversarial attack yet no metric was proposed. Furthermore,
this approach essentially provided no generalization gain in the normal training setup.

The local entropy of the loss landscape was proposed to measure “flatness” in Chaudhari et al.
(2017), which also designed an entropy-guided SGD that achieves faster convergence in training
DNNs. However, the method does not consistently improve generalization, e.g., a decrease of per-
formance on CIFAR-10 (Krizhevsky & Hinton, 2009). Another method that focused on modifying
the optimization process is the Path-SGD proposed by Neyshabur et al. (2015a). Specifically, the
authors derived an approximate steepest descent algorithm that utilizes the path-wise norm regular-
ization to achieve better generalization. The authors only evaluated it on a two-layer neural network,
very likely since the path norm is computationally expensive to optimize during training.

A flat minimum search algorithm was proposed by Hochreiter & Schmidhuber (1997) based on the
“flatness” of local minima defined as the volume of local boxes. Yet since the boxes have their axes
aligned to the axes of the model parameters, their volumes could be significant underestimations of
“flatness” for over-parametrized networks, due to the specific spectral density of Hessian of DNNs
studied in Pennington & Worah (2018); Sagun et al. (2018). The authors of Wu et al. (2017) also
characterized the “flatness” by volumes. They considered the inverse volume of the basin of attrac-
tion and proposed to use the Frobenius norm of Hessian at the local minimum as a metric. In our
experiments, we show that their metric does not accurately capture the generalization ability of local
minima under different scenarios. Moreover, they have not derived a regularizer from their metric.

Based on a “robustness” metric, Sokolić et al. (2017) derived a regularization technique that suc-
cessfully improves generalization on multiple image classification datasets. Nevertheless, we show
that their metric fails to capture the generalizability across different local minima.

By using the Bayes factor, MacKay (1992) studied the generalization ability of different local min-
ima obtained by varying the coefficient of L2 regularization. It derived a formula involving the
determinant of Hessian, similar to the one in ours. Whereas, this approach has restricted settings
and, without proposing an efficient approximation, its metric is not applicable to modern DNNs, let
alone serving as a regularizer. A generalization bound is missing in MacKay (1992) as well.

In a broader context of the “what” question, properties that capture the generalization of neural net-
works have been extensively studied. Various complexity measures for DNNs have been proposed
based on norm, margin, Lipschitz constant, compression and robustness (Bartlett & Mendelson,
2002; Neyshabur et al., 2015b; Sokolić et al., 2017; Xu & Mannor, 2012; Bartlett et al., 2017; Zhou
et al., 2019; Dziugaite & Roy, 2017; Arora et al., 2018; Jiang et al., 2019). While some of them
aimed to provide tight generalization bounds and some of them to provide better empirical results,
none of the above approaches explored the “how” question at the same time.

3 OUTLINE AND NOTATIONS

In a typical K-way classification setting, each sample x ∈ X belongs to a single class denoted cx ∈
{0, 1, ...,K} according to the probability vector y ∈ Y , where Y is the k-dimensional probability
simplex so that p(cx = i) = yi and

∑
i yi = 1. Denote a feed-forward DNN parametrized by

w ∈ RW as fw : X → Y , which uses ReLU activations and a softmax layer at the end. Denote
the cross entropy loss as `(fw(x), y) = −

∑
i yi ln fw(x)i. Denote the training set as S, defined

over X × Y with |S|= N . The training objective is given as L(S, w) = 1
N

∑
(x,y)∼S `(fw(x), y).

Assume S is sampled from some true data distribution denoted D, we can define expected loss
L(D, w) = E(x,y)∼D[`(fw(x), y)]. Throughout this paper, we refer a local minimum of L(S, w)
corresponding to a local minimizer w0 as just the local minimum w0. Given such w0, our paper’s
outline as well as our main achievements are:
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• In Section 4 we relates Fisher information to neural network training as a prerequisite.

• In Section 5.1 we propose a metric γ(w0) that well captures local minima’s generalizability.

• In Section 5.2 we provide a generalization bound related to γ(w0).

• In Section 5.3 we propose an approximation γ̂(w0) for γ(w0), which is shown to be very
effective in Section 7.1 via extensive empirical evaluations.

• In Section 6 we devise a practical regularizer from γ(w0) that consistently improves gen-
eralizability across different DNNs, as evaluated in Section 7.2.

3.1 OTHER NOTATIONS

Denote∇w as gradient, Jw[·] as Jacobian matrix,∇2
w as Hessian, DKL(·‖·) as KL divergence, ‖·‖2

as spectrum or Euclidean norm, ‖·‖F as Frobenius norm, |·| as determinant, tr(·) as trace norm, ρ(·)
as spectral radius, ``S(w) as log-likelihood on S, and [·]i for selecting the ith entry.

We define `x(w) ∈ RK whose ith entry is− ln fw(x)i so that `(fw(x), y) = `x(w)T y. We define ȳ
as argmax(y) and ỹ ∈ RK the one-hot vector whose ȳ-th entry is 1 and otherwise 0. Then we define
L̃(S, w) ∈ RN as the “simplified” loss vector of S whose entries are `(fw(x), ỹ) for (x, y) ∈ S ,
i.e., we approximate the cross entropy loss `(fw(x), y) by `(fw(x), ỹ).

4 LOCAL MINIMUM AND FISHER INFORMATION

First of all, if y is strictly one-hot, no local minimum will even exist with 100% training accuracy,
since the cross entropy loss will always be positive. To admit good local minima in the first place,
we assume the widely used label smoothing (Szegedy et al., 2016) is applied to train all models in
our analysis. Label smoothing enables us to assume a local minimum w0 (which is actually a global
minimum) of the training loss with

∑
(x,y)∈S DKL(fw0

(x)‖y) = 0.

Each sample (x, y) ∈ S has its label cx sampled by p(cx = i|x) = yi, denoted as (x, cx) ∼ S.
The joint probability p(x, cx) modeled by the DNN is p(x, cx = i;w) = p(cx = i|x;w) p(x) =
[fw(x)]i p(x) with p(x) = 1

N . We can relate the training loss L(S, w) to the negative log-likelihood
−``S(w) = −

∑
(x,y)∈S Ecx∼y ln p(x, cx;w) by:

L(S, w) =
1

N

∑
(x,y)∈S

`x(w)T y = − 1

N

∑
(x,y)∈S

E
cx∼y

ln p(cx|x;w) = − 1

N
``S(w) + ln

1

N

And so w0 also corresponds to a local maximum of the likelihood function. The observed Fisher
information evaluated at w0 is defined as I(w0) = − 1

N∇
2
w``S(w0). We can further derive:

I(w0) = ∇2
wL(S, w0) = E

(x,cx)∼S
[∇w ln p(cx|x;w0)∇w ln p(cx|x;w0)T ] (1)

The first equality is straightforward; the second has its proof in Appendix A. Since p(cx = i|x) = yi
and ln p(cx = i|x;w0) = [`x(w0)]i, we can further simplify the Equation 1 to:

I(w0) =
1

N

∑
(x,y)∈S

K∑
i=1

(
∇w[`x(w0)]i

)(
∇w[`x(w0)]i

)T
(2)

Remark: ∇w`(fw0
(x), y) = 0 as DKL(fw0

(x)‖y) = 0; yet I(w0) ∈ RW×W 6= 0 in Equation 2.

5 LOCAL MINIMA CHARACTERIZATION

In this section, we derive and propose our metric, provide a PAC-Bayes generalization bound, and
lastly, propose and give intuitions of an effective approximation of our metric for modern DNNs.
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5.1 FISHER DETERMINANT AS GENERALIZATION METRIC

We would like a metric to compare different local minima. Similar to the various definitions of
“flatness/sharpness”, we take a small neighborhood of the target local minimum w0 into account.
Formally for a sufficiently small V , we define the model class M(w0) as the largest connected
subset of {w ∈ RW : L(S, w) ≤ h} that contains w0, where the height h is defined as a real
number such that the volume (namely the Lebesgue measure) ofM(w0) is V . By the Intermediate
Value Theorem, for any sufficiently small volume V there exists a corresponding height h.

From Information Theory, the MDL principle suggests that among different probability models
the best is the one that best compresses both the sampled data and the model (Rissanen, 1978).
Accordingly, Rissanen (1996) derived the FIA criterion to compare model classes. Tailored to our
settings, a local minimum w0 of the training loss (which corresponds to a local maximum of the
likelihood function) has its model class’s FIA criterion written as (lower FIA is better):

FIA = −
∑

(x,y)∈S
E

cx∼y
ln p(x, cx;w0) +

W

2
ln
N

2π
+ ln

∫
M(w0)

√
|Iw| dw

where Iw denotes the expected Fisher information. We can replace it by the observed one as asymp-
totically they are the same. The first term above is ignored since all local minima at our interest
are assumed to have similar close-to-zero training loss. The second term is a constant. Assuming
training loss is locally quadratic in M(w0) (formalized and later validated as Assumption 1), as
I(w0) = ∇2

wL(S, w0) from Equation 1, the last term becomes lnV + ln
√
|I(w0)|. Eventually, we

propose our metric γ(·), where lower γ(w0) indicates a better local minimum w0:

γ(w0) = ln|I(w0)|

As a metric, γ(w0) is undefined unless |I(w0)| 6= 0. Pennington & Worah (2018) argued that the
Fisher information of a neural network is in general non-singular although most of its eigenvalues
are very small. Normally we have a limited size of S, not large enough to compute γ(w0); an
approximation is a must. We present our approximation scheme and its intuition in Section 5.3.

5.2 GENERALIZATION BOUND

Assumption 1. Given the training loss L(S, w), its local minimumw0 and the associated neighbor-
hoodM(w0) whose volume V is sufficiently small, as described in Section 3, 4 and 5.1, respectively,
when confined toM(w0), we assume that L(S, w) is quadratic.

Assumption 1 is quite reasonable. Grünwald & Grunwald (2007) suggests that, a log-likelihood
function, under regularity conditions (1) existence of its 1st, 2nd & 3rd derivatives and (2) uniqueness
of its maximum in the region, behaves locally like a quadratic function around its maximum. In our
case, L(S, w) corresponds to the log-likelihood function ``S(w) and so w0 corresponds to a local
maximum of ``S(w). Since L(S, w) is analytic and w0 is the only local minimum of L(S, w) in
M(w0), the training loss indeed can be considered locally quadratic.

Similar to Langford & Caruana (2002), Harvey et al. (2017) and Neyshabur et al. (2017), we apply
the PAC-Bayes Theorem (McAllester, 2003) to derive a generalization bound for our metric. Specif-
ically, we pick a uniform prior P over w ∈ M(w0) according to the maximum entropy principle
and after observing the training data S pick the posterior Q of density q(w) ∝ e−|L(S,w0)−L(S,w)|.
Then Theorem 1 bounds the expected L(D, w) using γ(w0). See its proof in Appendix B.

Theorem 1. Given |S|= N , D, L(S, w) and L(D, w) described in Section 3, a local minimum w0

with L0 =∆ L(S, w0), the volume V of M(w0) sufficiently small such that Assumption 1 is valid,
and P,Q defined above, then for any δ ∈ (0, 1] we have with probability at least 1− δ that:

E
w∼Q

[L(D, w)] ≤ L0 +A+ 2

√
2L0 + 2A+ ln 2N

δ

N − 1
, A =

WV
2
W π

1
W eγ(w0)/W

4πe

In short, Theorem 1 shows that a lower γ(w0) indicates a more generalizable local minimum w0.
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5.3 APPROXIMATION

As stated in Section 4, in practice an approximation of γ(w0) as γ̂(w0) is necessary, as calculating
γ(w0) involves computing the determinant of a W × W matrix. Let us first assume we have an
imagined training set S ′ of size W , a local minimum w0 of L(S ′, w) and so correspondingly a full-
rank observed Fisher information matrix I ′(w0) so that ln|I ′(w0)| is well defined. In reality, we
only have a training set S ⊂ S ′ with a singular I(w0). Notice that w0 is also a local minimum
of L(S, w) since

∑
(x,y)∈S′ DKL(fw0

(x)‖y) = 0 as assumed in Section 4. We then approximate
eigenvalues of I ′(w0) by those of its sub-matrices and so to approximate ln|I ′(w0)|.
First of all, we replace y by its one-hot version ỹ defined in Section 3.1 since they are very close.
This drastically reduces the cost of gradient calculation. With L̃(S, w) ∈ RN and ȳ defined in
Section 3.1, according to Equation 2, the observed Fisher information I ′(w0) ∈ RW×W is:

I ′(w0) ≈ 1

W

∑
(x,y)∈S′

(
∇w[`x(w0)]ȳ

)(
∇w[`x(w0)]ȳ

)T
=

1

W
Jw[L̃(S ′, w)]TJw[L̃(S ′, w)] =

1

W
Jw[L̃(S ′, w)] Jw[L̃(S ′, w)]T (3)

Let {λm}Wm=1 denote the eigenvalues of I ′(w0); then γ(w0) = ln
∏W
m=1 λm =

∑W
m=1 lnλm.

Without calculating all W eigenvalues, we can perform a Monte-Carlo estimation of γ(w0) by
randomly samplingN ′ < N < W eigenvalues from {λm}Wm=1. We denote the samples as {λn}N

′

n=1

and we have W
N ′

∑N ′

n=1 lnλn ≈
∑W
m=1 lnλm. Suppose the estimation is run T times, we have

limT→∞
1
T

∑T
t=1

W
N ′

∑N ′

n=1 lnλn = γ(w0).

In practice {λn}N
′

n=1 is inaccessible since we don’t have I ′(w0) in the first place. Instead, we sample
St ⊂ S with |St|= N ′ for T times and define

ξt(w0) =∆ Jw[L̃(St, w0)]Jw[L̃(St, w0)]T ∈ RN
′×N ′

Notice that ξt(w0) is a principal sub-matrix of WI ′(w0) by removing rows & columns for data in
S \ St. According to Theorem 3, one can roughly estimate the size of eigenvalues of a matrix by
those of its sub-matrices. Therefore we propose to estimate γ(w0) by γ̂(w0) with:

γ̂(w0) =∆
1

T

T∑
t=1

ln |ξt(w0)|, γ(w0) ≈ W

N ′
γ̂(w0) +W ln

1

W
as T →∞ (4)

We leave Theorem 3 as well as the derivation of Equation 4 to Appendix C. In proposing γ̂(w0), we
ignore the constants and irrelevant scaling factors because what matters is the relative size of γ(·)
when comparing different local minima. Empirically we find that given relatively large number of
sample trials T , our metric γ̂(·) can effectively capture the generalizability of a local minimum even
for a small N ′ (details in Section 7.1 and in Appendix D).

6 LOCAL MINIMA REGULARIZATION

Besides pragmatism, devising a practical regularizer based on γ(w0) also “verifies” our theoretical
understanding of DNN training, helping for future improvement of the learning algorithms. How-
ever, converting γ(w0) to a practical regularizer is non-trivial due to the computation burden of:

1. optimizing terms related to the gradient, which involves calculating the Hessian
2. computing the eigenvalues of the gradient, which is even more expensive

We first solve the second issue and then the first one. To solve the second issue, we propose to
optimize a surrogate term for γ(w0) which avoids eigenvalue computations, namely the trace norm
of the observed Fisher information tr(I(w0)). These two terms have the relation:

1

W
γ(w0) =

1

W
ln|I(w0)| ≤ ln tr(I(w0))− lnW

5
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Another major benefit of using the trace norm is that, unlike γ(w0), tr(I(w0)) still remains well
defined even with a small training set |S|= N . From Equation 2 we have:

tr(I(w0)) =
1

N

∑
(x,y)∈S

K∑
i=1

‖∇w[`x(w0)]i‖22

The cost of computing tr(I(w0)) is linear in the number of its terms (in the double summation). We
therefore simplify the calculation by replacing y with ỹ similar to Equation 3 so that

tr(I(w0)) ≈ 1

N

∑
(x,y)∈S

‖∇w`(fw0
(x), ỹ)‖22 =

1

N

N∑
i=1

‖∇w[L̃(S, w0)]i‖22

where ỹ and L̃(·, ·) are defined in Section 3.1. As in gradient-based training we never exactly reach
the local minimum w0, we choose to optimize tr(I(w)) during the entire training process. We have
∇w 1

|B|
∑
i ‖∇w[L̃(B, w0)]i‖22 = 1

|B|
∑
i∇w‖∇w[L̃(B, w0)]i‖22 for each mini-batch B. Then we

can further reduce the computation cost by batching. In specific, we randomly split B into M sub-
batches of equal size, namely {Bi}Mi=1. We define gi =∆ 1

|Bi|
∑

(x,y)∈Bi
`(fw0

(x), ỹ) and compute

‖gi‖22 for gi ∈ {gi}Mi=1 instead of computing ‖[L̃(B, w0)]i‖22 for each data point in B.

We deal with the first computation burden by adopting first order approximation. For any w, with a
sufficiently small α > 0 we have L̃(Bi, w − αgi) ≈ L̃(Bi, w)− Jw[L̃(Bi, w)] αgi. Then

1

|Bi|

|Bi|∑
j=1

[L̃(Bi, w)− L̃(Bi, w − αgi)]j ≈
1

|Bi|

|Bi|∑
j=1

[
Jw[L̃(Bi, w)] αgi

]
j

= α‖gi‖22

Therefore, we propose to optimize the following regularized training objective for each update step:

L(B, w) + βRα(w), Rα(w) =∆
1

M

M∑
i=1

1

|Bi|

|Bi|∑
j=1

[
L̃(Bi, w)− L̃(Bi, w − αgi)

]
j

(5)

We omit any second order term when computing ∇wRα(w), simply by no back-prop through gi.
On the other hand, we find that gradient clipping, especially at the beginning of the training, is
necessary to make the generalization boost consistent. We have 4 hyper-parameters: α, β, the
number of sub-batches M and the gradient clip threshold τ . Our approach is formalized as:

Algorithm 1 Regularized Mini-batch Learning (Single Update Step)
1: procedure UPDATE(w,B; α, β,M, τ ) . Last 4 are hyper-parameters
2: {Bi}Mi=1 ← B . Split the mini-batch B into M sub-batches
3: for i← 1 to M do
4: gi ← 1

|Bi|
∑

(x,y)∈Bi
`(fw0

(x), ỹ) . Compute the gradient of the sub-batch
5: gi = copy(gi) . A copy prevents gradient flow
6: end for
7: ComputeRα(w) by Equation 5 . Use the copied version of gi
8: ∇wLreg ← ∇w[L(B, w) + βRα(w)]
9: Clip∇wLreg with threshold τ . clip_by_global_norm in TensorFlow

10: Gradient update with clipped∇wLreg . Update with any gradient-based optimizer
11: end procedure

7 EXPERIMENTS

We perform two sets of experiments to illustrate the effectiveness of our metric γ(w0). We demon-
strate that: (1) the approximation γ̂(w0) captures the generalizability well across local minima; (2)
our regularization technique based on γ(w0) provides consistent generalization gain for DNNs.

Throughout our theoretical analysis, we assume that label smoothing (LS) is applied during model
training in order to obtain well-defined local minima (first mentioned in Section 4). In all our
empirical evaluations, we perform both the version with LS applied and without. Results are very
similar and so we stick to the version without LS since this is the same as the original training setup
in papers of the various network architectures that we used.
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7.1 EXPERIMENTS ON LOCAL MINIMA CHARACTERIZATION

We perform comprehensive evaluations to compare our metric γ̂(·) with several others on ResNet-
20 (He et al., 2016a) for the CIFAR-10 dataset (architecture details in Appendix E). Our metric
consistently outperforms others in indicating local minima’s generalizability. Specifically, Sokolić
et al. (2017) proposed a robustness-based metric used as a regularizer; Wu et al. (2017) proposed
to use Frobenius norm of the Hessian as a metric; Keskar et al. (2017) proposed a metric closely
related to the spectral radius of Hessian. In summary, we compare 4 metrics, all evaluated at a local
minimum w given S. All four metrics go for “smaller values indicate better generalization”.

• Robustness: 1
N

∑
(x,y)∈S ‖Jx[fw(x)]‖22

• Frobenius norm: ‖∇2
wL(S, w)‖2F

• Spectral radius: ρ(∇2
wL(S, w))

• Ours: γ̂(w) = 1
T

∑T
t=1 ln|ξ(St, w0)|, St ⊂ S

Both the Frobenius norm and the spectral radius based metric are related to ours, as from Equation 1
we have ‖∇2

wL(S, w)‖2F = ‖I(w)‖2F and ρ(∇2
wL(S, w)) = ρ(I(w)). These two metric, however,

are too expensive to compute for the entire training set S; we instead calculate them by averaging
the results for T sampled St ⊂ S, similar to when we compute γ̂(w). We leave details of how we
exactly compute these metrics in our experiments to Appendix D.

We perform evaluations in three scenarios, similar to Neyshabur et al. (2017); Keskar et al. (2017).
We examine different local minima due to (1) a confusion set of varying size in training, (2) different
data augmentation schemes, and (3) different batch size. In specific,

• In Scenario I, we randomly select a subset of 10000 images as the training set and train the
DNN with a confusion set consisting of CIFAR-10 samples with random labels. We vary
the size of the confusion set so that the resulting local minima generalize differently to the
test set while all remain close-to-zero training losses. We consider confusion size of 0, 1k,
2k, 3k, 4k and 5k. We calculate all metrics based on the sampled 10000 training images.

• In Scenario II, we vary the level of data augmentation. We apply horizontal flipping, de-
noted flip-only, random cropping from images with 1 pixel padded each side plus
flipping, denoted 1-crop-f, random cropping with 4 pixels padded each side plus flip-
ping, denoted 4-crop-f and no data augmentation at all, denoted no-aug. Under all
schemes, the network achieves perfect training accuracy. All the metrics are computed on
the un-augmented training set.

• In Scenario III, we vary the batch size. Hoffer et al. (2017) suggests that large batch size
leads to poor generalization. We consider the batch size to be 128, 256, 512 and 1024.

The default values for the 3 variables are confusion size 0, 4-crop-f and batch size 128. For each
configuration in each scenario, we train 5 models and report results (average & standard deviations)
of all metrics as well as the test errors (in percentage). For the confusion set experiments, we sample
a new training set and a new confusion set every time. We use the original hyper-parameters of
ResNet-20 in all our experiments, for instance, 200 raining epochs for all scenarios.

The results are in Figure 1, 2 and 3 for Scenario I, II and III, respectively. Our metric significantly
outperforms others and is very effective in capturing the generalization properties, i.e., a lower value
of our metric consistently indicates a better generalizable local minimum.

7.2 EXPERIMENTS ON LOCAL MINIMA REGULARIZATION

We evaluate our regularizer on CIFAR-10 & CIFAR-100 for four different network architectures
including a plain CNN, ResNet-20, Wide ResNet (Zagoruyko & Komodakis, 2016) and DenseNet
(Huang et al., 2017). We use WRN-28-2-B(3,3) from the Wide ResNet paper and the DenseNet-
BC-k=12 from the DensetNet paper. See Appendix E for further architecture details. We denote the
four networks as CNN, ResNet, WRN and DenseNet, respectively.

We manually set α = 0.0001 in all experiments and select the other three hyper-parameters in
Algorithm 1 by validation via a 45k/5k training data split for each of the network architecture on

7
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each dataset. In specific, we consider β ∈ {10, 20, 30, 40, 50, 75, 100, 125}, M ∈ {4, 8, 16} and
τ ∈ {1, 5, 10, 15}. We keep all the other training hyper-parameters, schemes as well as the setup
identical to those in their original paper (details in Appendix E). The training details of the plain
CNN are also in Appendix E. We train 5 separate models for each network-dataset combination and
report the test errors in percentage (mean ± std.) in Table 1, where “+reg” indicates training with
our regularizer applied. The results demonstrate that our method provides consistent generalization
improvement to a wide range of DNNs.

Figure 1: Scenario I: varied size of the confusion set. 5 models are trained for each size of the
confusion set (x-axis). Solid lines are the average result; shaded areas represent the ± 1 standard
deviation (same for Figure 2 and 3). A larger confusion set leads to a higher test error, a trend well
captured by our metric and the other two; the robustness based metric fails.

Figure 2: Scenario II: varied data augmentation schemes. Four different schemes are used. Our
metric works well as an indicator of the test error while all the other metrics completely fail.

Figure 3: Scenario III: varied batch size. Large batch size leads to poor generalization, captured by
all the metrics except for the robustness based one.

Table 1: Test error (%) for CIFAR-10 (1st row) and CIFAR-100 (2nd row). In general, a model with
more parameters admits more space for our regularizer. The representation power of ResNet-20 is
too limited for CIFAR-100 (resulting in poor convergence); so we ignore it in our experiments.

CNN CNN+reg WRN WRN+reg DenseNet DenseNet+reg ResNet ResNet+reg

8.52± 0.08 7.46± 0.13 5.44± 0.04 4.80± 0.10 4.61± 0.08 4.31± 0.08 8.50± 0.31 7.91± 0.25
31.12± 0.35 29.19± 0.21 25.52± 0.15 23.65± 0.14 22.54± 0.32 22.19± 0.28 - -

8 CONCLUSION AND FUTURE WORK

In this paper, we show a bridge between the field of deep learning theory and regularization meth-
ods with respect to the generalizability of local minima. We propose a metric that captures the
generalization properties of different local minima and provide its theoretical analysis including a
generalization bound. We further derive an efficient approximation of the metric and devise a prac-
tical and effective regularizer from it. Empirical results demonstrate our success in both capturing
and improving the generalizability of DNNs. Our exploration promises a direction for future work
on the regularization and optimization of DNNs.
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A PROOF OF EQUATION 1

To prove the second equality in Equation 1, it suffices to prove the following equality:

−∇2
w``S(w) =

∑
(x,y)∈S

K∑
i=1

yi[∇w ln p(cx = i|x;w)∇w ln p(cx = i|x;w)T ]

For convenience, we change the notation of the local minimum from w0 to w and further denote
p(cx = i|x;w) as pxw(i). Since−∇2

w``S(w) = −
∑

(x,y)∈S
∑K
i=1 yi ∇2

w ln pxw(i), for each (x, y) ∈
S and i ∈ {1, 2, ...,K}, we have:

[∇2
w ln pxw(i)]j,k =

∂2

∂wj∂wk
ln pxw(i)

=
∂

∂wj

( ∂
∂wk

pxw(i)

pxw(i)

)

=
pxw(i) ∂2

∂wj∂wk
pxw(i)

pxw(i)2
−

∂
∂wj

pxw(i)

pxw(i)

∂
∂wk

pxw(i)

pxw(i)

=

∂2

∂wj∂wk
pxw(i)

pxw(i)
− ∂

∂wj
ln pxw(i) · ∂

∂wk
ln pxw(i)

Since w0 is a local minimum (also a global minimum) described in Section 4 as yi = pxw(i) for
i = 1, 2, ...,K, when taking the double summation, the first term above becomes:

∑
(x,y)∈S

K∑
i=1

∂2

∂wj∂wk
pxw(i) =

∂2

∂wj∂wk

∑
(x,y)∈S

K∑
i=1

pxw(i) =
∂2

∂wj∂wk
N = 0

Then it follows that:

[∇2
w``S(w)]j,k = −

∑
(x,y)∈S

K∑
i=1

yi[∇w ln pxw(i)∇w ln pxw(i)T ]j,k
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B PROOF OF THE GENERALIZATION BOUND IN SECTION 5.2

First let us review the PAC-Bayes Theorem in McAllester (2003):

Theorem 2. For any data distribution D and a loss function L(·, ·) ∈ [0, 1], let L(D, w) and
L(S, w) be the expected loss and training loss respectively for the model paramterized by w, with
the training set |S|= N . For any prior distribution P with a model class C as its support, any
posterior distribution Q over C (not necessarily Bayesian posterior), and for any δ ∈ (0, 1], we
have with probability at least 1− δ that:

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
2DKL(Q||P) + ln 2N

δ

N − 1

As eγ(w0) = |I(w0)|, we can rewrite the generalization bound we want to prove in Section 5.2 as:

(6)
E

w ∼Q
[L(D, w)] ≤ L0 +

W · V 2/Wπ1/W |I(w0)|1/W

4πe

+ 2

√
W · V 2/Wπ1/W |I(w0)|1/W + 4πeL0 + 2πe ln 2N

δ

2πe(N − 1)

As defined in Section 5.2, given the model classM(w0), whose volume is V , for the neural network
fw, the uniform prior P attains the probability density function p(w) = 1

V for any w ∈ M(w0)

and the posterior Q has density q(w) ∝ e−|L(S,w)−L0|. Based on Assumption 1 and the observed
Fisher information I(w0) derived in Section 4, especially the Equation 2, we have:

L(S, w) = L0 +
1

2
(w − w0)TI(w0)(w − w0) ∀w ∈M(w0)

Denote Σ = [I(w0)]−1 = [∇2
wL(S, w0)]−1. Then Q is a truncated multivariate Gaussian distribu-

tion whose density function q is:

q(w;w0,Σ) =

√
(2π)−n|Σ|−1 exp{− 1

2 (w − w0)TΣ−1(w − w0)}∫
M(w0)

√
(2π)−n|Σ|−1 exp{− 1

2 (w − w0)TΣ−1(w − w0)} dw

=
exp{− 1

2 (w − w0)TΣ−1(w − w0)}∫
M(w0)

exp{− 1
2 (w − w0)TΣ−1(w − w0)} dw

(7)

Denote the denominator of Equation 7 as Z and define:

g(w;w0,Σ) =∆ −1

2
(w − w0)TΣ−1(w − w0)} ≤ 0

Then q can also be written as:

q(w;w0,Σ) =
exp{g(w;w0,Σ)}

Z
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In order to derive a generalization bound in the form of the PAC-Bayes Theorem, it suffices to prove
an upper bound of the KL divergence term:

DKL(Q||P) = E
w∼Q

ln
q(w)

p(w)

= − E
w∼Q

ln
1

V
+ E
w∼Q

ln q(w)

= lnV + E
w∼Q

g(w;w0,Σ) + ln
1

Z

≤ lnV + E
w∼Q

0− ln

(∫
M(w0)

exp{g(w;w0,Σ)} dw
)

≤ lnV − ln

(∫
M(w0)

exp{− max
w∈M(w0)

L(S, w)} dw
)

= lnV − ln

(
V · exp{− max

w∈M(w0)
L(S, w)}

)
= lnV − lnV + h = h

where h is the height ofM(w0) defined in Section 5.1. For convenience, we shift down L(S, w) by
L0 and denote the shifted training loss L0(w) =∆ L(S, w)− L0 so that L0(w0) = 0. Then

L0(w) =
1

2
(w − w0)TΣ−1(w − w0) ∀w ∈M(w0)

Furthermore, the following two sets are equivalent

{w ∈ RW : L(S, w) = h} = {w ∈ RW : L0(w) = h− L0}

both of which are the W -dimensional hyperellipsoid given by the equation L0(w) = h−L0, which
can be converted to the standard form for hyperellipsoids as:

(w − w0)T
Σ−1

2(h− L0)
(w − w0) = 1

The volume enclosed by this hyperellipsoid is exactly the volume ofM(w0), i.e., V ; so we have

πW/2

Γ(W2 + 1)

√
2W (h− L0)W |Σ| = V

Solve for h, with the Stirling’s approximation for factorial Γ(n+ 1) ≈
√

2πn
(n
e

)n
, we have

h = L0 +
(V · Γ(W2 + 1))

2/W

2π|Σ|1/W
≈ L0 +

V 2/Wπ1/WW (W+1)/W |I(w0)|1/W

4πe

where Γ(·) denotes the Gamma function. Notice that for modern DNNs we have W � 1, and so
W

W+1
W ≈W . Then the generalization bound in the form of the PAC-Bayes Theorem is given as:

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
W · V 2/Wπ1/W |I(w0)|1/W + 4πeL0 + 2πe ln 2N

δ

2πe(N − 1)

We can further bound the first term on the right hand side as:

E
w∼Q

[L(S, w)] ≤ E
w∼Q

[ max
w∈M(w0)

L(S, w)] = h

Putting it all together, we can finally obtain Equation 6.
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C DERIVATION OF EQUATION 4

First, let us present the well-known theorem in linear algebra that relates the eigenvalues of a matrix
to those of its sub-matrices.

Theorem 3. Given an n×n real symmetric matrix A with eigenvalues λ1 ≤ ... ≤ λn, for any k < n
denote its principal sub-matrix as B obtained from removing n − k rows and columns from A. Let
ν1 ≤ ... ≤ νk be the eigenvalues of B. Then for any 1 ≤ r ≤ k, we have λr ≤ νr ≤ λr+n−k.

Let {νn}N
′

n=1 be the eigenvalues of 1
W ξt(w0), which is a N ′ ×N ′ sub-matrix of I ′(w0); then

γ̂(w0) =
1

T

T∑
t=1

ln |ξt(w0)| = 1

T

T∑
t=1

ln |W · 1

W
ξt(w0)| = N ′ lnW +

1

T

T∑
t=1

N ′∑
n=1

ln νn

Theorem 2 gives the relation between νn and λn, defined above and in Section 5.3 as the nth smallest
eigenvalues of 1

W ξt(w0) and that of I ′(w0), respectively. For sufficiently largeN ′, we can use νn to
approximate λn. Ignoring the eigenvalues of I ′(w0) larger than λN ′ is reasonable when estimating
γ(w0), since in general the majority of the eigenvalues of the Hessian for DNNs are close to zero
with only a few large “outliers” (Pennington & Worah, 2018; Sagun et al., 2018), and so the smallest
eigenvalues are the dominant terms in γ(w0). A specific bound of the eigenvalues remains an open
question, though. In short, we have

∑N ′

n=1 νn ≈
∑N ′

n=1 λ
′
n and consequently:

W

N ′
γ̂(w0) +W ln

1

W
=
W

N ′
γ̂(w0)−W lnW

=
W

N ′

(
γ̂(w0)−N ′ lnW

)
=

1

T

T∑
t=1

W

N ′

N ′∑
n=1

ln νn

≈ 1

T

T∑
t=1

W

N ′

N ′∑
n=1

lnλ′n

Finally we we have

lim
T→∞

1

T

T∑
t=1

W

N ′

N ′∑
n=1

lnλ′n = γ(w0)

D DETAILS OF CALCULATING THE METRICS IN SECTION 7.1

For the following metrics, we apply estimation by sampling a subset St from the full training set S
for T times and averaging the results:

• Frobenius norm: ‖∇2
wL(S, w)‖2F

• Spectral radius: ρ(∇2
wL(S, w))

• Ours: γ̂(w) = 1
T

∑T
t=1 ln|ξ(St, w0)|

For the Frobenius norm based metric, from Equation 2 we have:

‖∇2
wL(S, w)‖2F = ‖I(w)‖2F =

1

N

∑
(x,y)∈S

K∑
i=1

∥∥∥(∇w[`x(w0)]i)(∇w[`x(w0)]i)
T
∥∥∥2

F

Similar to Equation 3, we approximate y by ỹ and so

‖∇2
wL(S, w)‖2F ≈

1

N

∑
(x,y)∈S

∥∥∥(∇w[`x(w0)]ȳ)(∇w[`x(w0)]ȳ)
T
∥∥∥2

F
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Summing over the entire Hessian matrix is too expensive as there are W ×W ×N entries in total.
We therefore estimate the quantity by first sampling a subset St ⊂ S and then sampling 100,000
entries of (∇w[`x(w0)]ȳ)(∇w[`x(w0)]ȳ)

T . We perform the estimation T times and average the
results, similar to the approach when computing γ̂(w).

Also by Equation 2 and the approximation in Equation 3, the spectral radius of Hessian is equivalent
to the squared spectral norm of 1/

√
NJw[L̃(S, w)]. We also perform estimation (with irrelevant

scaling constants dropped) by sampling St for T times, i.e., via 1
T

∑
t ‖Jw[L̃(St, w)]‖22.

Furthermore, in all our experiments that involves samplings St, we set |St|= N ′ = T = 100.

E ARCHITECTURE AND TRAINING DETAILS IN SECTION 7

Architecture details are as below

• The plain CNN is a 6-layer convolutional neural network similar to the baseline in Lee et al.
(2016) yet without the “mlpconv” layers (resulting in a much fewer number of parameters).
Specifically, the 6 layers has numbers of filters as {64, 64, 128, 128, 192, 192}. We use
3 × 3 kernel size and ReLU as the activation function. After the second and the fourth
convolutional layer we insert a 2 × 2 max pooling operation. After the last convolutional
layer, we apply a global average pooling before the final softmax classifier.

• For ResNet-20 and WRN-28-2-B(3,3), we use the same architecture as in their original
papers, with the only difference that we use pre-activation as in He et al. (2016b). This
results in slightly stronger baselines than the models in their original papers.

• For DenseNet-BC-k=12 we use the the architecture identical to the one used in the original
paper.

The training details are

• For the plain CNN, we initialize the weights according to the scheme in He et al. (2016a)
and apply l2 regularization of a coefficient 0.0001. We perform standard data augmenta-
tion, the one denoted 4-crop-f in Section 7.1. We use stochastic gradient descent with
Nesterov momentum set to 0.9 and a batch size of 128. We train 200 epochs in total with
the learning rate initially set to 0.01 and then divided by 10 at epoch 100 and 150.

• For ResNet-20, WRN-28-2-B(3,3) and DenseNet-BC-k=12, we use the same hyper-
parameters, training schemes, data augmentation schemes, optimization methods, etc., as
those in their original papers, respectively.
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