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ABSTRACT

We propose a novel method for unsupervised image-to-image translation, which
incorporates a new attention module and a new learnable normalization function
in an end-to-end manner. The attention module guides our model to focus on more
important regions distinguishing between source and target domains based on the
attention map obtained by the auxiliary classifier. Unlike previous attention-based
method which cannot handle the geometric changes between domains, our model
can translate both images requiring holistic changes and images requiring large
shape changes. Moreover, our new AdaLLIN (Adaptive Layer-Instance Normaliza-
tion) function helps our attention-guided model to flexibly control the amount
of change in shape and texture by learned parameters depending on datasets.
Experimental results show the superiority of the proposed method compared to
the existing state-of-the-art models with a fixed network architecture and hyper-
parameters.

1 INTRODUCTION

Image-to-image translation aims to learn a function that maps images within two different domains.
This topic has gained a lot of attention from researchers in the fields of machine learning and com-
puter vision because of its wide range of applications including image inpainting (Pathak et al.
(2014); Lizuka et al. (2017))), super resolution (Dong et al.|(2016); Kim et al.| (2016)), colorization
(Zhang et al.[{(2016};2017)) and style transfer (Gatys et al.|(2016); Huang & Belongie (2017)). When
paired samples are given, the mapping model can be trained in a supervised manner using a con-
ditional generative model (Isola et al.| (2017); [Li et al.| (2017a)); [Wang et al| (2018))) or a simple
regression model (Larsson et al.| (2016); |[Long et al.| (2015); [Zhang et al.| (2016)). In unsupervised
settings where no paired data is available, multiple works (Anoosheh et al.[(2018));|Choi et al.|(2018);
Huang et al.| (2018)); |[Kim et al.|(2017); |[Liu et al.|(2017); Royer et al.|(2017); [Taigman et al.| (2017);
Yi et al.[(2017);|Zhu et al.|(2017)) successfully have translated images using shared latent space (Liu
et al.|(2017)) and cycle consistency assumptions (Kim et al.|(2017);|Zhu et al.[(2017)). These works
have been further developed to handle the multi-modality of the task (Huang et al.|(2018))).

Despite these advances, previous methods show performance differences depending on the amount
of change in both shape and texture between domains. For example, they are successful for the
style transfer tasks mapping local texture (e.g., photo2vangogh and photo2portrait) but are typically
unsuccessful for image translation tasks with larger shape change (e.g., selfie2anime and cat2dog)
in wild images. Therefore, the pre-processing steps such as image cropping and alignment are often
required to avoid these problems by limiting the complexity of the data distributions (Huang et al.
(2018)); IL1u et al.[(2017)). In addition, existing methods such as DRIT (Lee et al.| (2018))) cannot
acquire the desired results for both image translation preserving the shape (e.g., horse2zebra) and
image translation changing the shape (e.g., cat2dog) with the fixed network architecture and hyper-
parameters. The network structure or hyper-parameter setting needs to be adjusted for the specific
dataset.

In this work, we propose a novel method for unsupervised image-to-image translation, which in-
corporates a new attention module and a new learnable normalization function in an end-to-end
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Figure 1: The model architecture of U-GAT-IT. The detailed notations are described in Section
Model

manner. Our model guides the translation to focus on more important regions and ignore minor
regions by distinguishing between source and target domains based on the attention map obtained
by the auxiliary classifier. These attention maps are embedded into the generator and discrimina-
tor to focus on semantically important areas, thus facilitating the shape transformation. While the
attention map in the generator induces the focus on areas that specifically distinguish between the
two domains, the attention map in the discriminator helps fine-tuning by focusing on the difference
between real image and fake image in target domain. In addition to the attentional mechanism, we
have found that the choice of the normalization function has a significant impact on the quality of
the transformed results for various datasets with different amounts of change in shape and texture.
Inspired by Batch-Instance Normalization(BIN) (Nam & Kim! (2018))), we propose Adaptive Layer-
Instance Normalization (AdaLIN), whose parameters are learned from datasets during training time
by adaptively selecting a proper ratio between Instance normalization (IN) and Layer Normaliza-
tion (LN). The AdaLIN function helps our attention-guided model to flexibly control the amount of
change in shape and texture. As a result, our model, without modifying the model architecture or
the hyper-parameters, can perform image translation tasks not only requiring holistic changes but
also requiring large shape changes. In the experiments, we show the superiority of the proposed
method compared to the existing state-of-the-art models on not only style transfer but also object
transfiguration. The main contribution of the proposed work can be summarized as follows:

We propose a novel method for unsupervised image-to-image translation with a new atten-
tion module and a new normalization function, AdaLIN.

Our attention module helps the model to know where to transform intensively by distin-
guishing between source and target domains based on the attention map obtained by the
auxiliary classifier.

AdaLIN function helps our attention-guided model to flexibly control the amount of change
in shape and texture without modifying the model architecture or the hyper-parameters.
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2 UNSUPERVISED GENERATIVE ATTENTIONAL NETWORKS WITH ADAPTIVE
LAYER-INSTANCE NORMALIZATION

Our goal is to train a function Gg » ¢ that maps images from a source domain Xs to a target domain
Xt using only unpaired samples drawn from each domain. Our framework consists of two generators
Gsrt and G s and two discriminators Dg and Dy. We integrate the attention module into both
generator and discriminator. The attention module in the discriminator guides the generator to focus
on regions that are critical to generate a realistic image. The attention module in the generator gives
attention to the region distinguished from the other domain. Here, we only explain Gg s ¢ and Dy
(See Fig[I) as the vice versa should be straight-forward.

2.1 MODEL

2.1.1 GENERATOR

Let x 2 Xg; Xg represent a sample from the source and the target domain. Our translation
model Ggx ¢ consists of an encoder Eg, a decoder G, and an auxiliary classifier s, where g(X)
represents the probability that X comes from Xs. Let EX(X) be the k-th activation map of the
encoder and E& (x) be the value at (i;j). Inspired by CAM (Zhou et al.| (2016)), the auxil-
iary classifier is trained to learn the importance weights of the K-th feature map, W'S‘, by using
the global average pooling and global max pooling, i.e., s(X) = ( kWK jj E&u (X)). By ex-
ploiting the importance weights, we can calculate a set of domain specific attention feature map
as(X) =ws Es(x) = fWKEX(X)j1 k ng, where n is the number of encoded feature maps. Then,
our translation model Gg » ¢t becomes equal to G¢(as(X)). Inspired by recent works that use affine
transformation parameters in normalization layers and combine normalization functions (Huang &
Belongie|(2017);[Nam & Kim|(2018))), we equip the residual blocks with AdaLLIN whose parameters
are dynamically computed by a fully connected layer from the attention map.

AdaLIN(; ; )= ( a&a+(@ ) &)+ ;
a 1 a L.

A=t = ——; (1)
Vis VI
clippo;( )
where |, | and ;, L are channel-wise, layer-wise mean and standard deviation respectively,

and are parameters generated by the fully connected layer, is the learning rate and indicates
the parameter update vector (e.g., the gradient) determined by the optimizer. The values of are
constrained to the range of [0, 1] simply by imposing bounds at the parameter update step. Generator
adjusts the value so that the value of is close to 1 in the task where the instance normalization is
important and the value of is close to O in the task where the LN is important. The value of is
initialized to 1 in the residual blocks of the decoder and 0 in the up-sampling blocks of the decoder.

An optimal method to transfer the content features onto the style features is to apply Whitening
and Coloring Transform (WCT) (Li et al,| (2017b)), but the computational cost is high due to the
calculation of the covariance matrix and matrix inverse. Although, the AdaIN (Huang & Belongie
(2017)) is much faster than the WCT, it is sub-optimal to WCT as it assumes uncorrelation between
feature channels. Thus the transferred features contain slightly more patterns of the content. On
the other hand, the LN (Ba et al.| (2016)) does not assume uncorrelation between channels, but
sometimes it does not keep the content structure of the original domain well because it considers
global statistics only for the feature maps. To overcome this, our proposed normalization technique
AdaLIN combines the advantages of AdaIN and LN by selectively keeping or changing the content
information, which helps to solve a wide range of image-to-image translation problems.

2.1.2 DISCRIMINATOR

Let X 2 X¢; Ggu(Xs)g represent a sample from the target domain and the translated source
domain. Similar to other translation models, the discriminator Dy consists of an encoder Ep,, a
classifier Cp,, and an auxiliary classifier p,. Unlike the other translation models, both p,(X) and
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D¢(X) are now trained to discriminate whether X comes from X; or Ggx t(Xs). Given a sample
X, Dt(X) exploits the attention feature maps ap,(X) = Wp, Ep,(X) using the importance weight
Wp, on the encoded feature maps Ep, (X) that is trained by p,(X). Then, our discriminator D¢(X)
becomes equal to Cp, (ap, (X)).

2.2 LOSS FUNCTION

The full objective of our model comprises four loss functions. Here, instead of using the vanilla
GAN objective, we used the Least Squares GAN (Mao et al.[(2017)) objective for stable training.

Adversarial loss An adversarial loss is employed to match the distribution of the translated images
to the target image distribution:

Lisgan =(Ex x[(Dt(¥))’] +Ex x.[(1 Dt(Gsu(x))?]): 2)

Cycle loss To alleviate the mode collapse problem, we apply a cycle consistency constraint to the
generator. Given an image X 2 X, after the sequential translations of X from Xg to X¢ and from
Xt to Xs, the image should be successfully translated back to the original domain:

iy!clte = Ex Xs UX Gt s(Gs L t(x)))jl]: 3
Identity loss To ensure that the color distributions of input image and output image are similar,

we apply an identity consistency constraint to the generator. Given an image X 2 Xy, after the
translation of X using Gg u ¢, the image should not change.

isd!ertltity =Ex x.[x Gsue(X)jl: “4)
CAM loss By exploiting the information from the auxiliary classifiers s and p,, given an image

X 2 TXg; X¢g. Gsut and D¢ get to know where they need to improve or what makes the most
difference between two domains in the current state:

Laam = (Bx x[10g( sG]+ Ex x.[log(l  s())D); )

L2 = Ex x[( 001+ Ex x [(1  b(Gsue(X))?]: (6)

Full objective Finally, we jointly train the encoders, decoders, discriminators, and auxiliary classi-
fiers to optimize the final objective:

min max 1lisgan + 2Lcycle + 3Llidentity ¥ alcam;
Gs-t:Gtos; 55 t DsiDt; b} Dy 9 4 Y ' 7

where 1 =1; ,=10; 3=10; 4=1000. Here, Lisgan = ,SS;atm + Lfségn and the other losses
are defined in the similar way (Lcycle, Lidentity. and Lcam)

3 EXPERIMENTS

3.1 BASELINE MODEL

We have compared our method with various models including CycleGAN (Zhu et al.| (2017)), UNIT
(Liu et al.[(2017)), MUNIT (Huang et al.|(2018)), DRIT (Lee et al.|(2018))), AGGAN (Mejjati et al.
(2018)), and CartoonGAN (Chen et al.|(2018)). All the baseline methods are implemented using the
author’s code.
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Figure 2: Visualization of the attention maps and their effects shown in the ablation experiments:
(a) Source images, (b) Attention map of the generator, (c-d) Local and global attention maps of the
discriminator, respectively. (e) Our results with CAM, (f) Results without CAM.

3.2 DATASET

We have evaluated the performance of each method with five unpaired image datasets including
four representative image translation datasets and a newly created dataset consisting of real photos
and animation artworks, i.e., selfie2anime. All images are resized to 256 x 256 for training. See
Appendix [B|for each dataset for our experiments.

3.3 EXPERIMENT RESULTS

We first analyze the effects of attention module and AdaLIN in the proposed model. We then com-
pare the performance of our model against the other unsupervised image translation models listed
in the previous section. To evaluate, the visual quality of translated images, we have conducted a
user study. Users are asked to select the best image among the images generated from five different
methods. More examples of the results comparing our model with other models are included in the
supplementary materials.

3.3.1 CAM ANALYSIS

First, we conduct an ablation study to confirm the benefit from the attention modules used in both
generator and discriminator. As shown in Fig[2](b), the attention feature map helps the generator to
focus on the source image regions that are more discriminative from the target domain, such as eyes
and mouth. Meanwhile, we can see the regions where the discriminator concentrates its attention to
determine whether the target image is real or fake by visualizing local and global attention maps of
the discriminator as shown in Fig [2] (¢) and (d), respectively. The generator can fine-tune the area
where the discriminator focuses on with those attention maps. Note that we incorporate both global
and local attention maps from two discriminators having different size of receptive field. Those
maps can help the generator to capture the global structure (e.g., face area and near of eyes) as well
as the local regions. With this information some regions are translated with more care. The results
with the attention module shown in Fig 2] (e) verify the advantageous effect of exploiting attention
feature map in an image translation task. On the other hand, one can see that the eyes are misaligned,
or the translation is not done at all in the results without using attention module as shown in Fig[Z]

®.

3.3.2 ADALIN ANALYSIS

As described in Appendix [A] we have applied the AdaLIN only to the decoder of the generator.
The role of the residual blocks in the decoder is to embed features, and the role of the up-sampling
convolution blocks in the decoder is to generate target domain images from the embedded features.
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