
Under review as a conference paper at ICLR 2020

CONSERVATIVE UNCERTAINTY ESTIMATION
BY FITTING PRIOR NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Obtaining high-quality uncertainty estimates is essential for many applications of
deep neural networks. In this paper, we theoretically justify a scheme for esti-
mating uncertainties, based on sampling from a prior distribution. Crucially, the
uncertainty estimates are shown to be conservative in the sense that they never un-
derestimate a posterior uncertainty obtained by a hypothetical Bayesian algorithm.
We also show concentration, implying that the uncertainty estimates converge to
zero as we get more data. Uncertainty estimates obtained from random priors
can be adapted to any deep network architecture and trained using standard su-
pervised learning pipelines. We provide experimental evaluation of random priors
on calibration and out-of-distribution detection on typical computer vision tasks,
demonstrating that they outperform deep ensembles in practice.

1 INTRODUCTION

Deep learning has achieved huge success in many applications. In particular, increasingly often, it
is used as a component in decision-making systems. In order to have confidence in decisions made
by such systems, it is necessary to obtain good uncertainty estimates, which quantify how certain
the network is about a given output. In particular, if the cost of failure is large, for example where
the automated system has the capability to accidentally hurt humans, the availability and quality
of uncertainty estimates can determine whether the system is safe to deploy at all (Carvalho, 2016;
Leibig et al., 2017; Michelmore et al., 2018). Moreover, when decisions are made sequentially, good
uncertainty estimates are crucial for achieving good performance quickly (Bellemare et al., 2016;
Houthooft et al., 2016; Ostrovski et al., 2017; Burda et al., 2018).

Because any non-Bayesian inference process is potentially sub-optimal (De Finetti, 1937), an im-
portant theoretical desideratum for a method of obtaining uncertainty estimates is that it should be
relatable to Bayesian inference with a useful prior. Deep ensembles (Lakshminarayanan et al., 2017)
and Monte-Carlo dropout (Gal & Ghahramani, 2016), the two most popular methods available for
uncertainty estimation in deep networks today, struggle with this requirement. While deep ensem-
bles can be related (Rubin, 1981) to Bayesian inference in settings where the individual ensembles
are trained on subsets of the data, this is not how they are used in practice. In order to improve data
efficiency, all ensembles are typically trained using the same data (Lakshminarayanan et al., 2017),
resulting in a method which does not have a theoretical justification. Moreover, deep ensembles can
give overconfident uncertainty estimates in practice. On the other hand, while Monte-Carlo dropout
can be interpreted as an approximation to a certain form of Bayesian inference (Gal & Ghahramani,
2016), questions have been raised over the use of singular KL-divergences in the original proof
(Hron et al., 2018). In practice, MC dropout can give arbitrarily overconfident estimates (Foong
et al., 2019). A third category of approaches, known as Bayesian Neural Networks (Blundell et al.,
2015; Neal, 1996), maintains a distribution over the weights of the neural network. These methods
typically have a Bayesian justification, but training them is both difficult and relies on procedures
different from standard supervised learning, for which most Machine Learning pipelines are op-
timized in practice. While variants of BNNs that use an optimization process similar to standard
supervised training have been proposed (Welling & Teh, 2011), tuning them is hard and achieving a
good approximation to the posterior is difficult (Brosse et al., 2018).

1

Under review as a conference paper at ICLR 2020

4 2 0 2 4
0.2

0.1

0.0

0.1
Prior
Predictor
Training data

4 2 0 2 4

0.1

0.2

0.3
Prior
Predictor
Training data

4 2 0 2 4

1

0

1

2
Ground truth
Prediction
Training data

Figure 1: On top, two predictors
(green) were trained to fit two randomly-
generated priors (red). On the bottom, we
obtain uncertainties from the difference
between predictors and priors.

In this work, we use another way of obtaining uncer-
tainties for deep networks, based on fitting random pri-
ors (Osband et al., 2018; 2019; Burda et al., 2018). To
obtain the uncertainty estimates, we first train a predic-
tor network to fit a prior (Figure 1, top two plota). Faced
with a novel input point, we obtain an uncertainty (Fig-
ure 1, bottom plot) by measuring the error of the predic-
tor network against this pattern. Intuitively, these errors
will be small close to the training points, but large far
from them. The patterns themselves are drawn from
randomly initialized (and therefore untrained) neural
networks. While this way of estimating uncertainties
was known before (Osband et al., 2019) and was used
to great effect in the context of Reinforcement Learning
(Burda et al., 2018), it did not have a theoretical justifi-
cation beyond the Bayesian linear regression setting.

Contributions We justify how the process of fitting
random priors can be used to produce estimates in the
uncertainty of the output of neural networks with any
architecture. In particular, we show in Lemma 1 and
Proposition 1 that these uncertainty estimates are con-
servative, meaning they are never more certain than a
Bayesian algorithm would be. Moreover, in Proposi-
tion 2 we show concentration, i.e. that the uncertain-
ties become zero with infinite data. We use this theory
to formulate practical insights about the training pro-
cess, justifying the use of a predictor network with a
more flexible architecture than the prior. Empirically,
we evaluate the calibration and out-of-distribution per-
formance of our uncertainty estimates on typical com-
puter vision tasks, showing a practical benefit over deep
ensembles.

2 PRELIMINARIES

Stochastic processes We are going to reason about uncertainty within the formal framework of
stochastic processes. We now introduce the required notations. A stochastic process is a collec-
tion of random variables {f(x)}. We consider processes where x ∈ RK and the random-variable
f(x) takes values in RM . A stochastic process has exchangeable outputs if the distribution does
not change when permuting the M entries in the output vector. Allowing a slight abuse of notation,
we denote the finite-dimensional distribution of the process {f(x)} for the set X = {xi}i=1,...,N

as f(x1, . . . , xN) = f(X). In practice, the finite-dimensional distribution reflects the idea of re-
stricting the process to points x1, . . . , xN and marginalizing over all the other points. Inference can
be performed on stochastic processes similarly to probability distributions. In particular, we can
start with some prior process {f(x)}, observe a set of N training points X = {xi}i=1,...,N and la-
bels y = {yi}i=1,...,N and then consider the posterior process {fXy(x)}, whose finite-dimensional
distributions are given by fXy(x?1 . . . x

?
N ′) = f(x?1 . . . x

?
N ′ |x1, . . . , xN , y1, . . . , yN) for any set of

testing points x?1 . . . x
?
N ′ . We use subscripts to denote conditioning on the dataset throughout the

paper.

Gaussian processes (GPs) A stochastic process is Gaussian (Williams & Rasmussen, 2006), if all
its finite-dimensional distributions are Gaussian. The main advantage of GPs is that the posterior
process can be expressed in a tractable way. GPs are often used for regression, where we are learning
an unknown function1 φ : RK → R from noisy observations. Since a Gaussian distribution is com-

1We depart from standard notation, which uses f , because we will be using f to denote a sample from the
prior process.

2

Under review as a conference paper at ICLR 2020

pletely identified by its first two moments, a GP can be defined by a mean function and a covariance
function. Formally, the notation GP(µ, k) refers to a GP with with mean function µ : RK → R,
a positive-definite kernel function k : RK × RK → R. GPs can be used to model two kinds
of uncertainty: epistemic uncertainty, which reflects lack of knowledge about unobserved values of
φ and aleatoric uncertainty, which reflects measurement noise. When performing regression, we
start with a zero-mean prior GP(0, k) and then observe N training points X = {xi}i=1,...,N and
labels y = {yi}i=1,...,N where yi = φ(xi) + εi. Here, the i.i.d. random variables εi ∼ N (0, σ2

A)
model the aleatoric noise. We obtain the posterior process on GP(µXy, kX). For GPs, the mean and
covariance of the posterior GP on y evaluated at x? can be expressed as

µXy(x?) = k>? (K + σ2
AI)
−1y and (1)

σ2
X(x?) , kX(x?, x?) + σ2

A = k?? − k>? (K + σ2
AI)
−1k? + σ2

A. (2)

In particular, the posterior covariance does not depend on y. In the formula above, we use the kernel
matrix K ∈ RN × RN defined as Kij = k(xi, xj), where xi and xj are in the training set. We also
use the notation k? : RN for the vector of train-test correlations {k?}i = k(xi, x

?), where xi is in
the training set and k(x?, x?) is similarly defined. The shorthand σ2

X(x?) introduced in equation 2
denotes the posterior covariance at a single point.

Bayes Risk We are often interested in minimizing the Mean Squared Error Ef
[
(f(x?)− w)2

]
,

where x? is a given test point and w is a variable we are allowed to adjust. A known result of
Bayesian decision theory (Robert, 2007; Murphy, 2012) is that the minimizer of the MSE is given
by the expected value of f , i.e.

argmin
w

Ef
[
(f(x?)− w)2

]
= Ef [f(x?)]. (3)

Equation 3 holds for any stochastic process f , including when f is a posterior process obtained by
conditioning on some dataset. A consequence of equation 3 is that it is impossible to obtain a MSE
lower than the one obtained by computing the posterior mean of f .

3 ESTIMATING UNCERTAINTY FROM RANDOM PRIORS

Algorithm 1 Training the predictors.

function TRAIN-UNCERTAINTIES(X)
for i = 1 . . . B do
f i ∼ {f(x)} . random prior
hXfi ← FIT(X, f i(X))

end for
return fi, hXfi

end function

function FIT(X, f i(X))
L(h) ,

∑
x∈X ‖f

i(x)− h(x)‖2
hXfi ← OPTIMIZE(L) . SGD or similar
return hXfi . return trained predictor

end function

Intuition Uncertainties obtained from ran-
dom priors have an appealing intuitive justifi-
cation. Consider the networks in the top part
of Figure 1. We start with a randomly initial-
ized prior network, shown in blue. Whenever
we see a datapoint, we train the predictor net-
work (green) to match this prior. Uncertainties
can then be obtained by considering the squared
error between the prior and the predictor at a
given point. An example uncertainty estimate
is shown as a shaded blue area in the bottom
of Figure 1. While it may at first seem that the
squared error is a poor measure of uncertainty
because it can become very small by random
chance, we show in Section 4.1 that this is very
unlikely. In Section 4.2, we show that this er-
ror goes down to zero as we observe more data.
Similarly to GP inference, uncertainty estima-
tion in our framework does not depend on the
regression label. The prediction mean (blue curve in the bottom part of Figure 1) is obtained by
fitting a completely separate neural network. In section 6, we discuss how this framework differs
from deep ensembles (Lakshminarayanan et al., 2017).

Prior The process of obtaining the network uncertainties involves randomly initialized prior net-
works, which are never trained. While this may at first appear very different from they way deep
learning is normally done, these random networks are a crucial component of our method. We show

3

Under review as a conference paper at ICLR 2020

in Section 4.1 that the random process that corresponds to initializing these networks can be inter-
preted as a prior of a Bayesian inference procedure. A prior conveys the information about how
the individual data points are related. The fact that we are using random networks is a very safe
choice. In fact, whenever deep learning is used in practice, with or without uncertainty estimates,
we are implicitly making the assumption that the network architecture is appropriate for the dataset
anyway.

Algorithm The process of training the predictor networks is shown in Algorithm 1. The function
TRAIN-UNCERTAINTIES first generates random priors, i.e. neural networks with random weights.
In our notation, it corresponds to sampling functions from the prior process {f(x)}. These priors,
evaluated at points from the dataset X = {xi}i=1,...,N are then used as labels for supervised learn-
ing, performed by the function FIT. After training, when we want to obtain an uncertainty on φ at a
given test point x?, we use the formula

σ̂2(x?) = max(0, σ̂2
m(x?) + βσ̂2

s(x?)− σ2
A). (4)

Here, the quantity σ̂2
m is the sample mean of the squared error. We will show in Section 4 that it is

an unbiased estimator of a variable that models the uncertainty. On the other hand, σ̂2
s is the sample-

based estimate of the standard deviation of squared error across bootstraps, needed to quantify our
uncertainty about what the uncertainty is. The hyper-parameter β controls the degree to which this
uncertainty is taken into account. Formally, the quantities are defined as

σ̂2
m(x?) ,

∑B
i=1

1
MB ‖f(x?)− hXfi(x?)‖

2, (5)

σ̂2
s(x?) ,

√∑B
i=1

1
B (σ̂2

m(x?)− ‖f(x?)− hXfi(x?)‖2)2. (6)

In the above equations, B is the number of prior functions and each prior and predictor network has
M outputs. We defer the discussion of details of network architecture to Section 5. Our experiments
(Section 7) show that it is often sufficient to use B = 1 in practice.

4 THEORETICAL RESULTS

In Section 3, we introduced a process for obtaining uncertainties in deep learning. We now seek to
provide a formal justification. We begin by setting the notation. We define the expected uncertainties
as

σ̃2
m(x?) , Ef

[
σ̂2
m(x?)

]
= Ef

[
1
M ‖f(x?)− hXf (x?)‖

2
]
. (7)

In other words, σ̃2
m is the expected version of the sample-based uncertainties σ̂2

m(x?) introduced
in equation 5. Since Bayesian inference is known to be optimal (De Finetti, 1937; Jaynes, 2003;
Robert, 2007), the most appealing way of justifying uncertainty estimates σ̃2

m and σ̂2
m is to relate

them to a Bayesian posterior. We do this in two stages. First, in Section 4.1, we prove that the
obtained uncertainties are larger than ones arrived at by Bayesian inference. This means that our
uncertainties are conservative, ensuring that our algorithm is never more certain than it should be.
Next, in Section 4.2, we show that uncertainties concentrate, i.e., they become small as we get more
and more data. These two properties are sufficient to justify the use of our uncertainties in many
applications.

4.1 UNCERTAINTIES FROM RANDOM PRIORS ARE CONSERVATIVE

From the point of view of safety, it is preferable to overestimate the ground truth uncertainty than
to underestimate it. We now show that this property holds for uncertainties obtained from random
priors. First, we justify conservatism for the expected uncertainty σ̃2

m defined in equation 7 and then
for the sampled uncertainty σ̂2

m defined in equation 5.

Amortized Conservatism We first consider a weak form of this conservatism, which we call
amortized. It guarantees that σ̃2

m is never smaller than the average posterior uncertainty across
labels sampled from the prior. Formally, amortized conservatism holds if for any test point x? we
have

σ̃2
m(x?) ≥ Ef(X)

[
σ2
Xf (x?)

]
. (8)

4

Under review as a conference paper at ICLR 2020

Here σ2
Xf (x?) corresponds to the second moment of the posterior process {fXf (x)}. We will

introduce a stronger version of conservatism, which does not have an expectation on the right-hand
side, later in this section (eq. 12) . For now, we concentrate on amortized conservatism, which holds
under very general conditions.

Lemma 1. For any function h : RN×(K+1) → RM , for any test point x? ∈ RK and for any
stochastic process {f(x)}x∈RK with all second moments finite and exchangeable outputs, it holds
that

σ̃2
m(x?) = Ef(X)

[
σ2
Xf (x?) +

1
M ‖µXf (x?)− hXf (x?)‖

2
]
. (9)

Strict Conservatism Lemma 1 holds for any prior process {f(x)}. However, the prior process
used by Algorithm 1 is not completely arbitrary. The fact that prior samples are obtained by ini-
tializing neural networks with independently sampled weights gives us additional structure. In fact,
it can be shown that randomly initialized neural networks become close to GPs as the width of the
layers increases. While the original result due to Neal (1996) held for a simple network with one
hidden layer, it has been extended to a wide class of popular architectures, including to CNNs and
RNNs of arbitrary depth (Matthews et al., 2018; Lee et al., 2018; Novak et al., 2019; Williams,
1997; Le Roux & Bengio, 2007; Hazan & Jaakkola, 2015; Daniely et al., 2016; Garriga-Alonso
et al., 2019). Recently, it has been shown to hold for a broad class of functions trainable by gradient
descent (Yang, 2019). While the precise statement of these results involves technicalities which fall
beyond the scope of this paper, we recall the upshot. For a family of neural networks {fW (x)},
where the weights are sampled independently and W is the width of the hidden layers, there exist a
limiting kernel function k∞ such that

lim
W→∞

[{fW (x)}] = GP(0, k∞, 0). (10)

In other words, as the size of the hidden layers increases, the stochastic process obtained by initializ-
ing networks randomly converges in distribution to a GP. In the context of our uncertainty estimates,
this makes it is reasonable for W large enough to consider the prior to be a GP. We stress that the
GP assumption has to hold only for the prior network, which is never trained. We do not make any
assumptions about connections between the predictor training process and GPs. This allows us to
state 1, which is proved in the appendix.
Proposition 1 (Strict Conservatism in Expectation). Assume that f is a GP. Then for any function
h : RN×K → RM , we have

σ̃2
m(x?) = σ2

X(x?) + Ef(X)

[
1
M ‖µXf (x?)− hXf (x?)‖

2
]︸ ︷︷ ︸

≥0

. (11)

Moreover, equality holds if and only if hXf (x?) = µXf (x?).

Proposition 1 is useful because it implies that uncertainty estimates are strictly conservative in the
sense of

σ̂2(x?) ≥ σ2
X(x?). (12)

This statement is stronger than the amortized conservatism in equation 8. Intuitively, equation 12
can be interpreted as saying that our uncertainty estimates are never too small. This confirms the
intuition expressed by Burda et al. (2018) that random priors do not overfit.

Finite Bootstraps Lemma 1 above shows conservatism for expected uncertainties, i.e. σ̃2
m intro-

duced in equation 8. However, in practice we have to estimate this expectation using a finite number
of samples, and use the sampled uncertainties σ̂2

m defined in equation 5. We now state a conservatism
guarantee that holds even in the case of finite samples.
Lemma 2. Assume that the random variable σ̂2

m(x?) has finite variance upper bounded by σ2
S . With

probability 1− δ, we have σ̂2
m(x?) +

1√
δ
σS ≥ σ̃2

m(x?).

In practice, Lemma 2 says that the uncertainty estimates σ̂2
m(x?)+

1√
δ
σS are conservative with high

probability. However, applying the Lemma requires the knowledge of σS . We now provide an upper
bound.

5

Under review as a conference paper at ICLR 2020

Lemma 3. Assume that the GP {f(x)} is zero mean with exchangeable outputs and the function
hXf takes values in [−U,U]M . Assume that permuting the outputs of f produces the same permu-
tation in the outputs of hXf . With probability 1− δ, we have

σ2
S ≤ 1

B

(
4U4 + (σ̂2

0(x?))
2C
)
. (13)

Here, σ̂2
0(x?) is a sample-based estimate of the prior variance obtained with B0 samples and C =(

B0−1
χ2
I(δ)

)2
, where χ2

I denotes the inverse CDF of the Chi-Squared distribution with B0 − 1 degrees
of freedom.

Combining Lemmas 2 and 3 gives us a formal conservatism guarantee for the setting of finite boot-
straps. In cases where conservatism is desired, but not absolutely essential, we can avoid the tor-
turous calculation of Lemma 3 and replace σ2

S with its sample-based estimate σ̂2
s(x?), defined in

equation 5. In this case, the conservatism guarantee is only approximate. We have done this to
obtain equation 4, used by the algorithm in practice.

4.2 UNCERTAINTIES FROM RANDOM PRIORS CONCENTRATE

While the conservatism property in Proposition 1 is appealing, in order for the uncertainty estimates
to be useful, we need to make sure that they concentrate, i.e. that the uncertainties σ̂2 become small
with more data. We obtain this result by assuming that the class of neural networks being fitted is
Lipschitz-continuous and bounded. Intuitively, By assumption of Lipschitz continuity, the predictors
hXf cannot behave very differently on points from the training and test sets, since both come from
the same data distribution. To show this formally, we use standard Rademacher tools to obtain a
bound on the expected uncertainty in terms of the squared error on the training set. This process is
formalized in Proposition 2.

Proposition 2. If the training converges, i.e. the training loss 1
MN

∑N
i=1 ‖f(xi)−hXf (xi)‖2 = σ2

A
for arbitrarily large training sets, then assuming the predictors hXf are bounded and Lipschitz
continuous with constant L, then under technical conditions the uncertainties concentrate, i.e.
σ̂2(x?)→ 0 as N →∞ and B →∞ with probability 1.

The proof and the technical conditions are given in Appendix C. Proposition 2 assumes that the
training error is zero for arbitrarily large training sets, which might at first seem unrealistic. We
argue that this assumption is in fact reasonable. The architecture of our predictor networks (Figure
2, right diagram) is a superset of the prior architecture (Figure 2, left diagram), guaranteeing the
existence of weight settings for the predictor that make the training loss zero. Recent results on deep
learning optimization (Du et al., 2019; Allen-Zhu et al., 2019) have shown that stochastic gradient
descent can in general be expected to find representable functions.

5 PRACTICAL CONCLUSIONS FROM THE THEORY

We now re-visit the algorithm we defined in Section 3, with the aim of using the theory above to
obtain practical improvements in the quality of the uncertainty estimates.

Architecture and Choosing the Number of Bootstraps Our conservatism guarantee in Proposi-
tion 1 holds for any architecture for the predictor hXf . In theory, the predictor could be completely
arbitrary and does not even have to be a deep network. In particular, there is no formal requirement
for the predictor architecture to be the same as the prior. On the other hand, to show concentration
in Proposition 2, we had to ensure that the prior networks are representable by the predictor. In
practice, we use the architecture shown in Figure 2, where the predictor mirrors the prior, but has
additional layers, giving it more representational power. Moreover, the architecture requires choos-
ing the number of bootstraps B. Our experiments in Section 7 show that even using B = 1, i.e. one
bootstrap, produces uncertainty estimates of high quality in practice.

Modeling Epistemic and Aleatoric Uncertainty Corollary 1 and Proposition 2 hold for any
Gaussian Process. When choosing the process appropriately, the random prior framework can be
used to model both epistemic and aleatoric uncertainty. The amount of aleatoric uncertainty can

6

Under review as a conference paper at ICLR 2020

M outputs

prior networks are randomly sampled

xi f

B
bootstraps

M outputs

predictors are trained on xi ∈ RK

xi

B
bootstraps

hXf

Figure 2: Architecture of the random prior networks f and predictor networks hXf . The predictor
networks hXf typically share the same architectural core, but have additional layers relative to the
prior networks.

be adjusted by choosing the right prior. For example, we can use the prior process {f(x)} =
{n(x) + ε(x)σ2

A}. Samples from the epistemic component {n(x)} are obtained by randomly ini-
tializing neural networks, while samples from {ε(x)σ2

A} are obtained by sampling from N (0, σ2
A)

at each x independently.

6 PRIOR WORK

Randomized Prior Functions (RPFs) Our work was inspired by, an builds on, Randomised Prior
Functions (Osband et al., 2019; 2018), but it is different in two important respects. First, the exist-
ing theoretical justification for RPFs only holds for Bayesian linear regression (Osband et al., 2018,
equation 3) with non-zero noise2 added to the priors. In contrast, our results are much more general
and hold for any deep network with or without added aleatoric noise. Second, we are targeting a
slightly different setting. While RPFs were designed as a way of sampling functions from the pos-
terior, we provide estimates of posterior uncertainty at a given test point. Our algorithm is based on
the work by Burda et al. (2018), who applied RPFs to exploration in MDPs, obtaining state-of-the
art results, but without justifying their uncertainty estimates formally. Our paper provides this miss-
ing justification, while also introducing a way of quantifying our error in estimating the uncertainty
itself. Moreover, since Burda et al. (2018) focused on the application of RPFs to Reinforcement
Learning, they only performed out-of-distribution evaluation on the relatively easy MNIST dataset
(LeCun, 1998). In contrast, in Section 7 we evaluate the uncertainties on more complex vision tasks.

Deep Ensembles The main competing approach for obtaining uncertainties in deep learning are
deep ensembles (Lakshminarayanan et al., 2017). Building on the bootstrap (Efron & Tibshirani,
1994), deep ensembles maintain several bootstraps of a deep network and quantify epistemic uncer-
tainty by measuring how their outputs vary. Deep ensembles have two major shortcomings. First,
they do not have theoretical support in the case when all the members of the ensemble are trained
on the same data, which is how they are used in practice (Lakshminarayanan et al., 2017). Second,
because they use representations trained on regression labels, they tend to learn similar representa-
tions for different inputs with similar labels, which can lead to over-fitting the uncertainty estimates.
We show empirically in section 7 that deep ensembles can give overconfident uncertainty estimates,
particularly on points that have the same label as points in the training set. On the other hand, our
method does not exhibit such overconfidence, while taking a similar time to train.

Dropout In cases where it is not economical to train more than one network, uncertainties can
be obtained with dropout (Srivastava et al., 2014; Gal & Ghahramani, 2016). Dropout has been
interpreted as an approximation to a certain form of Bayesian inference (Gal & Ghahramani, 2016).
However, the justification of dropout as a variational approximation has been recently called into
question due to the existence of undefined KL-divergences in the original proof (Hron et al., 2018).

2The existing justification of RPFs (Osband et al., 2019, Section 5.3.1) involves a division by the noise
variance.

7

Under review as a conference paper at ICLR 2020

0.0 2.5 5.0 7.5
0.000

0.005

0.010

RP, seen
B = 1
B = 5
B = 10

0.0 0.5 1.0
0.00

0.01

0.02

0.03

DE, seen
B = 1
B = 5
B = 10

0.0 0.5 1.0
0.00

0.02

DE+AT, seen
B = 1
B = 5
B = 10

0.0 0.5 1.0
0.00

0.01

DR, seen
B = 1
B = 5
B = 10

0.0 2.5 5.0 7.5
0.000

0.002

RP, unseen
B = 1
B = 5
B = 10

0.0 0.5 1.0
0.00

0.01

0.02
DE, unseen

B = 1
B = 5
B = 10

0.0 0.5 1.0
0.0000

0.0025

0.0050

0.0075
DE+AT, unseen

B = 1
B = 5
B = 10

0.0 0.5 1.0
0.000

0.005

0.010 DR, unseen
B = 1
B = 5
B = 10

Figure 3: Distribution of uncertainty estimates for various algorithms. Top row shows seen data,
bottom row shows unseen data from CIFAR-10.

Moreover, since dropout implicitly approximates non-Gaussian weight distribution with Gaussians,
it exhibits spurious patterns in the obtained uncertainties, which can lead to arbitrarily overconfident
estimates (Foong et al., 2019). In contrast, due to the conservatism property, random priors avoid
such overconfidence.

7 EXPERIMENTS

Encouraged by the huge empirical success of random priors in Reinforcement Learning (Burda et al.,
2018), we wanted to provide an evaluation in a more typical supervised learning setting. We tested
the uncertainties in two ways. First, we investigated calibration, i.e. whether we can expect a higher
accuracy for more confident estimates. Next, we checked whether the uncertainties can be used for
out-of-distribution detection. We compared to two competing approaches for uncertainty detection:
deep ensembles (Lakshminarayanan et al., 2017) and spatial concrete dropout (Gal et al., 2017).
The same ResNet architecture served as a basis for all methods. Details of the implementation are
provided in Appendix A.

RP DE DE
+AT DR

B=1
Train v. cat/deer 0.99 0.83 0.96 0.81
Train v. vehicles 1.00 0.82 0.96 0.76
Train v. excluded 1.00 0.82 0.96 0.77
Train v. SVHN 0.95 0.88 0.96 0.86

B=10
Train v. cat/deer 1.00 0.95 0.99 0.82
Train v. vehicles 1.00 0.92 0.98 0.78
Train v. excluded 1.00 0.93 0.98 0.79
Train v. SVHN 0.97 0.94 0.99 0.87

Table 1: Out-of-distribution AUROC for random
priors (RP), deep ensembles (DE), deep ensem-
bles with adversarial training (DE+AT) and spa-
tial concrete dropout (DR). Estimated confidence
intervals are provided in Appendix B.

Out-Of-Distribution Detection We evalu-
ated the uncertainty estimates on out-of-
distribution detection. To quantify the results,
we evaluated the area under the ROC curve
(AUROC) for the task of deciding whether a
given image comes from the same distribution
or not. All methods were trained on four classes
from the CIFAR-10 (Krizhevsky et al., 2009)
dataset. We then tested the resulting networks
on images from withheld classes and on the
SVHN dataset (Netzer et al., 2011), which con-
tains completely different images. Results are
shown in Table 1. Considering the statistical
errors (see Appendix B), random priors per-
formed slightly better than deep ensembles with
adversarial training for B = 1 and about the
same for B = 10. Dropout performed worse,
but was cheaper to train. In order to gain a more
finely-grained insight into the quality of the un-
certainties, we also show uncertainty histograms in Figure 3. The figure shows the distribution
of uncertainty estimates for seen data (top row) vs. unseen data (bottom row) for bootstrap sizes
B = {1, 5, 10}. The main conclusion is that uncertainties obtained from random priors are al-
ready well-separated with B = 1, while deep ensembles need more bootstraps to achieve the full
separation between test and train examples.

8

Under review as a conference paper at ICLR 2020

024681012
Number of points included [x1000]

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

B = 1

RP
DE
DE+AT
DR

024681012
Number of points included [x1000]

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

B = 5

RP
DE
DE+AT
DR

024681012
Number of points included [x1000]

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

B = 10

RP
DE
DE+AT
DR

Figure 4: Calibration curves showing the relationship between uncertainty (horizontal axis) and
accuracy (vertical axis) for B = 1, 5, 10 on CIFAR-10.

050100150200
Number of points included

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

B = 1

RP
DE
DE+AT
DR

050100150200
Number of points included

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

B = 5

RP
DE
DE+AT
DR

050100150200
Number of points included

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

B = 10

RP
DE
DE+AT
DR

Figure 5: The relationship between uncertainty (horizontal axis) and accuracy (vertical axis) forB =
1, 5, 10 on a subset of 75 samples from CIFAR-10. In well-calibrated models, accuracy increases as
uncertainty declines.

Calibration Good uncertainty estimates have the property that accuracy increases as we become
more certain, a property known as calibration. We measured it by evaluating average accuracy on
the subset of images with uncertainty smaller than a given value. We trained on four classes from
the CIFAR-10 (Krizhevsky et al., 2009) dataset. We then tested the resulting networks on the whole
dataset, which included both the seen and unseen classes. Results are shown in Figure 4. Ideally, in a
calibrated method, these curves should be increasing, indicating that a method always becomes more
accurate as it becomes more confident. In coarse terms, Figure 4 confirms that all methods except
a degenerate deep ensemble with only one bootstrap are roughly monotonic. However, uncertainty
estimates from random priors are more stable, showing montonicity on a finer scale as well as
on a large scale. Interestingly, calibration improved only slightly when increasing the number of
bootstraps B.

RP DE DE
+AT DR

B=1
Train v. excluded 1.00 0.90 0.89 0.91
Train v. SVHN 1.00 0.95 0.94 0.97

B=10
Train v. excluded 1.00 0.94 0.90 0.92
Train v. SVHN 1.00 0.97 0.95 0.97

Table 2: Out-of-distribution AUROC for the same
models as above (see Tab. 1) on subsampled data.
Numbers are accurate up to ±0.01.

Subsampling Ablation In the previous ex-
periment, we kept the architectural and opti-
mization choices fixed across algorithms. This
ensured a level playing field, but meant that we
were not able to obtain zero training error on
the predictor networks used by random priors.
However, we also wanted to evaluate random
priors in the setting of zero training error, which
is assumed by our concentration result in Sec-
tion 4.2. To do this, we used a smaller set of
training images, while still keeping the network
architecture the same. This allowed us to obtain
complete convergence. Results of this ablation

9

Under review as a conference paper at ICLR 2020

0 5 10 15 20
0.00

0.05

0.10

RP, seen
B = 1
B = 5
B = 10

0.00 0.25 0.50 0.75 1.00
0.00

0.02

0.04
DE, seen

B = 1
B = 5
B = 10

0.00 0.25 0.50 0.75 1.00
0.00

0.02

0.04
DE+AT, seen

B = 1
B = 5
B = 10

0.00 0.25 0.50 0.75 1.00
0.00

0.02

0.04
DR, seen

B = 1
B = 5
B = 10

0 5 10 15 20
0.00

0.01

0.02
RP, unseen

B = 1
B = 5
B = 10

0.00 0.25 0.50 0.75 1.00
0.00

0.01

0.02
DE, unseen

B = 1
B = 5
B = 10

0.00 0.25 0.50 0.75 1.00
0.00

0.01

0.02
DE+AT, unseen

B = 1
B = 5
B = 10

0.00 0.25 0.50 0.75 1.00
0.000

0.005

0.010

0.015

DR, unseen
B = 1
B = 5
B = 10

Figure 6: Distribution of uncertainty estimates for various algorithms. Top row shows seen data,
bottom row shows unseen data from CIFAR-10, where we trained on a sample of 75 images from
the training set.

are shown in Figures 5 and 6, as well as Table 2, analogous to our results on the full dataset pre-
sented above. In this sub-sampled regime, the random prior method easily outperformed competing
approaches, showing better calibration (Fig. 5). The histograms in Figure 6 also demonstrate good
separation between seen and unseen data. In the out-of-distribution benchmarks reported in Table 2,
the random prior method has comfortably outperformed the baselines. While this training regime
is not practical for real-life tasks, it demonstrates the potential performance of random priors when
trained to full convergence.

Summary of experiments We have shown that uncertainties obtained from random priors achieve
competitive performance with fewer bootstraps in a regime where the network architecture is typi-
cal for standard supervised learning workloads. Random priors showed superior performance in a
regime where the predictors can be trained to zero loss.

8 CONCLUSIONS

We provided a theoretical justification for the use of random priors for obtaining uncertainty esti-
mates in the context of deep learning. We have shown that the obtained uncertainties are conservative
and that they concentrate for any neural network architecture. We performed an extensive empirical
comparison, showing that random priors perform similarly to deep ensembles in a typical super-
vised training setting, while outperforming them in a regime where we are able to accomplish zero
training loss for the predictors.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 242–252, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.
mlr.press/v97/allen-zhu19a.html.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing Systems,
pp. 1471–1479, 2016.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. arXiv preprint arXiv:1505.05424, 2015.

Nicolas Brosse, Alain Durmus, and Eric Moulines. The promises and pitfalls of stochastic gradient langevin
dynamics. In Advances in Neural Information Processing Systems, pp. 8268–8278, 2018.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

10

http://proceedings.mlr.press/v97/allen-zhu19a.html
http://proceedings.mlr.press/v97/allen-zhu19a.html

Under review as a conference paper at ICLR 2020

Ashwin Mark Carvalho. Predictive Control under Uncertainty for Safe Autonomous Driving: Integrating Data-
Driven Forecasts with Control Design. PhD thesis, UC Berkeley, 2016.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The power of
initialization and a dual view on expressivity. In Advances In Neural Information Processing Systems, pp.
2253–2261, 2016.

Bruno De Finetti. La prévision: ses lois logiques, ses sources subjectives. In Annales de l’institut Henri
Poincaré, pp. 1–68, 1937.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of
deep neural networks. In International Conference on Machine Learning, pp. 1675–1685, 2019.

John Duchi. Probability bounds, 2009.

Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. SIAM Review, 36(4):677–678, 1994.
doi: 10.1137/1036171.

Andrew YK Foong, David R Burt, Yingzhen Li, and Richard E Turner. Pathologies of factorised gaussian and
mc dropout posteriors in bayesian neural networks. arXiv preprint arXiv:1909.00719, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, pp. 1050–1059, 2016. URL http://proceedings.mlr.
press/v48/gal16.html.

Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pp. 3581–3590, 2017.

Adri Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolutional networks as
shallow gaussian processes. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=Bklfsi0cKm.

Tamir Hazan and Tommi Jaakkola. Steps toward deep kernel methods from infinite neural networks. arXiv
preprint arXiv:1508.05133, 2015.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime: Variational
information maximizing exploration. In Advances in Neural Information Processing Systems, pp. 1109–
1117, 2016.

Jiri Hron, Alexander G. de G. Matthews, and Zoubin Ghahramani. Variational bayesian dropout: pit-
falls and fixes. In Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 2024–2033, 2018. URL http:
//proceedings.mlr.press/v80/hron18a.html.

Edwin T Jaynes. Probability theory: The logic of science. Cambridge university press, 2003.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Advances in Neural Information Processing Systems, pp. 6402–6413,
2017.

Nicolas Le Roux and Yoshua Bengio. Continuous neural networks. In Artificial Intelligence and Statistics, pp.
404–411, 2007.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and Yasaman Bahri.
Deep neural networks as gaussian processes. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=B1EA-M-0Z.

Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and Siegfried Wahl. Leveraging un-
certainty information from deep neural networks for disease detection. Scientific reports, 7(1):17816, 2017.

11

http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
https://openreview.net/forum?id=Bklfsi0cKm
https://openreview.net/forum?id=Bklfsi0cKm
http://proceedings.mlr.press/v80/hron18a.html
http://proceedings.mlr.press/v80/hron18a.html
https://openreview.net/forum?id=B1EA-M-0Z

Under review as a conference paper at ICLR 2020

Ulrike von Luxburg and Olivier Bousquet. Distance-based classification with lipschitz functions. Journal of
Machine Learning Research, 5(Jun):669–695, 2004.

AGDG Matthews, M Rowland, J Hron, RE Turner, and Z Ghahramani. Gaussian process behaviour in wide
deep neural networks. In Proceedings of the 6th International Conference on Learning Representations.,
2018.

Rhiannon Michelmore, Marta Kwiatkowska, and Yarin Gal. Evaluating uncertainty quantification in end-to-end
autonomous driving control. arXiv preprint arXiv:1811.06817, 2018.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press,
2018.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Radford M Neal. Bayesian learning for neural networks. Phd Thesis, 1996.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning 2011, 2011.

Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Daniel A. Abolafia, Jeffrey Penning-
ton, and Jascha Sohl-dickstein. Bayesian deep convolutional networks with many channels are gaussian pro-
cesses. In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=B1g30j0qF7.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement learning.
In Advances in Neural Information Processing Systems, pp. 8617–8629, 2018.

Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized value func-
tions. Journal of Machine Learning Research, 20(124):1–62, 2019. URL http://jmlr.org/papers/
v20/18-339.html.

Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration with
neural density models. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 2721–2730. JMLR. org, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

Christian Robert. The Bayesian choice: from decision-theoretic foundations to computational implementation.
Springer Science & Business Media, 2007.

Donald B Rubin. The bayesian bootstrap. The annals of statistics, pp. 130–134, 1981.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of
the 28th international conference on machine learning (ICML-11), pp. 681–688, 2011.

Christopher KI Williams. Computing with infinite networks. In Advances in neural information processing
systems, pp. 295–301, 1997.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning. MIT press
Cambridge, MA, 2006.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian processes. In
Neural Information Processing Systems (NeurIPS), 2019.

12

https://openreview.net/forum?id=B1g30j0qF7
https://openreview.net/forum?id=B1g30j0qF7
http://jmlr.org/papers/v20/18-339.html
http://jmlr.org/papers/v20/18-339.html

Under review as a conference paper at ICLR 2020

APPENDICES

APPENDIX A REPRODUCIBILITY AND DETAILS OF EXPERIMENTAL SETUP

APPENDIX A.1 SYNTHETIC DATA

For the 1D regression experiment on synthetic data (Fig 1), we used feed-forward neural networks
with 2 layers of 128 units each and a 1-dimensional output layer. We used an ensemble size of 5.
The network was trained on 20 points sampled from the negative domain of a sigmoid function and
tested on 20 points sampled from the positive domain.

APPENDIX A.2 EXPERIMENTAL SETUP

Model architecture For the CIFAR-10 experiments, we adapted the setup from the
cifar10-fast model3. For the supervised networks and the prior networks in our uncertainty
estimators, we used the exact same architecture as in this model. For the predictor networks in the
uncertainty estimators, we added two additional layers at the end to make sure the prior functions
are learnable (see Fig. 2).

We followed Burda et al. (2018) in choosing the output size to be M = 512 and using the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 0.0001. We optimized the initialization scale
of our networks as a hyperparameter on the grid {0.01, 0.1, 1.0, 2.0, 10.0} and chose 2.0, which
achieved the best performance. We chose a scaling factor of β = 1.0 for the uncertainty bonus of
the random priors and fixed it for all experiments.

Data For the CIFAR-10 experiment, we trained on the classes {bird, dog, frog, horse} and ex-
cluded {cat, deer, airplane, automobile, ship, truck}. For the small CIFAR-10 ablation experiment,
we trained on 75 images sampled from the classes {ship, truck} and excluded the remaining classes.

Out-of-distribution classification For computing the areas under the receiver-operator charac-
teristic curves (AUROC) in the OOD classification tables, we used the roc auc score function
from the Python package sklearn (Pedregosa et al., 2011), using the predicted uncertainties as
predicted label scores and binary labels for whether or not the samples were from the training set.

APPENDIX B ADDITIONAL RESULTS

RP DE DE
+AT DR

B=1
Train v. cat/deer 0.99 ± 0.002 0.83 ± 0.065 0.96 ± 0.008 0.81 ± 0.001
Train v. vehicles 1.00 ± 0.000 0.82 ± 0.070 0.96 ± 0.007 0.76 ± 0.001
Train v. excluded 1.00 ± 0.001 0.82 ± 0.069 0.96 ± 0.007 0.77 ± 0.002
Train v. SVHN 0.95 ± 0.013 0.88 ± 0.101 0.96 ± 0.009 0.86 ± 0.002

Table 3: Out-of-distribution AUROC for random priors (RP), deep ensembles (DE), deep ensembles
with adversarial training (DE+AT) and spatial concrete dropout (DR). The errors are computed from
ten samples each in the B = 1 case.

APPENDIX C PROOFS

We now give formal proofs for the results in the paper.

3https://github.com/davidcpage/cifar10-fast

13

https://github.com/davidcpage/cifar10-fast

Under review as a conference paper at ICLR 2020

APPENDIX C.1 PROOFS RELATING TO CONSERVATISM

Proposition 1 (Strict Conservatism in Expectation). Assume that f is a GP. Then for any function
h : RN×K → RM , we have

σ̃2
m(x?) = σ2

X(x?) + Ef(X)

[
1
M ‖µXf (x?)− hXf (x?)‖

2
]︸ ︷︷ ︸

≥0

. (11)

Moreover, equality holds if and only if hXf (x?) = µXf (x?).

Proof. We instantiate Lemma 1 by setting f to be a GP. By equation 2, the posterior covariance of a
GP does not depend on the target values, i.e. σ2

Xf (x?) = σ2
X(x?). The first part of the result can be

shown by pulling σ2
X(x?) out of the expectation. Moreover, since ‖ · ‖ is a norm and hence positive

semi-definite, equality holds if and only if hXf (x?) = µXf (x?).

Lemma 1. For any function h : RN×(K+1) → RM , for any test point x? ∈ RK and for any
stochastic process {f(x)}x∈RK with all second moments finite and exchangeable outputs, it holds
that

σ̃2
m(x?) = Ef(X)

[
σ2
Xf (x?) +

1
M ‖µXf (x?)− hXf (x?)‖

2
]
. (9)

Proof. We prove the statement by re-writing the expression on the left.

σ̃2
m(x?) =

1
M Ef(X),f(x?)

[
‖f(x?)− hXf (x?)‖2

]
(14)

= 1
M Ef(X)

[
Ef(x?|f(X))

[
‖f(x?)− hXf (x?)‖2

]]
(15)

= 1
M Ef(X)

[
Ef(x?|f(X))

[∑M
m=1(f

m(x?)− hmXf (x?))2
]]

(16)

= 1
M Ef(X)

[
Ef(x?|f(X))

[∑M
m=1(f

m(x?))
2 − 2fm(x?)h

m
Xf (x?) + (hmXf (x?))

2
]]

(17)

= 1
M Ef(X)

[∑M
m=1 σ

2
Xfm(x?) + (µXfm(x?))

2 − 2fm(x?)µXfm(x?) + (hmXf (x?))
2
]

(18)

= 1
M Ef(X)

[∑M
m=1 σ

2
Xfm(x?) + (µXfm(x?)− hmXf (x?))2

]
(19)

= Ef(X)

[
σ2
Xf (x?) +

1
M ‖µXf (x?)− hXf (x?)‖

2
]

(20)

Here, the equality in (15) holds by definition of conditional probability. The equality in (18) holds
by definition of posterior mean and the equality 20 follows by assumption that the process has
exchangeable outputs. While this argument follows a similar pattern to a standard result about
Bayesian Risk (equation 3), it is not identical because the function hXf depends on f .

Lemma 2. Assume that the random variable σ̂2
m(x?) has finite variance upper bounded by σ2

S . With
probability 1− δ, we have σ̂2

m(x?) +
1√
δ
σS ≥ σ̃2

m(x?).

Proof. The proof is standard, but we state it in our notation for completeness. Applying Chebyshev’s
inequality to the random variable σ̂2

m(x?), we have that Prob
(
|σ̃2
m(x?)− σ̂2

m(x?)| ≥ 1√
δ
σS

)
≤ δ,

implying the statement.

Lemma 3. Assume that the GP {f(x)} is zero mean with exchangeable outputs and the function
hXf takes values in [−U,U]M . Assume that permuting the outputs of f produces the same permu-
tation in the outputs of hXf . With probability 1− δ, we have

σ2
S ≤ 1

B

(
4U4 + (σ̂2

0(x?))
2C
)
. (13)

Here, σ̂2
0(x?) is a sample-based estimate of the prior variance obtained with B0 samples and C =(

B0−1
χ2
I(δ)

)2
, where χ2

I denotes the inverse CDF of the Chi-Squared distribution with B0 − 1 degrees
of freedom.

14

Under review as a conference paper at ICLR 2020

Proof. We seek to decompose the variance of σ̂2
m(x?) into the part that comes from the prior and

the part that comes from the fitted function hXfm .
σ2
S = Varf1,...,fB

[
σ̂2
m(x?)

]
(21)

= Varf1,...,fB

[∑B
i=1

1
MB ‖f(x?)− hXfi(x?)‖

2
]

(22)

= 1
B Varf

[
1
M ‖f(x?)− hXfi(x?)‖

2
]
+ (23)

= 1
B

1
M2 Varf

[
(
∑M
m=1(f

m(x?)− hXfm(x?))2
]
+ (24)

= 1
B

1
M2

∑M
m=1 Varf

[
(fm(x?)− hXfm(x?))2

]
+ (25)∑M

m=1

∑M
l=1 Covf

[
(fm(x?)− hXfm(x?))2), (f l(x?)− hXf l(x?))2)

]
(26)

≤ 1
B

1
M2M

2 Varf
[
(fm(x?)− hXfm(x?))2

]
(27)

= 1
B Varf

[
(fm(x?)− hXfm(x?))2

]
(28)

= 1
B

(
Varf

[
(fm(x?))

2
]
+Varf

[
(hXfm(x?))

2
]
− Covf

[
(fm(x?))

2, (hXfm(x?))
2
])

(29)

≤ 1
B

(
Varf

[
(fm(x?))

2
]
+Varf

[
(hXfm(x?))

2
])

(30)
We now bound the two variances in equation 30 separately. Since f(x?) is Gaussian, we can use
a sample-based estimate of the prior variance and obtain an probabilistic confidence interval. In
particular, we know that σ̃2

0(x?) ≤ σ̂2
0(x?)

B0−1
χ2
I(δ)

with probability 1 − δ, where χ2
I denotes the

inverse CDF of the Chi-Squared distribution with B0− 1 degrees of freedom. Using the assumption
that f is zero-mean, we now have

Varf
[
(fm(x?))

2)
]
= 2σ̃4

0(x?) ≤ 2(σ̂2
0(x?))

2

(
B0 − 1

χ2
I(δ)

)2

︸ ︷︷ ︸
C

. (31)

Moreover, since hXfm(x?) is bounded by U , we have
Varf

[
(hXfm(x?))

2)
]
≤ 4U4. (32)

The bound is obtained by combining equation 30 with equations 32 and 31.

APPENDIX C.2 PROOFS RELATING TO CONCENTRATION

We now proceed to the proofs showing concentration. We begin by formally defining a class of
predictor networks.
Definition 1 (Class HU of Lipschitz networks). Consider functions h : RK → RM . Let
j, j′ = 1, . . . ,M , index the outputs of the function. We define HU so that each h ∈ HU
has the following properties for each j, j′. (P1) hj is Lipschitz continuous with constant L, i.e.
‖hj(x) − hj(x

′)‖2 ≤ L‖x − x‘‖2 for all x, x′ with ‖x‖∞ ≤ 1 and ‖x′‖∞ ≤ 1, (P2) outputs
are exchangeable, i.e. {hj : h ∈ HU} = {hj′ : h ∈ HU}, (P3) the class is symmetric around
zero, i.e. hj ∈ {hj : h ∈ HU} implies −hj ∈ {hj : h ∈ HU}. (P4) hj is bounded, i.e.
max‖x‖∞≤1 |hj(x)| ≤ U .

While the conditions in Definition 1 look complicated, they are in fact easy to check for predictor
networks that follow the architecture in Figure 2. In particular, Lipschitz continuity (P1) has to hold
in practice because its absence would indicate extreme sensitivity to input perturbations. Output
exchangeability (P2) holds since reordering the outputs doesn’t change our architecture. Symmetry
around zero (P3) holds by flipping the sign in the last network layer. Boundedness (P4) is easy to
ensure by clipping outputs. In the following Lemma, we obtain a bound on the expected uncertainty.
Lemma 4. Consider a target function f : RK → RM , where j = 1, . . . ,M , with the domain
restricted to ‖x‖∞ ≤ 1. Introduce a constant U such that max‖x‖∞≤1 |fj(x)| ≤ U . Denote the
data distribution with support on {x : ‖x‖∞ ≤ 1} asD. Moreover, assumeK ≥ 3. For hXf ∈ HU ,
with probability 1− δ we have

Ex?∼D[
1
M ‖f(x?)− hXf (x?)‖

2] ≤ 1
MN

∑N
i=1 ‖f(xi)− hXf (xi)‖2 + LU O

(
1
K√
N

√
log(1/δ)

N

)
.

(33)

15

Under review as a conference paper at ICLR 2020

Proof. The proof uses standard Rademacher tools. To avoid confusion across several conventions,
we explicitly define the Rademacher complexity of a function class G as:

R̂N (G) , Eui

[
supg∈G

1
N

∑N
i=1 uig(xi)

]
= Eui

[
supg∈G

1
N

∣∣∣∑N
i=1 u

j
ig(xi)

∣∣∣]. (34)

Here, the random variables ui are sampled i.i.d. using a discrete distribution with Prob(ui =
−1) = Prob(ui = 1) = 1

2 and the the second equality follows by using property (P3). We
start by applying the generic Rademacher bound (Mohri et al., 2018) to the function class M =
{x1, . . . , xN , t1 . . . , tN → 1

U2
1
M ‖ti − h(xi)‖

2, h ∈ HU}, which contains the possible errors of the
predictor.

Ex?∼D[
1
B2

1
M ‖f(x?)− hXf (x?)‖

2] (35)

≤ 1
MN

1
B2

∑N
i=1 ‖f(xi)− hXf (xi)‖2 + R̂N (M) +O

(√
log(1/δ)

N

)
. (36)

We now introduce the function classM′ = {x1, . . . , xN , t1 . . . , tN → 1
B2 (t

j
i−hj(xi))2, h ∈ HU},

which models the per-output squared error. Because of property (P2),M′ does not depend on the
output index j. By pulling out the sum outside the supremum in equation 34, we get

R̂N (M) ≤ R̂N (M′). (37)

by Talagrand’s Lemma (Mohri et al., 2018; Duchi, 2009), we also have

R̂N (M′) ≤ 4R̂N (H1). (38)

Here, H1 = { 1
U h

j : h ∈ HU}. By property (P1), functions in H1 are Lipschitz continuous
with constant L/U . Instantiating a known bound for Lipschitz-continuous functions (Luxburg &
Bousquet, 2004, Theorem 18 and Example 4), and using the assumption K ≥ 3, we get R̂N (H1) ≤
L
U O

(
1
K√
N

)
. The Lemma follows by combining this with equation 37 and equation 38, plugging

into equation 35 and re-scaling by U2.

Lemma 4 allowed us to relate the error on the training set to the expected error on the test set. It
also shows that the two will be closer for small values of the Lipschitz constant L. We now use this
Lemma to show our main concentration result (Proposition 2).

Proposition 2. If the training converges, i.e. the training loss 1
MN

∑N
i=1 ‖f(xi)−hXf (xi)‖2 = σ2

A
for arbitrarily large training sets, then assuming the predictors hXf are bounded and Lipschitz
continuous with constant L, then under technical conditions the uncertainties concentrate, i.e.
σ̂2(x?)→ 0 as N →∞ and B →∞ with probability 1.

Proof. We are assuming the technical conditions of Lemma 4. Instantiating Lemma 4, setting the
training loss to zero in the RHS of equation 33 and letting N → ∞, we obtain the following with
probability 1:

lim
N→∞

Ex?∼D[σ̂
2
m(x?)] = σ2

A. (39)

From the continuity of f and hXf we have that σ̂2
m is continuous in x?. Together with the property

that σ̂2
m is non-negative, this gives that for every x?.

lim
N→∞

σ̂2
m(x?) = σ2

A. (40)

Since σ2
A does not depend on B, we also have:

lim
B→∞

lim
N→∞

σ̂2
m(x?) = σ2

A. (41)

From the definition of σ̂2
s , we have that

lim
B→∞

lim
N→∞

σ̂2
s = 0. (42)

Combining equation 41 and equation 42 with equation 4, we get:
lim
B→∞

lim
N→∞

σ̂2
m(x?) + βσ̂2

s − σ2
A = 0 (43)

We obtain the Lemma by comparing with equation 4.

16

	Introduction
	Preliminaries
	Estimating Uncertainty from Random Priors
	Theoretical Results
	Uncertainties from Random Priors are Conservative
	Uncertainties from Random Priors Concentrate

	Practical Conclusions from the Theory
	Prior Work
	Experiments
	Conclusions
	Reproducibility and Details of Experimental Setup
	Synthetic data
	Experimental Setup

	Additional results
	Proofs
	Proofs relating to Conservatism
	Proofs relating to concentration

