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ABSTRACT

Generative models, especially Generative Adversarial Networks (GANs), have re-
ceived significant attention recently. However, it has been observed that in terms
of some attributes, e.g. the number of simple geometric primitives in an image,
GANs are not able to learn the target distribution in practice. Motivated by this
observation, we discover two specific problems of GANs leading to anomalous
generalization behaviour, which we refer to as the sample insufficiency and the
pixel-wise combination. For the first problem of sample insufficiency, we show
theoretically and empirically that the batchsize of the training samples in prac-
tice may be insufficient for the discriminator to learn an accurate discrimination
function. It could result in unstable training dynamics for the generator, leading
to anomalous generalization. For the second problem of pixel-wise combination,
we find that besides recognizing the positive training samples as real, under cer-
tain circumstances, the discriminator could be fooled to recognize the pixel-wise
combinations (e.g. pixel-wise average) of the positive training samples as real.
However, those combinations could be visually different from the real samples
in the target distribution. With the fooled discriminator as reference, the genera-
tor would obtain biased supervision further, leading to the anomalous generaliza-
tion behaviour. Additionally, in this paper, we propose methods to mitigate the
anomalous generalization of GANs. Extensive experiments on benchmark show
our proposed methods improve the FID score up to 30% on natural image dataset.

1 INTRODUCTION

Generative Adversarial Networks (GANs) have great potential in modeling complex data distribu-
tions and have attracted significant attention recently. A great number of techniques (Goodfellow
et al., 2014; Miyato et al., 2018; Arjovsky et al., 2017; Gulrajani et al., 2017; Salimans et al., 2016;
Brock et al., 2018) and architectures (Radford et al., 2015; Karras et al., 2018; Zhang et al., 2018;
Mirza & Osindero, 2014) have been developed to make the training of GANs more stable and to gen-
erate high fidelity, diverse images. The corresponding generated samples are authentic and difficult
for human to distinguish from the real ones.

Despite these improvements, recent work (Zhao et al., 2018) reported a surprising phenomenon of
anomalous generalization of GANs on a geometry dataset, raising new questions about the gener-
alization behaviour. By anomalous generalization it means that several seemingly easy attributes
are shown to be learned poorly by GANs, including numerosity (number of objects) and color
proportion, which are important for human perception. For example, as shown in Figure 1, for a
geometric-object training dataset where the number of objects for each training image is fixed (e.g.
every training image has exactly two rectangles), it is observed that most generated images after
training have very different numbers of objects than the training images (e.g. rectangle numbers of
most generated images are not two). Mathematically speaking, with regard to the number of ob-
jects, the learned distribution of GANs differs significantly from the target distribution, which fails
to achieve the goal of modeling the target data distribution faithfully.

Several works have developed theories for GANs. The original work proves the convergence to
equilibrium under ideal conditions (Goodfellow et al., 2014). Further extensions include (Arjovsky
et al., 2017; Miyato et al., 2018; Nagarajan & Kolter, 2017; Mescheder et al., 2018; Bai et al., 2018;
Heusel et al., 2017). Arora et al. (2017) points out that GANs may not have good generalization
when the discriminator has finite capacity, e.g., neural networks. But they show generalization
occurs for GANs under the weak metric of neural net distance. Although these theories provide
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Figure 1: Left: The generated images have different rectangle numbers (e.g. one, two or three), while
the rectangle numbers of all the training data are exactly two (the anomalous marked red). Right:
The proportion of the correct generated images (rectangle number is two) for different training
approaches. The training dataset consists of 25600 images, all of which have exactly two rectangles.

deep understandings, the generalization and the convergence of GANs as well as how to achieve it
in practice are still open problems.

Motivated by this observation, we discover and investigate two specific problems of GANs, namely
sample insufficiency and pixel-wise combination, which cause GANs to have anomalous general-
ization behaviour. Moreover, we propose methods to improve the generalization of GANs.

For the problem of sample insufficiency, we show theoretically and empirically that the batchsize
in practice could be insufficient for GANs to model the target data distribution. As a typical setting
of GANs, the discriminator learns to separate the fake data distribution of the generator from the
real data distribution approximated by the training dataset. In practice, the discriminator learns
such a separation function based on the mini-batches sampled from the training dataset and the
generated samples of the generator. However, since the size of the mini-batch is much smaller than
all the possible samples in the high-dimensional data distribution, the separation function of the
discriminator learned based on the mini-batch samples could be noisy. With this noisy discriminator
as reference, the generator would learn noisy generation function too and the training dynamics
become unstable. As a result, GANs would have anomalous generalization behaviour.

For the problem of pixel-wise combination, in some situations, we find that the positive training
samples and their pixel-wise combinations (pixel-wise average or pixel-wise logical-and) are both
recognized as real by the discriminator during training. However, the pixel-wise combinations of
the positive training samples could have very different properties from the real samples themselves,
indicating that the discriminator is unable to differentiate those seemingly easy attributes (e.g. num-
ber of objects). With this fooled discriminator as reference, the generator could be fooled further
to generate those pixel-wise combinations of training samples, which may not belong to the target
distribution. As a result, the data distribution learned by the generator could be very different from
the target data distribution and the generalization of GANs becomes anomalous.

To summarize, our contributions are:

• We show that in certain circumstances the discriminator tends to recognize the pixel-wise
combinations of the positive training samples as real, which could fool the generator to
have anomalous generalization behaviour.

• We demonstrate theoretically and empirically that the sample insufficiency in practice could
result in unstable training dynamics and anomalous generalization of GANs.

• We show that the anomalous generalization reported in Zhao et al. (2018) is caused by the
two problems (sample insufficiency and pixel-wise combination). We then propose novel
methods to mitigate anomalous generalization behaviour. Figure 1 shows that our proposed
methods improve the proportion of correct generated images by almost 80%. Our methods
also improve the FID up to 30% on natural image datasets.
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2 BACKGROUND

2.1 GENERATIVE ADVERSARIAL NETWORKS

In most cases of GANs, the generator learns to map a prior distribution (e.g. standard Gaussian) to a
fake distribution to approximate the target real data distribution. The discriminator learns a function
to separate the real and fake distributions. They define the following min-max game:

min
G

max
D

E
x∼Pr

[f1(D(x))] + E
x∼Pz

[f2(D(G(x)))] (1)

where Pr and Pz denote the real and prior distributions respectively. f1 and f2 are the critic functions
for the positive and negative training samples (e.g. f1(x) = log(x), f2(x) = log(1-x)).

2.2 ANOMALOUS GENERALIZATION BEHAVIOUR OF GANS

Some anomalous generalization behaviours of GANs have been observed recently. In Zhao et al.
(2018), several seemingly easy attributes are shown to be learned poorly by GANs, including nu-
merosity (number of objects) and color proportion, which are important for human vision systems.
The phenomenon shows that the learned distribution of the generator fails to approximate the tar-
get distribution, raising new questions about the training dynamics and generalization behaviour of
GANs.

3 SAMPLE INSUFFICIENCY

In this section, we first discuss the problem of sample insufficiency in general in Section 3.1. Its
empirical observation is shown in 3.2, followed by the theoretical analysis in Section 3.3.

3.1 SAMPLE INSUFFICIENCY IN THE GENERAL TRAINING OF GANS

In the training of GANs, the generator learns to fake the target distribution. The discriminator
learns to separate the fake distribution of the generator from the real data distribution. To learn
a good separation function between the fake and the real distributions, the discriminator needs to
have sufficient information of them. But in practice, such information of the distribution is provided
by the positive or negative training samples in the mini-batch. Since the batchsize is often much
smaller than the size of all possible data in the high-dimensional data distribution, the information is
insufficient and the separation function of the discriminator learned based on the mini-batch samples
is noisy. With this noisy discriminator as reference, the generator could also learn a noisy generation
function and the training dynamics of GANs become unstable. The smaller the batchsize is, the more
unstable the training dynamics are. Since the training of the generator is unstable and the learned
generation function is noisy, it is difficult for the learned distribution to approximate the target
distribution. As a result, the generalization of GANs would become anomalous. We will show
both empirically and theoretically that the sample insufficiency leads to anomalous generalization
behaviour of GANs in the following subsections.

3.2 EMPIRICAL VERIFICATION

We do experiments to show that the problem of sample insufficiency could lead GANs to anomalous
generalization, both for geometric and natural image generation.

We establish a geometry dataset consist of 64 images (while the experiment also applies to larger
size) that all images (32 by 32 with 0/255 binary pixel value) in it have exactly two rectangles (8 by
8). The prior distribution is the discrete uniform distribution. Size of its support set is the same as
the dataset. More details can be found in Appendix E. We compare the mini-batch gradient descent
(MGD) with the full-batch gradient descent (FGD). The batchsize for MGD and FGD is 16 and 64
respectively.

As shown in Figure 2 (middle), caused by the sample insufficiency, the training dynamics for the
mini-batch gradient descent (MGD) are highly unstable. Both the gradient and the loss go up and
down frequently, suggesting it is difficult for GANs to model the target distribution if trained with
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Figure 2: Middle: The loss and gradients for MGD/FGD. Training of MGD is unstable while FGD
converges quickly. Left: The generated samples of the generator by four latent codes during training.
MGD is unstable and anomalous images are generated (zMGD

i , rectangle number is not two). FGD
is stable and converges (zFGDi ). Right: The FID scores during training for different batchsizes (on
CELEB-A). Larger batchsize is better after trained with the same amount of data.

small batchsize. The instability is also observed for the images generated from certain latent codes,
which are the inputs of the generator. As shown in Figure 2 (left), the generated samples for the three
randomly drawn latent codes of MGD (zMGD

0 ,zMGD
1 ,zMGD

2 ) change frequently during training
with anomalous images of false rectangle numbers. But for the full-batch gradient descent (FGD),
where the sample insufficiency is avoided and the separation function of the discriminator between
the real and fake data distributions can be learned accurately at each step, the loss and gradients are
stable. The learned distribution converges smoothly to the target distribution in a short time.

The problem of sample insufficiency is also observed to influence the natural image generation for
datasets like CELEB-A (Liu et al., 2015). As shown in Figure 2 (right), after trained with the same
amount of data, the FID score is better for the larger batchsize, where the problem of sample insuf-
ficiency is relatively less severe, than the smaller batchsize, where the sample insufficiency is more
problematic. In brief, the experiments show that the sample insufficiency makes the training dynam-
ics unstable, both for the discriminator and the generator. Since the training of the generator and
the discriminator are unstable and the learned generation function is noisy, it is hard for the learned
distribution to approximate the target distribution. As a result, the final generalization behaviour of
GANs becomes anomalous.

3.3 THEORETICAL ANALYSIS: A WGAN MODEL

In this subsection, we introduce a simple yet prototypical model which shows that the insufficient
batchsize will result in unstable training dynamics and smaller batch leads to poorer performance
than that of larger batch. As a result, the generalization of GANs would become anomalous when
the batchsize is small.

Assume that the real data distribution is a d-dimensional multivariate normal distribution centered
at the origin, N(0, Id). The latent distribution of the generator is pz ∼ N(0, Id). The generator is
defined as Gθ(x) = θ + x. The discriminator is a linear function Dw(x) = w>x.

We consider the WGAN model (Arjovsky et al., 2017), whose value function is constructed using
the Kantorovich-Rubinstein duality (Villani, 2008) as

W (PθREAL ,Pθ) = sup
‖f‖L≤1

Ex∼PθREAL [f(x)]− Ex∼Pθ [f(x)] (2)

where ‖f‖L denotes the Lipschitz constant of the function f , namely, ‖f‖L = inf{L :
f is L-Lipschitz}. And PθREAL denotes the real data distribution, Pθ denotes the distribution of
the generator Gθ, and the supremum is taken over all the linear functions fw(x) = w>x since the
optimal classifier f∗ is absolutely linear. And when fw is a linear function, ‖fw‖L = ‖w‖, so

W (PθREAL ,Pθ) = sup
‖w‖≤1

Ex∼PθREAL [fw(x)]− Ex∼Pθ [fw(x)] (3)

= sup
‖w‖≤1

w>(Ex∼N(0,Id)x− Ez∼N(0,Id)[x+ θ]) (4)

The generator is trained to minimize W (PθREAL ,Pθ). Denote F (w, θ) = w>(Ex∼N(0,Id)x −
(Ey∼N(0,Id)y + θ)). When we use stochastic gradient descent, the training procedure can be de-
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scribed as

wt+1 = wt + ηt∇wF (w, θt) (5)
θt+1 = θt − µt∇θF (wt+1, θ) (6)

where ηt and µt are the step size. We present our result for gradient flow (Du et al., 2018a;b), i.e.,
gradient descent with infinitesimal time interval, whose behaviour can be described by the following
differential equations: (

ẇ(t)

θ̇(t)

)
=

(
ηt∇wF (w(t), θ(t))
−µt∇θF (w(t), θ(t))

)
(7)

(A detailed explanation of gradient flow and stochastic gradient flow is in Appendix A.) We will
show that when the WGAN in (3) is trained using stochastic gradient flow, the batchsize will impact
the behaviour of the training dynamics. That is, compared with large batchsize (or even full batch),
when the batchsize is small, the training dynamics of WGAN suffer from a large variance, thus
more unstable. Theorem 1 tells us that when the WGAN model is trained using constant step size
stochastic gradient flow, then the variance of the output will increase as t grows, and is of order
Θ( 1

m ). Namely, the variance will be large if the batchsize is small.
Theorem 1. [Variance of WGAN, constant step size] Denote [θt]i as the i-th component of the
vector θt. Suppose we train the WGAN model in (3) using constant step size stochastic gradient flow
with batchsize m, then the parameter of the generator θt satisfies

Var([θt]i) =

∫ t

0

‖
[
esAΣ

]
d+i
‖22ds = Θ(

1

m
) (8)

where

A =

(
0 −Id
Id 0

)
,Σ =

(√
2
mId 0

0 0

)
, esA =

(
(cos s)Id −(sin s)Id
(sin s)Id (cos s)Id

)
, (9)

and
[
esAΣ

]
d+i

is the (d+ i)-th row of the matrix esAΣ ,

The proof is in Appendix B. The main idea is that due to the special dynamics of optimization of
mini-max problems, the bias caused by the randomness of the batch sampling in each epoch will
accumulate, which will lead to large variation after many steps of training. Note that although in
traditional optimization problems the variance of SGD caused by the randomness of samples will
not affect the convergence (Bubeck et al., 2015; Brutzkus et al., 2017), the variance will damage the
convergence properties in GANs.

Next we consider the vanishing step size case, in which ηt = µt = 1/t (without loss of generosity
assume t ≥ 1. This step size is commonly used in convex optimization in practical problems
(Bubeck et al., 2015). Theorem 2 shows that the problem still exists in such case, whose proof is in
Appendix C.
Theorem 2. [Variance of WGAN, vanishing step size] Suppose we train the WGAN model in (3)
using 1/t step size stochastic gradient flow with batchsize m, then the parameter of the generator θt
satisfies

Var([θt]i) = Θ(
1

m
) (10)

Remark 1. Here we consider only the WGAN because it is usually more stable than typical GANs.
We believe that other forms of GANs will have a similar problem caused by the insufficient batchsize.
Remark 2. Although our theoretical analysis only considers the effect of noise in distribution, the
same reason also applies to the effect of other irrelevant features especially when the generator
cannot learn the real data distribution perfectly.

4 PIXEL-WISE COMBINATION

In this section, We first discuss the problem of pixel-wise combination in Section 4.1, followed by
the illustration on toy and real datasets in Section 4.2. Finally, we provide a theoretical analysis in
Section 4.3.
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Figure 3: Top: For the geometry dataset, the proportion curve of the correct generated images
(number of rectangle is three) is plotted (upper right solid line). The scores of the discriminator
for the positive training data and the pixel-wise logical-and/or of the positive training data are also
plotted respectively (upper right dash line). During training, the generated images which are pixel-
wise logical-and/or of the positive training samples prevail (highlighted with colored frame on upper
left). They get high scores similar to the positive training images in the earlier stage. Bottom: Certain
generated images are shown for human face generation (Liu et al., 2015). They are exactly the same
as the pixel-wise averages of the training data.

4.1 PIXEL-WISE COMBINATION IN THE GENERAL TRAINING OF GANS

When GANs are trained on image datasets, we find that under certain situation pixel-wise combina-
tions (e.g. pixel-wise average or pixel-wise logical-and) of the real samples could fool the discrim-
inator, although the generated combinations could have inconsistent properties. e.g. the pixel-wise
average of two animal images in CIFAR10 could be unrecognizable for human. Take a simple case
for illustration, suppose the discriminator is a linear classifier, given two real images, the pixel-wise
average of those two real images are likely to be predict as positive sample by the linear discrimina-
tor. Since those pixel-wise combinations are recognized as real by the discriminator, the generator
correspondingly tends to generate them. Therefore, the generated images could be different from
the expected ones and the generalization of GANs becomes anomalous.

4.2 ILLUSTRATION ON TOY AND REAL DATASETS

We demonstrate the problem of pixel-wise combination, which leads GANs to anomalous general-
ization, by a toy dataset. Our training dataset only consists of two binary images (pixel value is 0 or
255), both of which have exactly three rectangles. The positions of the rectangles of the two images
are different, as shown at upper left in Figure 3. The generated images during training are plotted
and their statistics are analyzed.

As shown at upper left of Figure 3, even when the training dataset consists of two images, there
are a lot of unexpected anomalous generated samples. Both the two training images have exactly
three rectangles. But many generated images have two rectangles or four rectangles. The generated
images with three rectangles consist only a small part of all the generated images (Figure 3 upper
right solid red curve). Furthermore, the anomalous generated images are exactly the same as the
pixel-wise combinations of the two training images. The anomalous generated images with two
rectangles are actually the pixel-wise logical-and of the two training images. The images with four
rectangles are actually the pixel-wise logical-or of the two training images. Also, the problem of the
pixel-wise combination is observed for the discrimination function of the discriminator. As plotted
as dash curves at upper right of Figure 3, during the training, the discriminator recognizes the pixel-
wise combinations of the two positive training images as real (give high scores by the discrimination
function), as well as the two positive training images themselves. With this fooled discriminator as
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Figure 4: Generated images of the generative average method (GAM) and GANs. The performances
are comparable both visually and by the FID score.

reference, the generator is fooled further to generate unexpected samples. As a result, the learned
data distribution could differ a lot from the target data distribution.

Beyond the toy dataset, the problem of pixel-wise combination does exist in the training of GANs in
practice. For the natural image dataset CELEB-A, some generated images are exactly the same as the
pixel-wise averages of the training data (Figure 3 bottom). Also, the pixel-wise average of certain
structurally similar images could generate realistic samples (Figure 4). In brief, the experiments
show that the problem of pixel-wise combination exists for GANs and makes it hard to model the
target data distribution faithfully, which leads to anomalous generalization behaviour.

4.3 THEORETICAL ANALYSIS

In this section we give a possible explanation to the problem of pixel-wise combination by a theoret-
ical analysis. Note that this phenomenon is most remarkable on the geometric or the facial datasets.
The samples in those datasets are structurally similar, namely, for a facial dataset, the eyes, noses
and other features of the human faces appear at fixed positions in the images with high probability.
So we assume that the l2 distance between most positive training samples in the dataset is small.

For the discriminator f(x), without loss of generosity, assume that f(x) > 0 if the sample x is
classified as real. We make the following assumptions.
Assumption 1. Assume that f is L-Lipschitz.
Assumption 2. Assume that the discriminator classifies all the positive training samples as real with
a large margin (i.e. there exists ε > 0 such that for all the positive training samples x, f(x) > ε).

Most classifiers satisfy the Lipschitz condition (for example, the softmax classifier). Assumption
2 means that the discriminator classifies the positive training samples as real with high confidence.
Our theorem shows that under these assumptions, the pixel-wise convex combination of any two
positive training samples will be classified as real with high probability. The proof is in Appendix
D.
Theorem 3. If the discriminator f(x) satisfies Assumption 1-2. Then for any two samples x1 and
x2 in the training dataset satisfying ‖x1 − x2‖2 ≤ δ and any λ ∈ (0, 1), we have

f(λx1 + (1− λ)x2) ≥ max{f(x1)− L(1− λ)δ, f(x2)− Lλδ} (11)

Moreover, if ε > Lδmin{λ, 1− λ}, then f(λx1 + (1− λ)x2) > 0.

5 FIXING THE ANOMALOUS GENERALIZATION OF GANS

In this section, we propose novel methods to mitigate the two problems. We present the Pixel-wise
Combination Regularization (PCR) to mitigate the problem of pixel-wise combination in Section
5.1. For the problem of sample insufficiency, we present the Sample Correction (SC) in Section
5.1. The results show that the anomalous generalization for the geometric dataset is avoided entirely
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(Section 5.2). For the natural image dataset, the training modifications could improve the FID score
up to 30% (Section 5.3).

5.1 APPROACH

Pixel-wise Combination Regularization For the training of vanilla GANs, the positive training
samples for the update of the discriminator come from the training dataset and the negative training
samples are generated by the generator. Since we think that the discriminator tends to recognize the
pixel-wise combinations of the images in the training dataset as real even though they are not in the
target distribution, we define a dataset:

Dcom = {x0, x1, ...xn−1|xk =
yi ⊕ yj

2
yi, yj ∈ Dtraining i 6= j} (12)

and use the images in Dcom as additional negative training samples to restrict this tendency. The
⊕ in Eqn. 12 is the pixel-wise combination operation, it could be the pixel-wise average or pixel-
wise logical-and/or. The samples in Dcom are the combinations of every two images in the training
dataset. The loss term for training with the Pixel-wise Combination Regularization can be written
as:

L = Ex∼Pr [f1(D(x))]︸ ︷︷ ︸
positive samples

+
1

2

[
Ex∼Pg [f2(D(x))] + Ex∼Pcom [f2(D(x))]

]
︸ ︷︷ ︸

negative samples

(13)

where Pr, Pg and Pcom are the data distributions approximated by the training data, the generator
and Dcom. In this way, the tendency to generate those combination images is restricted. We refer
to this addition of the negative training samples for the training of the discriminator as Pixel-wise
Combination Regularization (PCR).

Sample Correction We introduce a general framework to mitigate the problem of sample insuf-
ficiency. We assume that to model the target distribution, the discriminator is required to separate
accurately the real samples in the target data distribution from the others not in it, which the sample
insufficiency makes it difficult to achieve. For that goal, the realistic samples in the negative training
batch are not useful. Intuitively, if the realistic samples appear in both the positive and the negative
training batches, it would be ambiguous for the discriminator to learn the correct separation func-
tion. Therefore, we replace the realistic samples in the negative training batch with less realistic ones
by a certain pre-defined measure of reality. In this way, the discriminator could efficiently learn an
accurate separation function with limited batchsize. The Sample Correction approach is a general
framework and the measure of reality could differ for different datasets. We present our experiments
on the geometry and the CELEB-A datasets as examples in the next subsections.

5.2 EXPERIMENTAL RESULTS ON GEOMETRIC DATASET

As shown before, caused by the two problems, when trained on a geometry dataset where all the
training images have exactly two rectangles, there would be a lot of anomalous generated samples
with different number of rectangles. We use the two proposed methods to mitigate this anomalous
generalization. We do experiments to verify the effects of our methods. The training dataset consists
of 25600 binary images, all of which have exactly two rectangles. For the Pixel-wise Combination
Regularization (PCR), the pixel-wise logical-and/or of the positive training images are precomputed
(details in Appendix F). They are used as additional negative training samples. For the Sample
Correction (SC), the generated realistic samples in the negative training batch of the discriminator
are discarded. The realistic samples are those with exactly two rectangles, the same as the positive
training samples.

As shown in Figure 1 (right), compared to the vanilla approach, the SC approach (SC) almost elim-
inates the anomalous generalization and the proportion of correct images (rectangle number is 2)
goes up to 97%. The Pixel-wise Combination Regularization (PCR) approach also improves the
proportion but is stuck at 70%. We think this is caused by the still existence of the problem of
sample insufciency. Combining these two methods, the SC+PCR approach converges to 99%, much
more quickly than other approaches, showing the existences of the two problems and the effects of
our methods.
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Figure 5: Left: The final generated samples for the M-CIFAR10 and M-CELEB-A, where the Sam-
ple Correction (SC) approach achieves better performance. Right: The FID and DIF curves during
training for the vanilla and the Sample Correction (SC) approaches.

5.3 EXPERIMENTAL RESULTS ON NATURAL IMAGE DATASET

We also evaluate the effect of the proposed Pixel-wise Combination Regularization and Sample
Correction method on natural image data, where the performances are measured by the FID score.

For the pixel-wise combination, the pixel-wise averages of the training data are computed simul-
taneously at each training step of the discriminator. They are used as additional negative training
samples. The size of the additional negative training samples is the same as the size of the negative
training samples from the generator. The results with the Pixel-wise Combination Regularization
(denoted as PCR) are compared with those of the vanilla training based on three popular GANs ar-
chitectures WGAN-GP, LSGAN and SAGAN (Gulrajani et al., 2017; Mao et al., 2017; Zhang et al.,
2018). Three natural image datasets are involved: CIFAR10, CELEB-A and M-IMAGENET (Liu
et al., 2015; Krizhevsky & Hinton, 2009). M-IMAGETNET is the validation set of the IMAGENET
dataset. We train the network unsupervisedly with the Adam optimizer (α = .0002, β1 = .5, β2 =
.9). As shown in Table 1, the performances improve in most cases after applying the Pixel-wise
Combination Regularization. The FID scores of the baselines are consistent with that reported in
Lucic et al. (2018). For WGANGP trained on CIFAR10, the achieved best FID score improves up
to 30%, showing the potentials of our regularization method. Interestingly, the improvements are
more remarkable for the CIFAR10 and M-IMAGENET than the CELEB-A dataset. We hypothesize
this is because the objects in CELEB-A tend to appear at regular or fixed positions. Therefore, the
average of real images is likely to give a data point in the target data manifold. For example, it is
very possible that the average of two human face images is still a realistic human face image (data
in CELEB-A). But it is less possible for the average of images of a car and a dog to be a realistic
image (data in CIFAR10).

Table 1: The achieved best FID scores of three runs are reported after 50000 steps for different mod-
els and datasets. In most cases, the FID score improves after applying the Pixel-wise Combination
Regularization (PCR). Positive improvement rates are highlighted in bold. The baseline scores are
consistent with that reported in Lucic et al. (2018).

Vanilla/PCR/boost Model

WGANGP LSGAN SAGAN

Dataset
CELEB-A 20.9 / 21.7 / -3.4% 17.7 / 16.0 / 9.7% 28.0 / 24.3 / 13.2%
CIFAR10 45.4 / 31.6 / 30.4% 57.6 / 51.0 / 11.4% 39.6 / 33.7 / 14.7%

M-IMAGENET 61.8 / 54.1 / 12.4% 61.0 / 59.4 / 2.7% 102.9 / 73.4 / 28.6%

9



Under review as a conference paper at ICLR 2020

For the Sample Correction method. We randomly select a small portion of the images as training
data (M-CELEB-A and M-CIFAR). Dataset size is kept small (e.g. 32) so that the learned data
distribution could approximate the target data distribution well. The measure of reality of a sample
in this case is the normalized minimum L2 distance of the sample to all the training data (DIF,
between 0 and 1). We train GANs in two different ways, namely Vanilla and Sample Correction.
The latter approach differs in that the realistic samples in the negative batch (DIF less than 0.1) are
replaced with less realistic ones. The batchsize is kept small to better demonstrate the problem of
sample insufficiency (e.g. 2). As shown in Figure 5, the Sample Correction approach outperforms
the vanilla one by a large margin. FID and DIF scores are both better during training. This is
because for the Sample Correction approach, the problem of sample insufficiency is restricted and
the separation function of the discriminator is more accurate. The improvements can also be found
visually (Figure 5 left). For the vanilla approach, some generated samples degenerate to noises. But
the Sample Correction approach can generate real ones with authentic details.

6 CONCLUSION AND FUTURE WORK

In this paper, we discuss two specific problems of GANs, namely sample insufficiency and pixel-
wise combination. We demonstrate that they make it difficult to model the target distribution and
lead GANs to anomalous generalization. Specific methods are introduced to prevent them from
misleading the generalization of GANs, which improve the performance. We hope the two spe-
cific problems and the methods to restrict them can help the future work to better understand the
generalization behaviour of GANs.
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A AN EXPLANATION OF GRADIENT FLOW AND STOCHASTIC GRADIENT
FLOW

Gradient flows, or steepest descent curves, are a very classical topic in evolution equations: given a
functional F defined on Rd, and we want to look for points x minimizing F (which is related to the
statical equation ∇F (x) = 0). To do this, we look, given an initial point x0, for a curve starting at
x0 and trying to minimize F as fast as possible. Since the negative gradient direction is the steepest
descent direction, we will solve equations of the form

x′(t) = −∇F (x(t))). (14)

On the curve of the solution of this equation (t, x(t)), when t increases, at every point x(t) the point
goes along the negative gradient direction.

If we write down the discrete form of (14), it becomes

x(t+ δt)− x(t) = −∇F (x(t))) (15)

which is the Euler method of the differential equation. And if we take δt = 1, we get the expression
of gradient descent. So we can view the gradient flow as gradient descent of infinitesimal time
interval.

And if we add a stepsize term in the equation, it becomes

x′(t) = −ηt∇F (x(t)) (16)

where ηt denotes the step size. And in the discrete form, it falls into the familiar gradient descent
formula with step size {ηt}:

x(t+ 1)− x(t) = −ηt∇F (x(t)) (17)

In most machine learning problems, the function F can be written as F (x) = 1
n

∑n
i=1 fi(x), and

compute the gradient of F exactly can be computationally exhaustive. So instead we often use
an approximation of ∇F (for example, we can randomly select i ∈ {1, ..., n} and use ∇fi to
approximate∇F ). This can be described formally as follows. If∇F (x(t)) = g(x(t)) +EY , where
Y is a random vector with distribution p(y), then we can sample Yt ∼ p and update x as

x(t+ 1)− x(t) = −ηt(g(x(t)) + Yt) (18)

Especially, if p is a Gaussian distribution with mean 0 and covariance matrix Id, then (18) is equiv-
alent to

x(t+ 1)− x(t) = −ηt(g(x(t)) + (W (t+ 1)−W (t))) (19)
where W(t) is a Wiener process(Wiener, 1923). And this is the Euler-Maruyama scheme(Kloeden
& Platen, 2013) of the following stochastic differential equation:{

dXt = −ηtg(Xt)dt− ηtdWt

X0 = x0
(20)

the solution, if exists, is a stochastic process {Xt = X(t, x0)}. We call this solution the stochastic
gradient flow of F at point x0. And when we say that F is trained using stochastic gradient flow, we
mean that the curve {xt} is a sample path of {Xt = X(t, x0)}.
Finally, when we say that F is trained using stochastic gradient descent with batchsize m, we mean
that for each t, we sample Y 1

t , ..., Y
m
t ∼ p and update x as

x(t+ 1)− x(t) = −ηt(g(x(t)) +
1

m

m∑
i=1

Y it ). (21)

This is the Euler-Maruyama scheme of the following stochastic differential equation:{
dXm

t = −ηtg(Xm
t )dt− ηt 1

mdWt

Xm
0 = x0

(22)

And when we say that F is trained using stochastic gradient flow with batchsize m, we mean that
the curve {xt} is a sample path of {Xm

t = Xm(t, x0)}.

12
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B PROOF OF THEOREM 1

Proof. First we give a detailed description of the training dynamics of our model in Section 3.3
using gradient flow.

The framework of training the WGAN in Section 3.3 is as follows. Denote F (w, θ) =
w>(Ex∼N(0,Id)x − (Ey∼N(0,Id)y + θ)). For each epoch t = 1, 2, ..., given the parameter of the
generator θt, the target of the discriminator is

max
‖w‖≤1

F (w, θt) = w>(Ex∼N(0,Id)x− (Ey∼N(0,Id)y + θt)) (23)

The gradient of w is

∇wF (w, θt) = Ex∼N(0,Id)x− (Ey∼N(0,Id)y + θt) (24)

And for one-step gradient upscent the update of w is

wt+1 = wt + ηt∇wF (w, θt) (25)

where ηt is the step size.

After wt is updated to wt+1, given the parameter of the discriminator wt+1, the target of the gener-
ator becomes

min
θ
F (wt+1, θ) = w>t+1(Ex∼N(0,Id)x− (Ey∼N(0,Id)y + θ)) (26)

And the gradient of θ is
∇θF (wt+1, θ) = −wt+1. (27)

For one-step gradient descent the update of θ is

θt+1 = θt − µt∇θF (wt+1, θ) (28)

Now we consider the case when ηt and µt are constants, ηt = µt = C. Without loss of generality
assume C = 1. And when the time interval is infinitesimal, the discrete dynamics converge to
the gradient flow with constant step size, which can be written in the form of ordinary differential
equations (ODEs): (

ẇ(t)

θ̇(t)

)
=

(
∇wF (w(t), θ(t))
−∇θF (w(t), θ(t))

)
(29)

=

(
Ex∼N(0,Id)x− (Ey∼N(0,Id)y + θ(t))

−w(t)

)
(30)

Under the full-batch condition, which means that Ex∼N(0,Id)x = 0 and Ey∼N(0,Id)y = 0 can be
precisely calculated, the solution to the above ODEs is{

wt = w0 cos t− θ0 sin t

θt = θ0 cos t+ w0 sin t
(31)

Notice that the solution implies that ‖wt‖ ≤ ‖w0‖ + ‖θ0‖, which means that the 1-Lipschitz con-
dition on w in WGAN is automatically satisfied if w0 and θ0 are initialized sufficiently small. The
parameters lie on a circle around the equilibrium point (0, 0), which are stable though do not con-
verge.

When the batchsize is m, which means that we randomly draw i.i.d. samples x1t , ..., x
m
t ∼ N(0, Id)

and y1t , ..., y
m
t ∼ N(0, Id) and use the sample mean x̄m,t = 1

m

∑m
i=1 x

i
t and ȳm,t = 1

m

∑m
i=1 y

i
t

to estimate the true mean Ex∼N(0,Id)x and Ey∼N(0,Id)y, the gradients become ∇wF = x̄m,t −
ȳm,t − θ and ∇θF = −w. Since x1t , ..., x

m
t and y1t , ..., y

m
t are independent for different t, we have

x̄m,t, ȳm,t ∼ N(0, 1
mId) and they are independent for different t. So x̄m,t − ȳm,t ∼ N(0, 2

mId).
And the parameters w and θ satisfy the following stochastic differential equations:

{
dwt = −θtdt+

√
2
mdWt

dθt = wtdt
(32)

13



Under review as a conference paper at ICLR 2020

where Wt is a d − dimensional standard Wiener process. Denote Xt = (w>t , θ
>
t )> ∈ R2d, then

Xt is a multidimensional OU process (Uhlenbeck & Ornstein, 1930) with expectation

E [X(t)|X(0)] = etAX(0) (33)

and variance

Var [X(t)|X(0)] =

∫ t

0

etAe−sAΣΣ>
(
etAe−sA

)>
ds (34)

where

A =

(
0 −Id
Id 0

)
,Σ =

(√
2
mId 0

0 0

)
(35)

So etA =

(
(cos t)Id −(sin t)Id
(sin t)Id (cos t)Id

)
and

etAe−sA =

(
(cos t)Id −(sin t)Id
(sin t)Id (cos t)Id

)(
(cos−s)Id −(sin−s)Id
(sin−s)Id (cos−s)Id

)
(36)

=

(
(cos (t− s))Id −(sin (t− s))Id
(sin (t− s))Id (cos (t− s))Id

)
= e(t−s)A (37)

So the variance can be written as

Var [X(t)|X(0)] =

∫ t

0

etAe−sAΣΣ>
(
etAe−sA

)>
ds (38)

=

∫ t

0

e(t−s)AΣΣ>
(
e(t−s)A

)>
ds (39)

=

∫ 0

t

e(t−s)AΣΣ>
(
e(t−s)A

)>
d(t− s) (40)

=

∫ t

0

esAΣΣ>
(
esA
)>
ds (41)

And the variance of the i-th component of X(t) is

Var [X(t)|X(0)]ii =

∫ t

0

[
esAΣ

]
i

[
esAΣ

]>
i
ds (42)

=

∫ t

0

‖
[
esAΣ

]
i
‖22ds (43)

where
[
esAΣ

]
i

denotes the i-th row of esAΣ.

Since ‖
[
esAΣ

]
i
‖22 ≥ 0, for all t1 ≤ t2 we have Var [X(t1)|X(0)]ii ≤ Var [X(t2)|X(0)]ii. So

the variance of the OU process will increase as t grows. And because the elements in Σ is of order
Θ( 1√

m
), we have Var [X(t)|X(0)] = Θ( 1

m ). From the definition of X(t) we have Var([θt]i) =

Var[X(t)|X(0)]d+i,d+i =
∫ t
0
‖
[
esAΣ

]
d+i
‖22ds. Hence we complete our proof.

C PROOF OF THEOREM 2

Proof. Now we consider the vanishing step size situation, namely ηt = µt = 1/t. And when
the time interval is infinitesimal, the discrete dynamics converge to the gradient flow which can be
written in the form of ordinary differential equations (assume t ≥ 1):(

ẇ(t)

θ̇(t)

)
=

(
1
t∇wF (w(t), θ(t))
− 1
t∇θF (w(t), θ(t))

)
(44)

=

(
1
t (Ex∼N(0,Id)x− (Ey∼N(0,Id)y + θ(t)))

− 1
tw(t)

)
(45)
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Under the full-batch condition, which means that Ex∼N(0,Id)x = 0 and Ey∼N(0,Id)y = 0 can be
precisely calculated, the solution to the above ODEs is{

wt = w1 cos(ln t) + θ1 sin(ln t)

θt = w1 sin(ln t)− θ1 cos(ln t)
(46)

Notice that the solution implies that ‖wt‖ ≤ ‖w1‖ + ‖θ1‖, which means that the 1-Lipschitz con-
dition on w in WGAN is automatically satisfied if w0 and θ0 are initialized sufficiently small. The
parameters lie on a circle around the equilibrium point (0, 0), which are stable though do not con-
verge.

When the batchsize is m, which means that we randomly draw i.i.d. samples x1t , ..., x
m
t ∼ N(0, Id)

and y1t , ..., y
m
t ∼ N(0, Id) and use the sample mean x̄m,t = 1

m

∑m
i=1 x

i
t and ȳm,t = 1

m

∑m
i=1 y

i
t

to estimate the true mean Ex∼N(0,Id)x and Ey∼N(0,Id)y, the gradients become ∇wF = x̄m,t −
ȳm,t − θ and ∇θF = −w. Since x1t , ..., x

m
t and y1t , ..., y

m
t are independent for different t, we have

x̄m,t, ȳm,t ∼ N(0, 1
mId) and they are independent for different t. So x̄m,t − ȳm,t ∼ N(0, 2

mId).
And the parameters w and θ satisfy the following stochastic differential equations:

{
dwt = − 1

t θtdt+ 1
t

√
2
mdWt

dθt = 1
twtdt

(47)

whereWt is a d-dimensional standard Wiener process. DenoteXt = (w>t , θ
>
t )> ∈ R2d, then again,

Xt is a multidimensional OU process with expectation

E [X(t)|X (1)] = (w>1 cos(ln t) + θ>1 sin(ln t), w>1 sin(ln t)− θ>1 cos(ln t))> (48)

and variance

Var [X(t)|X (1)] =

∫ t

1

ea(t)e−a(s)Σ(s)Σ(s)>
(
ea(t)e−a(s)

)>
ds (49)

where

A(t) =

(
0 − 1

t Id
1
t Id 0

)
,Σ(t) =

( √
2√
mt
Id 0

0 0

)
(50)

and Ã(t) is a primitive function to A(t) d t. For example, we take:

Ã(t) =

∫
A(t) =

(
0 −(ln t)Id

(ln t)Id 0

)
(51)

So eÃ(t) =

(
(cos ln t)Id −(sin ln t)Id
(sin ln t)Id (cos ln t)Id

)
and

eÃ(t)e−Ã(s) =

(
(cos ln t)Id −(sin ln t)Id
(sin ln t)Id (cos ln t)Id

)(
(cos− ln s)Id −(sin− ln s)Id
(sin− ln s)Id (cos− ln s)Id

)
(52)

=

(
(cos ln t

s )Id −(sin ln t
s )Id

(sin ln t
s )Id (cos ln t

s )Id

)
(53)

=

(
(cos ln s

t )Id (sin ln s
t )Id

−(sin ln s
t )Id (cos ln s

t )Id

)
(54)

=eÃ( st )
>

(55)

15



Under review as a conference paper at ICLR 2020

the variance of the i-th component of X(t) is

Var [X(t)|X(0)]ii =

∫ t

1

‖
[
eÃ(t)e−Ã(s)Σ(s)

]
i
‖22ds (56)

=

∫ t

1

‖
[
eÃ( st )

>
Σ(s)

]
i

‖22ds (57)

=

∫ t

1

‖
[
eÃ( st )

>
]
i

Σ(s)‖22ds (58)

=

∫ t

1

1

m
‖
[
eÃ( st )

>
]
i

(√
2
t Id 0
0 0

)
‖22ds (59)

=Θ(
1

m
) (60)

From the definition of X(t) we have Var([θt]i) = Var[X(t)|X(0)]d+i,d+i = Θ( 1
m ). Hence we

complete our proof of the second part.

D PROOF OF THEOREM 3

Proof. Since f is L-Lipschitz, we have

|f(λx1 + (1− λ)x2)− f(x1)| ≤L‖x1 − (λx1 + (1− λ)x2)‖ (61)
=L(1− λ)‖x1 − x2‖ ≤ L(1− λ)δ (62)

|f(λx1 + (1− λ)x2)− f(x2)| ≤L‖x2 − (λx1 + (1− λ)x2)‖ (63)
=Lλ‖x1 − x2‖ ≤ Lλδ (64)

So we have
f(λx1 + (1− λ)x2) ≥ f(x1)− L(1− λ)δ

and
f(λx1 + (1− λ)x2) ≥ f(x2)− Lλδ

Hence, f(λx1 + (1 − λ)x2) ≥ max{f(x1) − L(1 − λ)δ, f(x2) − Lλδ}. And the second result
follows by simple calculation.

E SAMPLE INSUFFICIENCY

We show more examples to demonstrate the problem of sample insufficiency of GANs. It can mis-
guide the discriminator and then generator, causing finally generator to generate anomalous images.
The training dataset consists images whose rectangle number is exactly 2. They are 32 by 32 single-
channel image. All rectangles are 8 by 8. Anomalous generated images have different number of
rectangles. The two training designs are compared. First one is mini-batch gradient descent (MGD),
where the insufficient problem is severe and training is unstable, giving rise to anomalous images
during whole training. Second is full-batch gradient descent (FGD), where the insufficient problem
is negligible. Training for the second approach is stable, with few anomalous images generated.
Generated images with certain individual latent codes are plotted. Images are grey single-channel
but shown in color for visualization purpose.

F AVOIDING ANOMALOUS GENERALIZATION ON GEOMETRY DATA

We introduce two problems to explain the anomalous generalization results reported in Zhao et al.
(2018). Further, we demonstrate the anomalous can be avoided by training modifications. We
have three modified training methods extended from the Vanilla training: Sample Correction (SC),
Pixel-wise Combination Regularization (PCR) and the SC + PCR. For SC, the negative training
samples generated from generator are discarded before fed to discriminator for gradient descent.
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Figure 6: The generated images for certain fixed latent codes. For FGD (left), training is stable and
converges smoothly. For MGD, where the insufficient problem is severe, training is unstable and
gives rise to anomalous images (rectangle number is not two).

The samples with true rectangle number is discarded. The selection can be implemented efficiently
by counting the number of rectangle using straight forward counting algorithm. For PCR approach,
the pixel-wise averages of the training data (pixel-wise logic-and and logic-union) are precomputed.
Specifically, the way we generate training geometry data can be utilized for this precomputation. To
generate 2-number-rectangle training geometry data, we first randomly generate several 3-number-
rectangle images. After that, for each 3-number-rectangle image, we randomly remove one rectangle
out of the three. The remove is done twice for each 3-number-rectangle image. By this we get
two different 2-number-rectangle images out of one 3-number-rectangle image. Because of this
construction method, we could obtain the pixel-wisely average images easily, i.e. pixel-wise logic-or
or logic-and, which are 3-number-rectangle or 1-number-rectangle respectively. These precomputed
additional images are used as additional negative training samples for the PCR approach. All images
are 32 by 32 with one channel. All rectangles are 8 by 8.

In experiments, SC and PCR can both improve the proportion of correct generated images. Combin-
ing the SC and PCR, the proportion goes to 100% quickly. We show there is no mode collapses for
these three training modifications: SC, PCR and SC+PCR. We randomly draw 30 training images.
For each sample, we find the closest image in 256000 generated samples. Results are shown in Fig-
ure 7. For three training designs extended from the Vanilla (SC, PCR and SC+PCR), most training
images are represented by the learned distribution of the generator, meaning the high performance
is achieved (up to 99% correct generated images) without mode collapse.
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Figure 7: For a random training image, the closest generated image in 256000 generated samples
is found. For three training method (SC, PCR and SC+PCR), most training images are represented
by the learned distribution of the generator, meaning the high performance is achieved (up to 99%
correct generated images) without mode collapse.
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